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Abstract: Azo compounds have high exothermic characteristics and low thermal stability, which
have caused many serious thermal accidents around the world. In general, different locations
(e.g., equatorial or polar regions) have different UV intensities. If the azo compound exists in an
inappropriately stored or transported condition, the decrease in thermal stability may cause a thermal
hazard or ageing. 2,2′-Azobis(2,4-dimethyl)valeronitrile (ADVN) is investigated with respect to the
thermal stability affected by UV exposure at 0, 6, 12, and 24 h. When ADVN is exposed to 24 h of
UV (100 mW/m2 and 254 nm), T0 is not only advanced, but the mass loss is also increased during
the main decomposition stage. In addition, the apparent activation energy and integral procedural
decomposition temperature (IPDT) of ADVN exposed to 24 h of UV is calculated by kinetic models.
Therefore, the prevention mechanism, thermal characteristics, and kinetic parameters are established
in our study. We should isolate UV contacting ADVN under any situations, avoiding ADVN being
aged or leading to thermal runaway. This study provided significant information for a safer process
under changing UV exposure times for ADVN. Furthermore, the research method may serve as
an important benchmark for handling potentially hazardous chemicals, such as azo compounds
described herein.

Keywords: azo compound; free initiator; calorimetric and product analysis technology; kinetic
parameters; environmental protection

1. Introduction

In view of loss prevention, the appraisal of thermal characteristics for reactive chemicals has been
a major concern of chemical industries. The main reason for many accidents is insufficient knowledge
of reactants, intermediates, products, or various catalysts. In general, a small change of temperature or
pressure may sporadically cause a serious runaway reaction for highly-energetic chemicals. The most
hazardous information can be obtained from the literature, but if this information is scanty, the related
safety parameters should be assessed by proper thermal analysis technology [1–3].

2,2′-Azobis(2,4-dimethyl)valeronitrile (ADVN) (the chemical structure is shown in Figure 1),
a common azo compound, is an excellent free radical supplier for chemical processes. When azo
is involved in an exothermic reaction, it can amply provide free radicals and energy for synthesis
of organic compounds or polymers, such as styrene, methyl acrylate, epoxy resin, or propylene, as
an initiator, cross-linking, or curing agent. However, ADVN has thermal instability and sensitivity
because of its –N=N– structure, which may incur violent thermal decomposition by external fire, other
igniting sources, or irradiation [4–8]. In the past, many thermal accidents have occurred because
the inherent safety of chemicals is not explicit and the accident process is unexpected, which may
result in the stored temperature, cooling system, or pressure relief system to be wrongly designed
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for safety considerations. Wanasekara et al. in 2011 indicated that the increase in the temperature
and exposure time may lead to surface degradation and embrittlement of fibers. Wang et al. in 2008
mentioned that the UV light can cause the trans-cis isomerization mechanism of azo compounds (see
Figure 2). Wang and Wang in 2008 also indicated that the azo with a trans isomer has high thermal
stability and low energy intensity [9–11]. Thus, it is crucial that we understand the thermal hazard
behaviors for azo which can be used efficiently and safely during operating, transportation, and
storage [12]. In the past, most of the research of ADVN for runaway excursion has been the analysis
of pure substances. However, the photo effect of ADVN has rarely been explored. Since ADVN has
extreme photosensitivity with UV, the decomposition mechanism may be changed with the exposure
time and mass [13]. Often, UV irradiation exists ubiquitously, and even its intensity may be different
between location latitudes. Simultaneously, if the optical isolation of UV for the package or container is
not complete, the photo effect may decrease the thermal stability of ADVN, resulting in the increased
risk of a thermal runaway reaction [14].
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Figure 2. Light effect for the trans-cis isomerization mechanism of ADVN.

The calorimetry and kinetic models are used to analyze the thermal stability parameters, such as
apparent onset temperature (T0), peak temperature (Tp), final temperature (Tf), apparent activation
energy (Ea), frequency factor (lnk0), and reaction order (n), to establish the hazard characteristics and
to explore the decomposition products by employing differential scanning calorimetry (DSC) and
thermogravimetry (TG) for determination of UV effects on ADVN [15,16].

2. Results and Discussion

2.1. TG Results

Figure 3 shows the mass loss versus temperature diagram from TG testing for ADVN and ADVN
with different exposure durations of 6, 12 and 24 h of UV irradiation at a heating rate 20 ◦C/min.
There are two decomposition stages for ADVN and ADVN exposed to UV, and the main decomposition
stage is the second stage. We found that when ADVN was exposed to 6 and 12 h of UV, the profiles
of the TG curve are not obviously different between each other, and for both T0 is 78 ◦C. However,
although the T0 of the first stage of ADVN is close to ADVN exposed to 24 h of UV, the T0 of the
second decomposition stage is curtailed from 132 ◦C to 127 ◦C and the mass loss is increased from 70%
to 80%. According to the literature [17], T0 and mass loss can be used to determine the thermal stability
for chemicals. Therefore, if ADVN is exposed to a UV intensity of 100 mW/m2 for over 24 h, the onset
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temperature and temperature of the maximum mass loss can decrease, causing abnormal aging or
lessening the thermal stability during preparation, storage, transportation, and operating conditions.Molecules 2017, 22, 2219 3 of 9 
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In Figure 4, we compared the IPDT for ADVN and ADVN with different exposure durations
of 6, 12 and 24 h of UV irradiation, corresponding to values of 119, 125, 124 and 112, respectively.
The results showed that when the exposure time of UV is 6 and 12 h, the IPDT could be increased, but
the IPDT of ADVN is decreased after exposure to UV for 24 h. According to the literature, the thermal
characteristics of chemicals are determined by energy and states of chemical bonds [18]. UV light can
lead to the formation of the trans-cis isomerization of ADVN, causing a decrease in the thermal stability.
In general, 24 h is usually considered as a standard emergent time or transportation for chemical
industries, so that ADVN should avoid being in contact with UV irradiation under any conditions.
The TG and IPDT results for ADVN exposed to 6, 12, and 24 h of UV at a heating rate 20 ◦C are listed
in Table 1.

Table 1. Thermal stability parameters by TG testing for ADVN and ADVN exposed to 6, 12 and 24 h of
UV at a heating rate 20 ◦C.

Sample T01 (◦C) T02 (◦C) Mass Loss
(First Stage) (%)

Mass Loss
(Second Stage) (%) IPDT/◦C

ADVN/without UV 78.6 132.1 30.0 70.0 119.0
ADVN/6 h of UV 78.7 133.2 30.0 70.0 125.0

ADVN/12 h of UV 78.9 133.5 25.0 75.0 124
ADVN/24 h of UV 77.9 127.3 20.0 80.0 112.0
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Based on the above-mentioned results, the following experiments focused on the UV effect for
ADVN with an exposure time of 24 h. ADVN exposed to UV for 24 h was tested by TG at heating
rates of 1, 5, 15 and 20 ◦C, as delineated in Figure 5. We also compared the IPDT for the results of four
heating rates and the value of IPDT was increased from 101 ◦C to 119 ◦C with an increasing heating
rate. Moreover, we plotted the IPDT versus the heating rate curve, and there was an extremely high R2

value from the linear regression. According to the results, the heating rate can determine the IPDT for
the decomposition reaction of ADVN exposed to UV for 24 h. From the viewpoint of safer process
design, when the operating conditions of a chemical process involving ADVN exposed to UV for 24 h
need a low reaction temperature, a low heating rate should be proper and reliable. However, a high
heating rate is better for a high reaction temperature. IPDT will be used as a basic, rudimentary, and
dependable thermal stability parameter for future study. The linear dependence of IPDT with different
heating rates is depicted in Figure 6.
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2.2. Determination of Kinetic Models for ADVN With UV Irradiation

To investigate the reaction mechanism and predict the kinetic behaviors for ADVN exposed to
24 h of UV, non-isothermal kinetic analysis was conducted based on DSC data, which is illustrated in
Figure 7. Followed ICTAC recommendations, the kinetic calculation requests three up temperature
programs. The complex reaction model can use the non-linear model-fitting method to test the kinetic
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parameters [19]. Figure 8 displays (a) heat production versus time and (b) heat production rate
versus time by experiments and simulations. From the simulation results, we observed that there was
significant curve fitting and nearly the same kinetic parameters, including n, Ea, A, and ∆Hd, for both
plots of heat production and heat production rate versus time of ADVN exposed to 24 h of UV at
heating rates of 1, 2, 4 and 8 ◦C/min by simple nth order kinetic models. Therefore, ADVN exposed to
24 h of UV is determined as an nth order reaction, instead of autocatalysis, and the obtained kinetic
parameters can be used to predict other heating rates or reaction temperatures for reliable information
in the future studies. The related kinetic parameters are given in Table 2 [20].
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Table 2. Reaction kinetic simulation for ADVN with UV/24 h using non-linear regression methods at
heating rates of 1, 2, 4, and 8 ◦C/min.

Heating Rate (◦C/min) Ea (kJ/mol) ln (A) (1/s) Reaction Order (n) ∆Hd (kJ/kg)

1.0 137.0 39.0 1.4 632.0
2.0 144.0 42.0 1.5 632.0
4.0 140.0 40.0 1.4 603.0
8.0 138.0 39.0 1.5 633.0
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3. Materials and Methods

3.1. Sample

The sample chosen was ADVN 98 wt %, which was purchased from ACE Chemical Corp.,
Taoyuan, Taiwan. ADVN is light sensitive and thermally unstable, so it should be maintained in a dark
space and at a low temperature of 4 ◦C. The UV instrument was purchased from Uvitron International,
Inc. (West Springfield, MA, USA). The exposure time and intensity of UV irradiation is 6, 12 and
24 h, respectively, to determine the UV effect on ADVN. The intensities/irradiance of their UV light
exposures is 100 W/m2 and 254 nm. This value is the average intensity of UV at noon during the
summer in China.

3.2. Differential Scanning Calorimetry (DSC)

Temperature-controlled thermal curves of DSC experiments facilitate understanding the
exothermic or endothermic reaction of a chemical, such as crystallization, curing reaction, phase
change, or thermal decomposition reaction. Thus, it can be used as a safety assessment methodology
to provide the thermal hazard information for ADVN. The type of DSC is selected in the Mettler DSC
821e. To investigate thermal characteristics of ADVN with UV irradiation, we heated it from 30 ◦C to
300 ◦C at different heating rates, here, 1, 2, 4 and 8 ◦C/min, using the DSC test. The sample amount for
each experiment was approximately 1.5–5 mg and the sample was sealed in a gold-plated crucible [21].

3.3. Thermogravimetry (TG)

Thermogravimetry, using a PerkinElmer Clarus 680 unit, was used to analyze the thermal
decomposition products for ADVN and ADVN exposed to UV with different times of 6, 12 and
24 h. The TG experiments were performed from ambient temperature to 300 ◦C with heating rates of 1,
5, 10 and 20 ◦C/min in nitrogen gas purged at a flow rate of 100 mL/min [22].

3.4. Evaluation of Integral Procedural Decomposition Temperature (IPDT)

An evaluation parameter of thermal stability, IPDT, was used to consider and explore the overall
thermal stability during the decomposition process. Since thermal stability involves three crucial factors
of chemicals, including initial reaction, end reaction, and ratio for mass loss, IPDT was created based
on different thermogravimetric regions of the TG curves. The equations of IPDT are as follows [23,24]:

IPDT = A◦ × K◦ ×
(

Tf − Ti

)
+ Ti (1)

A◦ = (S1 + S2)/(S1 + S2 + S3) (2)

K◦ = (S1 + S2)/(S1) (3)

where A◦ and K◦ is the proportion of mass loss. Ti and Tf are the mass loss at the initial temperature
and final temperature, respectively. S1, S2, and S3 are different partitioned regions. S1 is the
thermogravimetric area under the TG curve; S2 is the thermogravimetric area of the non-mass loss;
and S3 is the thermogravimetric area above the TG curve. The schematic diagram of IPDT is shown in
Figure 9.
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3.5. Non-Linear Regression Method to Decide the Reaction Kinetics of ADVN/UV Irradiation

In general, typical fundamental reactions of azo are nth order and autocatalytic; they may be
composed of either a one-stage or a multi-stage reaction. However, linear regression methods, such
as Kissinger, Ozawa, or Friedman models, are unable to predict complex chemical reactions of azo.
Therefore, the non-linear regression method is usually used to directly fit the thermal curve of chemicals
through kinetic models to appraise the chemical reaction stages and various kinetic parameters, such
as n, Ea, A, and the autocatalytic constant (z) for use in chemical engineering processes. The nth order
and autocatalytic reaction models are presented in Equations (4) and (5), correspondingly [25–29]:

dα

dt
= A exp

(
−Ea

RT

)
(1− α)n (4)

dα

dt
= A exp

(
−Ea

RT

)
(1− α)n1(αn2 + z) (5)

where n1 and n2 are reaction orders for the two different reaction stages, α is the degree of conversion,
and z is the autocatalytic constant.

4. Conclusions

We tested the thermal stability of ADVN exposed to UV at 100 W/m2 and 254 nm, which is the
average intensity of UV at noon during the summer in China. Based on the experimental results, when
ADVN is exposed for 6 h and 12 h, the IPDT is decreased, demonstrating that the short exposure
time cannot affect the thermal stability for ADVN. However, when ADVN is exposed to 24 h of UV,
T0 is not only advanced, but the mass loss can also increase during the main decomposition stage.
UV light can cause ADVN to the trans-cis isomerization, causing the decrease in the thermal stability.
We should isolate UV contacting ADVN under any situation, avoiding ADVN being aged or leading
to thermal runaway. In addition, IPDT and non-isothermal kinetic models are carried out to evaluate
the thermal stability, reaction mechanism, and related kinetic parameters of ADVN exposed to UV
irradiation. From the simulation results, we observed that there was significant curve fitting and nearly
the same kinetic parameters. ADVN exposed to 24 h of UV is determined as an nth order reaction,
instead of autocatalysis, and the obtained kinetic parameters can be used to predict other heating rates
or reaction temperatures for reliable information in future studies. This study provided significant
information on a safer process under changing exposure time of UV for ADVN. Furthermore, the
research method may serve as an important benchmark for handling potentially hazardous chemicals,
such as azo compounds described herein.
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