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Abstract: Most proteins perform their biological functions while interacting as complexes.
The detection of protein complexes is an important task not only for understanding the relationship
between functions and structures of biological network, but also for predicting the function of
unknown proteins. We present a new nodal metric by integrating its local topological information.
The metric reflects its representability in a larger local neighborhood to a cluster of a protein interaction
(PPI) network. Based on the metric, we propose a seed-expansion graph clustering algorithm (SEGC)
for protein complexes detection in PPI networks. A roulette wheel strategy is used in the selection of
the seed to enhance the diversity of clustering. For a candidate node u, we define its closeness to a
cluster C, denoted as NC(u, C), by combing the density of a cluster C and the connection between a
node u and C. In SEGC, a cluster which initially consists of only a seed node, is extended by adding
nodes recursively from its neighbors according to the closeness, until all neighbors fail the process of
expansion. We compare the F-measure and accuracy of the proposed SEGC algorithm with other
algorithms on Saccharomyces cerevisiae protein interaction networks. The experimental results show
that SEGC outperforms other algorithms under full coverage.
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1. Introduction

In the proteomics era, various high throughput experimental techniques and computational
methods have produced enormous protein interactions data [1], which have contributed to predict
protein function [2,3] and detect protein complexes from protein–protein interaction (PPI) networks [4].
Prediction of protein complexes can help to understand principles of cellular organization and
biological functions of proteins [5–7]. A PPI network can be modeled as an undirected graph, where
nodes represent proteins and edges represent interactions between proteins. Proteins usually interact
with others as a complex to perform their biological functions in cells, such as DNA replication,
transcription and protein degradation [8–10], so protein complexes are usually dense subgraphs in
PPI networks.

Graph clustering [11] is an unsupervised learning technique that groups the nodes of the graph
into clusters taking into consideration the edge structure of the graph in such a way that there should
be many edges within each cluster and relatively few between the clusters. Clusters in a PPI network
are highly interconnected, or dense regions that may represent complexes. Thus, identifying protein
complexes is similar to finding clusters in a graph. Various graph clustering algorithms have been
developed to identify protein complexes using the information encoded in the network topology.
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In general, these methods can be classified into two types: Global method and local method, according
to whether they produce clusters based on whole view or partial view of graph topology.

Global approaches exploit the global structure information of networks. Girvan and Newman
proposed the Girvan and Newman (GN) algorithm [12] to partition network by iteratively removing
the edges with highest edge betweeness. Markov clustering algorithm (MCL) [13,14] starts from
an initial flow matrix to identify complexes by simulating stochastic flows between nodes in PPI
networks. Spectral clustering methods [15] construct a similarity graph from initial PPI network,
and then determine clusters based on spectral analysis of the similarity graph. Most global methods
partition networks into non-overlapping subgraphs and assign all nodes in a subgraph into a cluster.
These methods enable identification of all relevant modules within a PPI network, so they might
obtain robust and effective performance for protein complex detection. However, global methods are
computationally expensive and limited to relatively small PPI networks [16].

Local clustering methods identify protein complexes by considering local neighbor information
in PPI networks instead of global information. A simple strategy of the local method is to enumerate
all highly connected subgraphs in PPI networks with density exceeding a specified threshold.
Clique Percolation Method (CPM) [17] finds k-clique-communities as a union of all k-cliques that
can be reached from each other through a series of adjacent k-cliques. CFinder method [18] implements
this approach and is currently being used in complex detection in PPI networks. Clustering-based
on Maximal Cliques (CMC) [19] identifies maximal cliques as candidate clusters and then adds a
post processing on highly overlapping cliques to generate final clusters. However, since searching all
maximal cliques in a network is an NP hard problem, these algorithms are computationally expensive.
Furthermore, these algorithms cannot provide satisfactory coverage. To improve computational
efficiency, algorithms utilizing local expansion and optimization are proposed and often classified as
“greedy” and “graph growing” algorithms [20]. Most of these algorithms start by selecting a highly
ranked node as a seed and then expand the seed to a densely connected group of nodes relying on
a local benefit function. Researchers often call these kinds of algorithms “seed expansion methods”.
The Molecular Complex Detection (MCODE) algorithm [21] is one of the most classical seed expansion
computational methods that can identify densely connected clusters in PPI networks. It first weights
all nodes by their k-core neighborhood density as local network density, and then expands from highest
weighted node by adding nodes whose vertex weight percentage (VWP, weight percentage away
from the weight of the seed vertex) is above a given threshold. The weighting scheme of MCODE
boosts the weight of densely connected nodes. For a node v, MCODE computes the VWP value of v to
check whether v is part of the cluster being considered. The VWP value of a node reflects its relative
neighborhood density respective to that of the seed in current cluster. However, VWP value might not
be an exact representation to measure the closeness between a node and the current cluster.

DPClus algorithm [22] defines “cluster periphery” of a node with respect to a cluster to address
the aforementioned issue. DPClus first weighs an edge by the number of common neighbors between
two ends of the edge, and then weighs a node as the sum of the weights of edges incident to the node.
For node v, its “periphery” respect to a cluster C is defined as the fraction of the number of nodes in
C adjacent to v and average link number of node in C. However, “periphery” value only considers
the connections between node v and cluster C, without taking into account the neighborhood density
information of the node v itself.

It first chooses node with the highest weighted degree as a seed that forms an initial cluster.
The weight degree of a node is the sum of all of its adjacent edges’ weights, where an edge weight
is measured by the number of common neighbors of interacted proteins. The node weight reflects
local density in the node’s immediate neighborhood by the number of triangles on it. Then, DPClus
iteratively augments the initial cluster by adding nodes if the density and cluster property of the cluster
are higher than user-defined thresholds.

Based on observation that many protein complexes typically have small diameter and average
node distance, IPCA [23] modifies algorithm DPClus by considering subgraph diameter and interaction
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probability. The interaction probability of a node to a subgraph is defined as the number of edges
between the node and subgraph normalized by the total number of nodes in the subgraph, and it is
similar to cluster property and also closely related to subgraph density. The node weighing measure
and seed selection strategy are identical to DPClus. In the sense of weighted networks, speed and
performance in clustering (SPICi) [24] is proposed to handle the computation complexity of clustering
large PPI networks. It builds clusters greedily, starting from local seeds that have high weighted degree,
and greedily adding an adjacent unclustered node with the highest support score that maintains the
density of the clusters. The cluster expansion approach of SPICi is simpler than DPClus and output is
a set of disjoint dense subgraphs.

The study of protein complexes using affinity purification and mass spectrometry [25] suggests
that major protein complexes contain a core in which proteins have relatively more interactions among
themselves and each attachment protein binds to a subset of core proteins to form a complex. Based on
this observation, ICSC [4] starts with a subgraph as a seed and then greedily adds nodes to find
dense subgraphs. The definition of closeness of a node to a subgraph is the same as the interaction
probability used in IPCA. Algorithms in this category include Core [26], COACH [10], GC-Coach [27]
and WPNCA [28], while proteins are likely to have interactions with only one hub-protein within a
few complexes that exhibit starlike structures in PPI networks [29,30].

PPI networks obtained from high-throughout biological experiments are noisy with false positive
interactions. Taking into account the reliability of protein interactions, some efforts are made to identify
protein complexes using the topology of PPI networks [31,32]. In order to generate robust clustering
techniques, several computational approaches detect protein complexes from PPI networks integrating
gene ontology (GO) annotation [33,34], genomic data [35] and so on.

Various graph clustering approaches have different clustering criteria to find local dense
subgraphs and work well in detecting protein complexes from PPI networks. The local seed expansion
method is among the most successful strategies for overlapping graph clustering [36]. However,
there are still some limits in such algorithm: (1) measure the representability of a node to a cluster
using only density of the subgraph induced by the node and its immediate neighborhood; (2) given
a graph with weighted node, clusters are sensitive to the choice of the starting node [20]. Existing
seeding strategies usually select a node with the highest weight as a starting node (seed) to find a
cluster, without a process to adjust centers of clusters. This leads to a lack of diversity of algorithms;
(3) existing closeness (interaction probability) of a node to a cluster only considers candidate nodes’
density or connections between the candidate nodes and the cluster.

In this article, we address the above limits and propose a new seed-expansion graph clustering
algorithm (SEGC) that produces overlapped clusters for protein complex detection. It consists of three
main phases: node weighing, seed selection and cluster expansion. In the stage of node weighing, SEGC
combines different attribute information of node structure, and further improves the representability
of nodes to a larger local neighborhood by an iterative weighing method. It has a diversity to adapt
to different networks. In order to enhance the diversity of proposed algorithm, the roulette wheel is
used to choose seed nodes of potential clusters. In the cluster expansion phase, a new closeness is
proposed considering the influence of connections between a candidate node and a cluster on both
the cluster and candidate node. We apply this clustering algorithm to cluster several PPI networks of
Saccharomyces cerevisiae. The results show that SEGC outperforms other algorithms under full coverage
in terms of both F-measure and accuracy with a real benchmark protein complex data set.

2. Preliminary

A protein-protein interaction (PPI) network can be represented by a graph G = (V, E) with node
(protein) set V and edge set E that contains the edges (interactions) of the graph G. We consider only
simple undirected graphs, which contain no self loops and multiple edges. Let n = |V| be the number
of nodes and m = |E| be the number of edges. We denote an edge in G as an unordered pair (v i, vj

)
or eij, where vi, vj ∈ V. A graph H = (V(H), E(H)) is called a subgraph of G if V(H) ⊆ V and E (H) ⊆ E,
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denoted as H ⊆ G. The diameter of a subgraph H is the largest length of a shortest path between any
two nodes in subgraph H, written as D(H). An induced subgraph G[S] is a graph whose node set is
S ⊆ V and whose edge set consists of all of the edges in E that have both endpoints in S. We write [S]
to denote the induced subgraph by node subset S when without causing confusion. Table 1 lists the
main symbols used in this paper.

Table 1. Description of the main symbols used in this paper.

Symbol Description

G = (V, E) A graph G including a node set V and an edge set E
n The number of nodes in a graph
m The number of edges in a graph
vi The ith node in V

(v i, vj

)
or eij The edge in E between node vi and vj

dis (v i, vj

)
The distance between node vi and vj

Nk k-neighborhood
V(S) The node set of a subgraph S

A The attribute (feature) matrix of nodes in a graph
−→
β The weight vector of the node attributes
k The maximum number of iterations

W The weight matrix of nodes
w(.) The weight of a node or an edge
P(v) Probability of node v being selected
C(v) The cluster (subgraph) with node v as the seed

NC(u, S) The closeness between node u and subgraph S
λ The parameter to control two items in NC
r Reduce rate of λ
D Diameter of a graph
ε The user-defined threshold of NC
θ The user-defined threshold of diameter

Let l be a nonnegative integer. A path of length l from u to v in G is a sequence of n edges e1 , · · · , el
of G for which there exists a sequence x0 = u, x1, . . . , xl−1, xl = v of mutually distinct nodes such
that ei has, for i = 1, ..., l, the endpoints xi−1 and xi. We denote this path by its node sequence x0 . . . xl .
The distance of u and v is the length of the path between u and v in G such that the number of its edges
is minimized.

The open neighborhood (or neighborhood) of a node v, denoted as NG(v) or N(v), is the subgraph
induced by all nodes that are adjacent to v. The closed neighborhood is defined in the same way but
also includes v itself, denoted as NG[v] or N[v]. Unless otherwise stated, we also use NG(v) (or) to
represent the node set of NG(v) (or NG[v]).

The 1-neighborhood of a given node vi ∈ V is represented by N(vi) =
{

vj ∈ V | (v i, vj
)
∈ E

}
,

and then the set of k-neighborhood can be defined by

Nk(vi) =

{
N(vi), if k = 1,
Nk−1(vi) ∪

{
vj ∈ V

∣∣ dis
(
vi, vj

)
= k

}
, if k > 1,

(1)

where dis (v i, vj
)

denotes the distance between vi and vj.
The degree DC(v) of a node v is the number of elements of NG(v), i.e., DC(v)=| N G(v) |.

The degree DC(H) of a node subset H is the sum of degree of the nodes of H, i.e., DC(H) = ∑v∈H DC(v).
The goal of traditional graph clustering is grouping the nodes of a given input graph into p

disjoint clusters (subgraphs) C1, C2, · · · , Cp such that V( C1 ) ∪ V( C2 ) ∪ · · · ∪ V
(

Cp
)

= V
and V(C1) ∩ V(C2) ∩ · · · ∩ V

(
Cp
)
= ∅. For the problem of overlapping clustering in complex

detection, the goal is to find clusters such that V( C1 ) ∪ V( C2 ) ∪ · · · ∪ V
(

Cp
)
⊆ V and

∃ V(Ci) ∩ V
(
Cj
)
6= ∅ . A protein complex is usually abstracted as a connected subgraph in a PPI

network and graph clustering is natural for protein complex detection. Here, graph clustering finds
clusters within a given graph rather than the clustering between graphs.
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3. Method

3.1. Algorithm Overview

We propose a new graph clustering algorithm based on seed-expansion approach (SEGC) to
detect protein complexes using network topology attributes only. It consists of three main phases:
node weighing, seed selection and cluster expansion. In the stage of node weighing, we compute
the weights (i.e., representability) of nodes by a new metric. In seeding phase, the roulette wheel
selection is used to find nodes with higher weight as seeds with probability proportional to their
weights. In expansion phase, we expand the original seeds to form dense subgraphs as clusters based
on a newly defined closeness measure (see Equation (8)). One could find a cluster by executing seed
selection and cluster expansion. The seed of next cluster will be selected in nodes that have no cluster
assignment. We do not remove any clustered node or edge to keep the original input graph complete.
SEGC ensures that every node in PPI networks will be assigned into at least one predicted complex.
SEGC can also obtain overlapping clustering, which means that some nodes might be attached to more
than one cluster.

3.2. Node Weighing

In graph clustering, how to measure the representability of a node to a cluster by connections
between nodes is a key issue. Let w(v) be the weight of a node v and be usually computed according to
local information within a subgraph consisting of nodes N[v]. The node with higher w(v) has better
representative to the subgraph N[v]. The most basic centrality measure is degree centrality (DC) based
on the observation that the hub nodes usually have more edges [24,37]. There should be good clusters
around high degree nodes in real-world networks with a power-law degree distribution. However,
a node with a high degree is not enough to reflect the representability to a cluster [36,38]. In addition,
the existing node importance metrics are mainly based on the structure information only within a
node’s direct neighborhood. A good node weighing measure should reflect the importance of a node
in a larger neighborhood of the node.

We proposed a new node weighing vector W to overcome the above shortcomings. It not only
integrates topological attribute information of nodes and edges, but also gets importance of a node v
within k-neighborhood of v (i.e., {v} ∪ Nk(v)) through k iterations, where k is a predefined parameter.
A larger k indicates that the weight of node v represents the information of a larger neighborhood
around it. Given attribute matrix A ∈ Rn × q of n nodes with q attributes and weight coefficient vector
→
β ∈ R1 × q of attributes, the node weight vector in i-th (1 ≤ i ≤ k) iteration is defined as

Wi = Ai−1
→
β
>

, (2)

where Ai−1 is the attribute matrix of nodes in (i − 1)th iteration, and element wi(v) of W i is
determined as

wi(v) = Ai−1
v
→
β
>
= β1·ai−1

1 (v) + β2·ai−1
2 (v) + . . . + βq·ai−1

q (v), (3)

where Ai−1
v = [ a i−1

1 (v), · · · , ai−1
q (v)] and

→
β =

(
β1, . . . βq ), which we will describe in detail in the following.

Let the weight of an edge e = (u, v) as the number of common neighbors between two ends of
e, that is, τ(u, v) = |N(u) ∩ N(v)| . In order to reflect importance of a node v more comprehensive,
we consider three basic attributes to calculate the weight of a node v in this paper, including: DC(v),
the degree of node v; DC(N(v)), the degree of direct neighbors of v; and ∑

u∈N(u)
τ(v, u), the sum of the

weights of its incident edges. These three attributes can not only reflect the degree information of the
node itself, but also the neighborhood information around the node. For convenience, we initialize the
weight of a node as its degree, i.e., w0(v) = DC(v). Therefore, we can define elements of the attribute
vector of node v in ith (1 ≤ i ≤ k) iteration as:
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ai
1(v) = wi−1(v),

ai
2(v) = ∑u∈N(v) wi−1(u)

ai
3(v) = ∑u∈N(v) τ(v, u).

, (4)

Since the significances of each attribute mentioned above are quite different from each other,

we use weight coefficient vector
→
β to weigh each attribute. The number of elements in

→
β equals the

number of attributes used in the calculation of node weights. Then, we have

wi(v) = β1 · w
i−1(v) + β2 · ∑

u∈N(v)
wi−1(u) + β3 · ∑

u∈N(v)
τ(v, u), (5)

where β1 + β2 + β3 = 1.
The first item of Equation (5) denotes the centrality information in ith iteration of the node itself.

The second item reflects the centrality information of its adjacent nodes in ith iteration. The third item
adds weights of its incident edges to the centrality information of node v. If the weights of its incident
edges are relatively high, then the node v might be a meaningful point for local module searches in
functional networks, similar to [24].

From the definition of the node weight, it can also be obtained that the nodes with higher
weight should be more representative for its local topological neighborhood. The number of iteration
determines the range that the node weight can reflect. For example, in the first iteration, the node
weight reflects the direct neighborhood including its adjacent nodes and its incident edges; however,
in the ith iteration, the node weight can reflect the i-neighborhood of node v. If i is the diameter of a
graph G, then wi(v) can measure the centrality of node v in the range of the whole network.

Since β1 + β2 + β3 = 1, the node weight defined in Equation (5) can also be formulated as:

wi(v) = β1 · wi−1(v) + β2 · ∑
u∈N(v)

wi−1(u) + (1 − β1 − β2) · ∑
u∈N(v)

τ(v, u). (6)

If β1 = 1, we have wi(v) = DC(v) and the representative of a node is determined only by its
degree. If β2 = 1, the representative of a node is determined by the degree of the ith neighborhood of
node v. If β3 = 1, weights of direct edges of a node is a key to measure local importance, in this case,
the node weight wi(v) = ∑u ∈ N(v) τ(v, u) which is the same as that defined by DPClus [22].

The linear combination of the three parts above makes the representability of nodes to a subgraph
more complete. As shown in Figure 1, both node v2 and node v5 lie in the complete subgraph induced
by {v i|1 ≤ i ≤ 6} and have the same degree, i.e., w0(v 2) = w0(v 5

)
= 6. However, node v5 lies

in a more important position than v2 since the 2-neighborhood of v5 includes some nodes of the dense
subgraph induced by {vi|8 ≤ i ≤ 12}. From Equation (5) with weight coefficient vector (0.2, 0.6, 0.2),
we have w1(v 2

)
= 23.6, w1(v 5

)
= 26 and w2(v 2

)
= 86.2, w2(v 5

)
= 92.9. Therefore, v5 has better

representative than v2 when β1 = 0.2, β2 = 0.6, β3 = 0.2.
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3.3. Seed Selection

The seed of a cluster should have a better representative for the cluster, which indicates that the
weight of the seed node should be relatively larger than other nodes in the cluster. However, the node
with the largest weight might not always be the best choice for the seed of the considered cluster.
In order to improve the diversity of seed selection, SEGC uses a roulette wheel to select seeds from the
perspective of probability. The probability of a node v ∈ V as a seed is defined as:

P(v) =
[w i(v)]

2

∑x∈V [w i(x)]
2 . (7)

The larger the weight is, the larger the probability that the node will be selected as a seed.
At the beginning, our algorithm picks some node v as a seed and extends it to a cluster C(v) using

the cluster expansion process described in next section. Once the cluster C(v) is obtained, we begin
to select the seed node for next cluster. The seed node of the next cluster should be away from the
existing seeds in order to reduce generation of redundant clusters. Hence, all nodes in existing clusters
are no longer selected as seed nodes. However, every node might be a member of other clusters
to form overlapping clusters. Thus, we choose seed nodes in the unclustered nodes that have not
been included in any of predicted clusters by roulette wheel. The entire procedure of the approach
terminates when there are no unclustered nodes.

3.4. Cluster Expansion

After obtaining a seed node v, we extend it to a cluster C(v), which initially consists of only the
node v. The candidate node set for current C(v) is N(C(v)), the neighbors of C(v). For a candidate node
u, we use the adjacent nodes of u in C(v) to determine the priority of whether u can be extended to C(v).
We take into account both the proportion of N(u) ∩ C(v) in the node set of C(v) and the proportion of
N(u) ∩ C(v) in the neighborhood of u. The priority of a candidate node u to cluster C(v) is defined
as follows:

NC(u, C(v)) = λ
|N(u) ∩ V(C(v))|
|V(C(v))| + ( 1 − λ)

|N(u) ∩ V(C(v))|
|N(u)| . (8)

The NC(u, C(v)) measures how strongly a node u is connected to a cluster C(v). For a dense
cluster, a node connects to most of the nodes in the cluster. For the nodes lying on the spare periphery
of a cluster, most of their neighbors are in the cluster. The first item of Equation (8) represents the
effect of the size of current cluster C(v), V(C(v)) is the node set of the subgraph C(v) with node v as the
seed node. The second item represents the effect of the size of the neighborhood of u. The priority of
a candidate node u to a cluster C(v) is positively correlated to the number of adjacent nodes of u in
C(v), negatively correlated to the number of nodes in C(v), and negatively correlated to the number of
neighborhood of u.

The parameter λ ∈ [0, 1] in Equation (8) is to control the priority of u to C(v) during the
expansion process. When λ > 0.5, the first item of Equation (8) plays a determining role for
NC (u, C(v)). We might obtain a relatively dense cluster with a larger λ, since we give preference to
nodes with more connections with the current cluster. In addition, we might obtain a sparse cluster
with a smaller λ since we give preference to nodes with a low degree. A cluster should be denser
around its seed and might be not so dense away from the seed, so we should set a larger λ in the
beginning of the expansion. With the increase of the number of nodes in the cluster, we should
set a smaller λ to allow nodes lying on the periphery of cluster could be found. Hence, we set
λ = 1

r ×
√

V(C(v))−1 + 1
, where r is a predefined parameter to control the reducing rate of λ.

Considering the network shown in Figure 1 as an example, let C(v 5) be the induced subgraph
by node set {v i|1 ≤ i ≤ 6} and the seed node is v5. The candidate node v7 should be a periphery
node of C(v 5) and should be included in the current cluster. Another candidate node v9 might not
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be a member of C(v 5). If the threshold of priority is set to 0.5, candidate node v7 is added to C(v 5),
whereas candidate node v9 will not be added.

Based on the study of known complexes in protein networks, most complexes have a very
small subgraph diameter [23,39]. Thus, we have two parameters ε and θ for node priority and graph
diameter, respectively. That is to say, for a candidate node u and a cluster C(v), if NC(u, C(v)) > ε

and D([C(v) ∪ {u}]) ≤ θ, node u would be added into cluster C(v), and then C(v) = C(v) ∪ {u}.
The expansion progress would end when we could not find node u in N(C(v)) satisfying NC(u, C(v)) > ε

and D([C(v) ∪ {u}]) ≤ θ.

3.5. Complexity

We repeat the seed selection and cluster expansion process until all nodes in a graph are clustered.
The frame of the proposed approach SEGC are given in Algorithm 1. Let G = (V, E) be the graph
corresponding to the considered protein interaction network with node set V and edge set E, |V| = n and
|E| = m. Then, the average computational cost for computing edge weights is O

(
d × m

)
, where d is the

average degree of G. It takes O
(

k × d × n
)

= O (k × m) time to obtain node weights for k iterations.
It needs O (n) time to select one seed, and O (|C| × n) to select all seeds for |C| clusters.

The algorithm obtains a cluster C from its seed. During the expansion process of C, it should
take O(|V(C) ∪ N(V(C))| × log[|V(C) ∪ N(V(C))|]) time to compute NC(x, C) for each node
x ∈ V(C) ∪ N(V(C)) and sort them in nondecreasing order. For the worst case, C might include all
nodes of the considered network, that is to say, we need O( n × log n) time to obtain a cluster and
need O(|C| × n × log n) time in total for cluster expansion. Thus, the time consumed for algorithm
SEGC is O(|C| × n × log n).

Algorithm 1. A seed-expansion graph clustering method (SEGC).

Input: A given graph G = (V, E), parameters β1, β2, k, r, ε and θ.
Output: A set of clusters S = {C 1, · · · , Cp

}
.

1: S = ∅;
2: For each node v ∈ V, let w0(v) = DC(v); //DC(v) is degree centrality of node v.
3: For each edge (v, u) ∈ E, let τ(v, u) = |N(v) ∩ N(u)| ;
4: for i = 1 to k do //(***Node Weighing***)
5: For each node v ∈ V let

wi(v) = β1 • wi−1(v) + β2 • ∑
u∈N(v)

wi−1(u) + (1 − β1 − β2) • ∑
u∈N(v)

τ(v, u);

6: end for
7: For each node v ∈ V, compute the selection probability

P(v) =
[wi(v)]

2

∑x∈V [wi(x)]
2 ;

8: while |V − UC∈SV(C) | > do
9: Select a seed node v using roulette wheel; //(***Seed Selection***)
11: C(v) = Cluster Expansion({v}); //(***Cluster Expansion***)
12: S = S ∪ C(v);
13: end while

Subroutine Cluster Expansion(C)
1: Let N′(C) = {x|x ∈ N(C), NC(u, C) > D([C ∪ {u}]) ≤ θ};
2: if N′(C) 6= ∅ then
3: Let u = a rg max

x ∈ N′(C)
{NC(x, C)} be the node with highest priority;

4: C = C ∪ {u};
5: C = Cluster Expansion(C)
6: else
7: Return C
8: end if
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4. Experiments and Results

We implemented the proposed SEGC algorithm in C++ on Microsoft Visual Studio 2010 (Redmond,
WA, USA). SEGC has been successfully executed and tested on Windows 7 platform (Microsoft
Corporation, Redmond, WA, USA), running on a PC with Intel Core CPU (Santa Clara, CA, USA)
i7-2600@3.40 GHz and 8 GB RAM.

4.1. PPI Datasets and Metrics

We use Saccharomyces cerevisiae as an experimental organism, which is one of the most popular
species, because it is one of the earliest research objects and has the most abundant PPI data.
Five PPI networks of Saccharomyces cerevisiae are used and marked as Gavin02 [6], Gavin06 [25],
Krogan_core, Krogan_extend [40] and BioGrid, respectively. These data sets are widely used in
protein complex detection. Gavin02 includes 1352 proteins and 3210 interactions. Both Gavin06
and Krogan_extend are tandem affinity purification (TAP) data that include 1430 proteins with
6531 interactions and 3672 proteins with 14,317 interactions, respectively. Krogan_core contains only
highly reliable interactions among Krogan_extend. BioGrid is constructed by all of low-throughput
physical interactions in BioGRID database [41] (version 3.4.137) and includes 4254 proteins and
21,375 interactions. Table 2 shows the information of the five networks above. The density of a graph
G = (V, E) is the ratio of the total number of edges to the total number of all possible links between all
nodes, and is defined as Density(G) = 2|E|/(|V|(|V|−1)). We consider only a simple graph in this
paper, so we remove all self-interactions and duplicate interactions.

Table 2. Protein-protein interaction (PPI) datasets.

Items Gavin02 Gavin06 Krogan_Core Krogan_Extend BioGrid

Proteins 1352 1430 2708 3672 4187
Interactions 3210 6531 7123 14317 20454

Density 0.0035 0.0064 0.0019 0.0021 0.0023
Throughput High High High High Low

We take CYC2008 [42] as gold standard complex set to evaluate protein complexes predicted by
the proposed algorithm SEGC. There are 408 manually curated complexes in CYC2008. Each protein
complex in CYC2008 is reported by small-scale experiments and is of high reliability, so CYC2008
has been used as a benchmark set by many computational approaches for the prediction of
protein complexes.

To assess the quality of results obtained by different algorithms, we use several evaluation criteria
including precision, recall, F-measure, clustering-wise positive predictive value (PPV), clustering-wise
sensitivity (Sn) and accuracy.

F-measure is the most widely used metric [28,43,44], and can evaluate both the accuracy of clusters
matching known protein complexes and the accuracy of the known complexes matching the predicted
clusters. Given a predicted cluster set C = {C 1, C2, . . . , Cp

}
and the gold standard complex set

CO = {CO 1, CO2, . . . , COq
}

, the neighborhood affinity score NA(C i, COj
)

between a predicted
cluster Ci and a standard complex COj in benchmark set is defined as

NA(Ci, COj) =
|C i ∩ COj

∣∣2
|C i| × |CO j

∣∣∣ , (9)

for i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , q}.
The neighborhood affinity score NA(C i, COj

)
quantizes the closeness between two complexes Ci

and COj. The larger the NA
(
Ci, COj

)
is, the closer Ci and COj are. If NA(C i, COj

)
≥ µ, then Ci and
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COj are considered to be matching, where µ is predefined threshold and is usually set to 0.2 [27,43].
We also set µ = 0.2 in this paper.

Let MC be the predicted cluster set such that every item in it matches at least one standard
complex in CO, i.e.,

MC = {C i|C i ∈ C ∧ ∃j(CO j ∈ CO ∧ NA(C i, COj

)
≥ µ)}. (10)

Let MCO be the standard cluster set such that every item in it matches at least one predicted
complex in C, i.e.,

MCO = {CO j|CO j ∈ CO ∧ ∃ i(C i ∈ C ∧ NA(C i, COj

)
≥ µ)}. (11)

The precision and recall are defined as follows:

Precision =
|M C|
|C| , (12)

Recall =
|M CO|
|CO| . (13)

F-measure is the harmonic mean of precision and recall to quantize the closeness between
predicted complex set and standard complex set:

F-measure =
2 × Precision × Recall

Precision + Recall
. (14)

Let T be a p × q matrix, where row i corresponds to a cluster Ci and column j corresponds to an
annotated complex COj. In addition, the element Tij of T is the number of proteins that are in common
between Ci and COj, i.e., Tij = |C i ∩ COj

∣∣. The clustering-wise positive predictive value (PPV) is
defined as:

PPV =

∑
p
i = 1 ∑

q
j = 1

(
Tij ×

q
max
j = 1

(
Tij/ ∑

q
j = 1 Tij

))
∑

p
i = 1 ∑

q
j = 1 Tij

. (15)

The clustering-wise sensitivity (Sn) is defined as:

Sn =
∑

q
j = 1

(
|COj| ×

p
max
i = 1

(
Tij/

∣∣COj
∣∣))

∑
q
j = 1

∣∣COj
∣∣ , (16)

where |COj| is the number of proteins in complex COj.
Accuracy is another important criteria to evaluate the accuracy of a prediction [33,45]. It can be

obtained by the geometrical mean of the PPV and the Sn as follows:

Accuracy =
√

PPV × Sn. (17)

It is important for a clustering technique to cover all the nodes of a PPI network as clusters can be
both dense and sparse. This will ensure that important functional modules or protein complexes are
not missed during the clustering process [16]. The Coverage of an algorithm can be calculated as

Coverage =

∣∣∣∪p
i = 1V(Ci)

∣∣∣
n

. (18)
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4.2. Parameter Setting

The proposed algorithm SEGC has six predefined parameters, weight coefficients β1 and β2

of node attributes, the number of iterations k, reduce rate r, closeness threshold ε and diameter
threshold θ.

Weight coefficients β1 and β2 are used to compute the weights of nodes through k iterations.
The parameters r, ε and θ are used in the cluster expansion process. We could find small dense clusters
with less periphery nodes with smaller r or larger ε. Diameter threshold θ is to control the diameter of
the found clusters.

BioGrid is a standard protein interaction network data set, in which all interactions are constructed
by all of low-throughput physical interactions with high reliability and precision. Thus, we apply
alternating direction method on BioGrid to obtain suggested values of these parameters, using
F-measure as an optimization goal. We first fix β1 = 0, β2 = 0, k = 1, and the experiments on BioGrid PPI
network with ε from 0.1 to 0.9, r from 0.1 to 0.9 were carried out to verify the influence of parameters
ε and r. The F-measure reaches its maximum value when ε is 0.4 and r is 0.3. Then, we fix ε = 0.4,
r = 0.3, and the F-measure is maximized at β1 = 0.6, β2 = 0, and k = 3. Next, we fix β1 = 0.6, β2 = 0,
k = 3 and, in turn, try different values of parameters ε and r, and the experiments also obtain the best
performance at ε = 0.4, r = 0.3. Therefore, in this study, we set β1 = 0.6, β2 = 0, k = 3, ε = 0.4, r = 0.3.
Figure 2a shows the results of parameters β1 and β2 on F-measure with r = 0.3, ε = 0.4, and the effect of
parameters r and ε on F-measure is shown in Figure 2b with β1 = 0.6, β2 = 0 and k = 3. We set
diameter threshold θ = 2 since diameters of most known complexes are relatively small [35]. Thus,
we finally decide to set the parameters (β1, β2, k, ε, r, θ) of SEGC to default values (0.6, 0, 3, 0.4, 0.3, 2),
respectively, in all following experiments unless otherwise noted.
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4.3. Effectiveness of Our Strategies

We use algorithm IPCA [23] as the basic frame to test the effectiveness of each our strategies,
such as node weighing in Section 3.2, roulette wheel in seed selection in Section 3.3 and priority
definition in Equation (8) in Section 3.4.

We replace the definition of node weights in IPCA with Equation (5) proposed in Section 3.2,
and the parameters in Equation (5) are set to β1 = 0.6, β2 = 0 and k = 3. For convenience, we name
the IPCA algorithm with new node weighing method as IPCA-node weighing (NW). We add the
roulette wheel method to seed selection in IPCA (named as IPCA-RW) and the results are shown in 5th
column in Table 3. Because of the stochastic nature of the selection step, we run the procedure 500 times
and choose the best clustering solution in usual practice. We replace the interaction probability (IN)
in IPCA with the priority definition according to Equation (8) to obtain algorithm IPCA-NC, where
r = 0.3, ε = 0.4 and θ = 2.
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Table 3 shows the comparison results with original IPCA. It can be seen that each strategy can
improve the performance of IPCA to a certain extent.

Table 3. Comparison results of IPCA algorithm with new node weighing method (IPCA-NW), IPCA
algorithm with roulette wheel method (IPCA-RW) and (IPCA algorithm with NC metric (IPCA-NC) in
Equation (8)) with original IPCA.

Network Criteria IPCA IPCA-NW IPCA-RW IPCA-NC

Gavin02

Precision 0.4675 0.4686 0.4851 0.5462
Recall 0.3505 0.3505 0.3505 0.3603

F-measure 0.4006 0.4010 0.4070 0.4342
PPV 0.5541 0.5532 0.5522 0.5578
Sn 0.3646 0.3646 0.3646 0.4141

Accuracy 0.4495 0.4491 0.4487 0.4806

Gavin06

Precision 0.5289 0.5298 0.5460 0.4603
Recall 0.3750 0.3750 0.3750 0.3750

F-measure 0.4389 0.4392 0.4446 0.4133
PPV 0.5375 0.5375 0.5447 0.5299
Sn 0.4807 0.4807 0.4797 0.5021

Accuracy 0.5083 0.5083 0.5112 0.5158

Krogan_core

Precision 0.4732 0.4744 0.4857 0.4769
Recall 0.5662 0.5637 0.5686 0.5735

F-measure 0.5155 0.5152 0.5239 0.5208
PPV 0.6058 0.6054 0.6037 0.6164
Sn 0.5786 0.5776 0.5792 0.5891

Accuracy 0.5921 0.5913 0.5913 0.6026

Krogan_extend

Precision 0.4114 0.4120 0.4185 0.4434
Recall 0.4926 0.4926 0.4951 0.5466

F-measure 0.4484 0.4487 0.4536 0.4896
PPV 0.5234 0.5250 0.5304 0.5499
Sn 0.5974 0.5974 0.5979 0.6135

Accuracy 0.5592 0.5600 0.5631 0.5809

BioGrid

Precision 0.5075 0.5083 0.5135 0.5316
Recall 0.8088 0.8088 0.8088 0.8260

F-measure 0.6237 0.6243 0.6282 0.6469
PPV 0.4482 0.4480 0.4485 0.4748
Sn 0.7885 0.7885 0.7880 0.8115

Accuracy 0.5945 0.5944 0.5945 0.6207

4.4. Comparison with Other Algorithms

We compare SEGC with other overlapping protein complexes detection methods: CFinder [18],
DPClus [22], IPCA [23], Core [26], soft regularized Markov clustering (SR-MCL) [44], PE-measure and
weighted clustering coefficient (PEWCC) [31], detecting complex based on uncertain graph model
(DCU) [32], weighted COACH (WCOACH) [34] and weighted edge based clustering (WEC) [35].
Table 4 exhibits parameters of each algorithm, which are recommended by authors. Table 5 shows
comparison results of all algorithms on five PPI networks: Gavin02 [6], Gavin06 [25], Krogan_core,
Krogan_extend [40] and BioGrid.

Algorithms CFinder, SR-MCL and WEC produce less clusters that are so dense that the number
of edges in clusters are nearly the same as that in complete subgraphs, so they have comparatively
higher precision than other algorithms. A shorting coming of CFinder, SR-MCL and WEC is the loss of
coverage especially on sparse networks. A small coverage usually yields small recall.

DPClus adopts a seed expansion strategy to find clusters, where the density of the cluster
determines whether a node be included into the current cluster. Thus, DPClus could find many small
dense clusters. The average number of nodes in a predicted cluster of DPClus is the smallest among all
10 experimental algorithms and is usually not bigger than five. This leads to the highest PPV among
all algorithms and a higher coverage on the sparse network than CFinder and SR-MCL. Since DPClus
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removes the nodes and related edges from the considered network after obtaining a cluster, there
might be some isolated nodes in the remaining network. Hence, DPClus could not obtain full coverage
results. Core extends a cluster from several core proteins. If a candidate node connects with at least
half of the nodes in a considered cluster, it would be added into the cluster. Hence, the size of clusters
found by Core is usually larger than those found by DPClus, and the density of the found clusters is
lower than DPClus. Therefore, Core always has a higher coverage than DPClus.

IPCA adopts also a seed expansion strategy as DPClus. IPCA keeps all nodes and edges in the
network during the cluster extension process, and can obtain full coverage results. Our SEGC tries to
find a better seed by using the roulette wheel strategy. It also considers both the density of the cluster
and the connections between candidate nodes and considered the cluster in cluster extension process.
Hence, SEGC improves the efficient of IPCA and can also obtain full coverage. It is also clear that
SEGC performs better than the other nine methods in terms of F-measure and accuracy. The F-measure
of SEGC is the highest on Gavin02, Krogan_core, Krogan_extend and BioGrid, and the accuracy of
SEGC on Gavin02, Krogan_core and Krogan_extend is also the highest.

DCU and WCOACH produce huge clusters with a good coverage. Since a good fraction of each
complex is covered by these huge clusters, DCU and WCOACH have a high Sn. The clusters generated
by PEWCC are usually smaller than the ones produced by DCU and WCOACH; thus, PEWCC has a
better PPV.

It is worth noting that our SEGC has a poor performance on Gavin06. It is because that we use
default parameters on Gavin06 such as β1 = 0.6, β2 = 0, k = 3, r = 0.3, ε = 0.4 and θ = 2.
The parameter ε is to control the density of considered clusters. We adopt ε = 0.4 as default by
executing experiments on the BioGrid dataset. The density of the network from BioGrid is 0.0023,
which is likely as those from Gavin02 (0.0035), Krogan_core (0.0019) and Krogan_extend (0.0021)
datasets. However, the density of network obtained from Gavin06 is 0.0064, which is almost triple
the density of others. This means that the nodes in the Gavin06 PPI network have more connections
between them, and the protein complexes existing in Gavin06 PPI network may be denser than clusters
obtained from the other PPI networks. A lower value of ε cannot accurately measure the closeness
within clusters from Gavin06. For ε = 0.4, SEGC obtains predicted clusters with much more nodes in
them and has a not so good performance in Gavin06. If we improve ε to 0.55, SEGC would get denser
clusters and obtain a better performance, as shown in Table 5 (values in parentheses).

Table 4. Parameters of each algorithms.

Algorithm Parameter Value

CFinder k-clique template 3

DPClus
cluster property value 0.5

density 0.7

IPCA
interaction probability 0.4

diameter 2

SR-MCL

inflation 2
balance 0.5

iterations 30
penalty ratio 1.25

quality function 1.2
overlap threshold 0.6

PEWCC
join parameter 0.5

overlap threshold 0.8

DCU expected density 0.2

WCOACH neighborhood affinity threshold 0.85

WEC

balance factor 0.8
edge weight 0.7
enrichment 0.8

filtering 0.9
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Table 5. The evaluation results by different algorithms on five PPI networks.

Network Criteria SEGC CFinder DPClus IPCA Core SR-MCL PEWCC DCU WCOACH WEC

Gavin02

Precision 0.5621 0.7333 0.4679 0.4675 0.3717 0.7818 0.5154 0.3897 0.6311 0.7137
Recall 0.3603 0.1373 0.3088 0.3505 0.3505 0.1838 0.2034 0.2990 0.1520 0.1667

F-measure 0.4391 0.2312 0.3721 0.4006 0.3608 0.2977 0.2917 0.3384 0.2449 0.2702
PPV 0.5597 0.4150 0.6207 0.5541 0.6153 0.5089 0.5558 0.4184 0.3310 0.5936
Sn 0.4146 0.3203 0.2755 0.3646 0.3646 0.2833 0.2776 0.4490 0.4188 0.2531

Accuracy 0.4817 0.3646 0.4135 0.4495 0.4736 0.3797 0.3928 0.4334 0.3723 0.3876

Coverage 1352
(100%)

623
(46%)

690
(51%)

1352
(100%)

1041
(77%) 584 (43%) 599

(44%)
1350

(100%)
1034

(76%)
502

(37%)

Gavin06

Precision 0.4754
(0.5030) 0.6633 0.5502 0.5289 0.4869 0.7512 0.4687 0.3295 0.4742 0.7774

Recall 0.3750
(0.4706) 0.1912 0.3873 0.3750 0.3627 0.3088 0.3456 0.2451 0.2328 0.2941

F-measure 0.4193
(0.4863) 0.2968 0.4546 0.4389 0.4157 0.4377 0.3978 0.2811 0.3123 0.4268

PPV 0.5335
(0.6110) 0.3425 0.6413 0.5375 0.5833 0.5286 0.5585 0.2959 0.3300 0.5735

Sn 0.5021
(0.4661) 0.5125 0.4307 0.4807 0.4599 0.4849 0.4307 0.5318 0.5500 0.4479

Accuracy 0.5176
(0.5337) 0.4190 0.5256 0.5083 0.5180 0.5063 0.4905 0.3966 0.4261 0.5068

Coverage 1430
(100%)

1124
(79%)

1056
(74%)

1430
(100%)

1144
(80%)

1135
(79%)

1081
(76%)

1413
(99%)

1335
(93%)

947
(66%)

Krogan_
core

Precision 0.4889 0.6174 0.3626 0.4732 0.2960 0.7341 0.5379 0.2272 0.5166 0.8382
Recall 0.5760 0.2034 0.5931 0.5662 0.5907 0.3309 0.3431 0.4779 0.2549 0.2770

F-measure 0.5289 0.3060 0.4501 0.5155 0.3943 0.4562 0.4190 0.3080 0.3414 0.4163
PPV 0.6222 0.3588 0.7128 0.6058 0.6308 0.6063 0.5550 0.3180 0.2231 0.6603
Sn 0.5885 0.4802 0.4885 0.5786 0.5109 0.4620 0.4135 0.5964 0.5849 0.3937

Accuracy 0.6051 0.4151 0.5901 0.5921 0.5677 0.5293 0.4791 0.4355 0.3612 0.5099

Coverage 2708
(100%)

1143
(42%)

1727
(64%)

2708
(100%)

2082
(77%)

1188
(44%)

1101
(41%)

2660
(98%)

2112
(78%)

866
(32%)

Krogan_
extend

Precision 0.4517 0.4545 0.3187 0.4114 0.2036 0.7627 0.4259 0.1450 0.2381 0.7901
Recall 0.5466 0.1495 0.5711 0.4926 0.5833 0.2794 0.4044 0.4265 0.1789 0.2157

F-measure 0.4946 0.2250 0.4091 0.4484 0.3019 0.4090 0.4149 0.2164 0.2043 0.3389
PPV 0.5564 0.2223 0.6738 0.5234 0.6326 0.5977 0.5179 0.2931 0.1028 0.5935
Sn 0.6130 0.5625 0.5005 0.5974 0.5125 0.4495 0.4865 0.6271 0.6833 0.3786

Accuracy 0.5840 0.3536 0.5807 0.5592 0.5694 0.5183 0.5019 0.4288 0.2650 0.4740

Coverage 3672
(100%)

1596
(43%)

1948
(53%)

3672
(100%)

2669
(73%)

1282
(35%)

1567
(43%)

3668
(100%)

3309
(90%)

905
(25%)

BioGrid

Precision 0.5377 0.4225 0.3736 0.5075 0.2467 0.5872 0.4923 0.1530 0.1640 0.6600
Recall 0.8284 0.1520 0.7402 0.8088 0.6667 0.5098 0.7721 0.3113 0.2598 0.4706

F-measure 0.6521 0.2235 0.4965 0.6237 0.3602 0.5458 0.6012 0.2051 0.2011 0.5494
PPV 0.4741 0.1616 0.6031 0.4482 0.5231 0.5019 0.5002 0.2086 0.1530 0.4685
Sn 0.8104 0.8755 0.6776 0.7885 0.7453 0.7479 0.7344 0.8875 0.9370 0.6922

Accuracy 0.6199 0.3762 0.6393 0.5945 0.6244 0.6127 0.6061 0.4303 0.3786 0.5695

Coverage 4187
(100%)

2740
(65%)

2599
(62%)

4187
(100%)

3243
(80%)

2764
(66%)

2632
(63%)

4168
(99%)

3904
(93%)

2011
(48%)

4.5. Stability of SEGC

For seed selection, SEGC repeats the selection procedure a few times with a probabilistic approach,
the roulette wheel. The average clustering performance with variances on each data set is summarized
in Table 6. We find SEGC always gives a very small variance for each criteria. It means that our
algorithm has a good stability. The stability of SEGC is based on two reasons. First, the seed selection
process is not completely random. Second, there is a positive correlation between the weight w(v) of a
node v and the probability P(v) that the node will be selected as a seed. Equation (7) further improves
the positive correlation by increasing the node weight w(v) to [w(v)]2. Compared to w(v), [w(v)]2

increases the inhomogeneity of probability P, and the ordering of the probabilities is not disturbed.

Table 6. Performance of seed-expansion graph clustering (SEGC) on data sets.

Criteria Gavin02 Gavin06 Krogan_Core Krogan_Extend BioGrid

Precision 0.5520 ± 1.1347 × 10−5 0.4634 ± 1.5535 × 10−5 0.4812 ± 7.0585 × 10−6 0.4465 ± 3.9754 × 10−6 0.5317 ± 4.8829 × 10−6

Recall 0.3603 ± 7.7192 × 10−30 0.3708 ± 9.4804 × 10−6 0.5727 ± 3.1782 × 10−6 0.5425 ± 5.7244 × 10−6 0.8257 ± 2.9649 × 10−6

F-measure 0.4360 ± 1.1076 × 10−6 0.4120 ± 7.4338 × 10−6 0.5230 ± 2.9506 × 10−6 0.4898 ± 2.6329 × 10−6 0.6468 ± 3.0660 × 10−6

PPV 0.5564 ± 7.5655 × 10−6 0.5327 ± 8.7280× 10−6 0.6227 ± 1.0720 × 10−5 0.5548 ± 2.4239 × 10−6 0.4752 ± 2.4318 × 10−6

Sn 0.4147 ± 1.9255 × 10−7 0.5012 ± 7.4491 × 10−7 0.5882 ± 3.4486 × 10−7 0.6121 ± 5.7970 × 10−7 0.8111 ± 7.6118 × 10−7

Accuracy 0.4803 ± 1.7024 × 10−6 0.5167 ± 1.9278 × 10−6 0.6052 ± 2.5290 × 10−6 0.5828 ± 8.2139 × 10−7 0.6209 ± 1.1542× 10−6
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4.6. Examples of Predicted Complexes

We exhibit some predicted protein complexes obtained by our SEGC in this section. Figure 3
visualizes five predicted complexes, which completely match standard complexes in CYC2008. There
are 100 predicted protein complexes found by our SEGC, which completely match standard complexes
in CYC2008 in total. Figure 3 shows five typical protein complex examples such as NuA4, Arp2/3,
TRAPP, Transcription factor TFIIIC and Carboxy-terminal domain protein kinase. It can be seen
that the proposed algorithm SEGC could find both dense complexes close to the complete subgraph
(see Figure 3a–c) and sparse complexes (see Figure 3d–e). In particular, SEGC could find complexes
with pendant nodes whose degree is 1 in protein networks, as shown in Figure 3e.
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Figure 3. Examples of predicted complexes matching standard complexes: (a) NuA4 histone
acetyltransferase complex predicted by SEGC on BioGrid; (b) Arp2/3 protein complex predicted
by SEGC on Gavin02; (c) transport protein particle (TRAPP) complex predicted by SEGC on Gavin06;
(d) transcription factor TFIIIC complex predicted by SEGC on Krogan_extend; (e) carboxy-terminal
domain protein kinase complex predicted by SEGC on Gavin06.
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Figure 4 shows two predicted complexes with similar topological structure as found protein
complexes, which indicates that they might be potential protein complexes. These might give some
useful information for detecting new protein complexes in the future. Table 7 shows gene ontology
annotation information and the corresponding p-value of the examples shown in Figures 3 and 4.
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5. Conclusions

Graph clustering has significant popularity in bioinformatics as well as data mining research,
and is an effective approach for protein complex identification in protein interaction networks. In this
article, we proposed a seed expansion graph clustering algorithm SEGC for protein complex detection
in protein interaction networks. SEGC weights nodes by multi-attribute fusion, selects seed nodes
using the roulette wheel, and extends a cluster by considering both the density of the cluster and the
connection of candidate node itself. It gets a soft clustering under full coverage of the entire network.
Compared with other protein complex detection algorithms, SEGC shows a comparable performance
in terms of precision, recall, F-measure, clustering-wise positive predictive value (PPV), clustering-wise
sensitivity (Sn) and accuracy.

There are still some problems that need further study. In large PPI networks, it is imperative for
clustering techniques to find important nodes (e.g., seed nodes) more accurately, while the computation
complexity of clustering algorithms can be handled. In addition, suitable non-topological information
will help to reduce the noise of data. The combination of non-topological and topological attributes
might improve the performance of clustering algorithms.
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