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Abstract: Aconitum pseudolaeve Nakai and Aconitum longecassidatum Nakai, which belong to the
Aconitum subgenus Lycoctonum, are distributed in East Asia and Korea. Aconitum species are used
in herbal medicine and contain highly toxic components, including aconitine. A. pseudolaeve, an
endemic species of Korea, is a commercially valuable material that has been used in the manufacture
of cosmetics and perfumes. Although Aconitum species are important plant resources, they have
not been extensively studied, and genomic information is limited. Within the subgenus Lycoctonum,
which includes A. pseudolaeve and A. longecassidatum, a complete chloroplast (CP) genome is available
for only one species, Aconitum barbatum Patrin ex Pers. Therefore, we sequenced the complete CP
genomes of two Aconitum species, A. pseudolaeve and A. longecassidatum, which are 155,628 and
155,524 bp in length, respectively. Both genomes have a quadripartite structure consisting of a pair
of inverted repeated regions (51,854 and 52,108 bp, respectively) separated by large single-copy
(86,683 and 86,466 bp) and small single-copy (17,091 and 16,950 bp) regions similar to those in
other Aconitum CP genomes. Both CP genomes consist of 112 unique genes, 78 protein-coding
genes, 4 ribosomal RNA (rRNA) genes, and 30 transfer RNA (tRNA) genes. We identified 268 and
277 simple sequence repeats (SSRs) in A. pseudolaeve and A. longecassidatum, respectively. We also
identified potential 36 species-specific SSRs, 53 indels, and 62 single-nucleotide polymorphisms
(SNPs) between the two CP genomes. Furthermore, a comparison of the three Aconitum CP genomes
from the subgenus Lycoctonum revealed highly divergent regions, including trnK-trnQ, ycf1-ndhF, and
ycf4-cemA. Based on this finding, we developed indel markers using indel sequences in trnK-trnQ and
ycf1-ndhF. A. pseudolaeve, A. longecassidatum, and A. barbatum could be clearly distinguished using the
novel indel markers AcoTT (Aconitum trnK-trnQ) and AcoYN (Aconitum ycf1-ndhF). These two new
complete CP genomes provide useful genomic information for species identification and evolutionary
studies of the Aconitum subgenus Lycoctonum.
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1. Introduction

Chloroplasts (CPs) play important functional roles in photosynthesis, biosynthesis, and
metabolism of starch and fatty acids throughout the plant life cycle [1]. The angiosperm CP genome
is a circular molecule with a quadripartite structure consisting of large single-copy (LSC) and small
single-copy (SSC) regions and two copies of an inverted repeat (IR) region. Typically, the CP genomes
of higher plants contain 110–120 genes, encoding proteins, transfer RNAs (tRNAs), and ribosomal
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RNAs (rRNAs), and are 120–160 kb in length. The structure, gene content, and gene orientation is
highly conserved at the genus level [2]. Even within genera, however, CP genomes have undergone
size changes, structure rearrangement, contraction and expansion of IRs, and even pseudogenization
due to adaptations to their host plants’ environments [1,3]. Since the first CP genome was reported (for
tobacco), more than 9000 complete CP genomes (October 2017) have been deposited in GenBank [4].
These data contain valuable information that has been used in reconstruction of high-resolution
phylogenic trees, development of markers for species identification, and for evolutionary genetic
studies [3,5–8]. Universal DNA barcoding is useful tool for species identification. However, in the
Aconitum species, it is difficult to distinguish using universal DNA barcode. The complete CP genome
is useful tool to solve DNA barcode limitation.

Although the CP genome is more highly conserved than the nuclear genome, it frequently contains
insertions/deletions (indels) and single-nucleotide polymorphisms (SNPs) [9,10]. These variations
have been used to estimate divergence times among evolutionarily-related species [11–13]. Also,
these mutations can be used as markers to rapidly distinguish species [14–16]. Several studies
report the use of indels and SNP mutations from complete CP genomes for species identification
in Panax ginseng, buckwheat, Aconitum, and other genera [7,14,15]. Specifically, the CP genomes of
nine Panax ginseng cultivars were sequenced, and six markers consisting of three indels and three
derived cleaved amplified polymorphic sequences (dCAPS) were developed to distinguish subspecies
of P. ginseng through comparative analysis [14]. Three divergent coding regions (rpoC1, cpoC2 and ycf1)
and three intergenic sequence (IGS) regions (rpl32-trnL, rpl16-trnQ and trnQ-trnT) were used for this
purpose. Tartary buckwheat (Fagopyrum tataricum) and common buckwheat (Fagopyrum esculentum)
were classified based on six indel markers from one coding region, ycf1, and four IGS regions
(trnS-trnG, rpoB-trnC, psbM-trnD, and ndhC-trnV) [15]. Aconitum coreanum (H.Lév.) Rapaics also
has a unique insertion mutation (in the ndhC-trnV region) not present in other Aconitum species,
and this region was used to develop a sequence characterized amplified region marker specific for
A. coreanum [7]. Thus, indel and SNP mutations provide useful information for identification of
species, phylogenic tree analysis, and population studies. Such markers can also overcome the limits
of universal DNA barcodes.

Aconitum species are largely classified into three subgenera, Aconitum, Lycoctonum, and
Gymnaconitum, which together comprise approximately 400 species [17]. These plants, which
belong to the family Ranunculaceae, are distributed in the Northern hemisphere. In particular,
Aconitum pseudolaeve Nakai and Aconitum longecassidatum Nakai are widely distributed in East Asia [17],
and A. pseudolaeve is a valuable plant endemic to Korea [18]. A. pseudolaeve and A. longecassidatum are
30–80 cm in height, with mean stem length of 65 cm, short branches, and retrorse yellowish pubescent
and pentagonal-reniform leaf blades. Although these two species are very similar morphologically,
their inflorescences differ slightly. First, the bracteoles of A. pseudolaeve are 2–3 times longer than the
pedicel, whereas those of A. longecassidatum are as long as or slightly shorter than the pedicel. Second,
the pistils of A. pseudolaeve have recurved hair. However, A. longecassidatum forms glabrous pistils [19].

Notwithstanding these morphological distinctions, the two species are used indiscriminately
as herbal medicine as Radix Lycoctoni [20]. The roots of both plants are used to relieve neuralgia,
reduce fever, and lower blood pressure [20], and extracts from A. pseudolaeve are purported to have
anti-aging and anti-diabetes effects [21]. For these reasons, the extract of A. pseudolaeve is used in
cosmetic compounds, as well as in herbal medicine [22]. In particular, perfume based on A. pseudolaeve
is used in aromatherapy intended to improve emotional stability [23]. Although the two Aconitum
species have medicinal and commercial value, they are often used without species identification. The
ability to distinguish the two species would improve the medicinal potential, quality control, and
stability of commercial products containing material from these plants.

In this study, we sequenced the complete CP genomes of A. pseudolaeve and A. longecassidatum.
Comparative analysis of the two CP genomes revealed highly divergent regions and potential indels,
simple sequence repeats (SSRs), and SNPs. In addition, based on comparative CP genome analysis



Molecules 2017, 22, 2012 3 of 16

of A. pseudolaeve, A. longecassidatum, and A. barbatum Patrin ex Pers., we developed indel markers to
distinguish three species of the subgenus Lycoctonum based on divergent regions of the CP genome.
These results will provide useful genetic tools for identification of Aconitum species of the subgenus
Lycoctonum, and also will inform genomic resources for evolutionary studies of these plants.

2. Results and Discussion

2.1. CP Genome Organization of A. pseudolaeve and A. longecassidatum

We obtained trimmed reads (approximately 2.7 Gb) from A. pseudolaeve Nakai and
A. longecassidatum Nakai using the MiSeq platform. Seven and six initial CP contigs of A. pseudolaeve
and A. longecassidatum, respectively, were de novo assembled from low-coverage whole-genome
sequence. The complete CP genomes of A. pseudolaeve and A. longecassidatum are 155,628 and 155,524 bp
in length, with approximately 345× and 222× coverage, respectively (Table S1). The complete CP
genomes of both Aconitum species have the quadripartite structure characteristic of most angiosperms
(Figure 1): a pair of IRs (51,854 bp and 52,108 bp in A. pseudolaeve and A. longecassidatum, respectively)
and two single-copy regions (LSC, 86,683 bp and 86,466 bp; SSC, 17,091 and 16,950 bp in A. pseudolaeve
and A. longecassidatum, respectively) (Figure 1 and Table 1). The guanine-cytosine (GC) contents of
the two Aconitum CP genomes are 38.0% and 38.1%, with IR regions having higher GC content (43.1%
and 43.0% in A. pseudolaeve and A. longecassidatum, respectively) than LSC (36.1% in both species)
and SSC regions (32.6% and 32.7% in A. pseudolaeve and A. longecassidatum, respectively) (Table S2).
Thus, the A. pseudolaeve and A. longecassidatum CP genomes are AT-rich, similar to those of other land
plants [7,24,25].
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Figure 1. Circular gene map of A. pseudolaeve and A. longecassidatum. Genes drawn inside the circle
are transcribed clockwise, and those outside the circle counterclockwise. The darker gray in the inner
circle represents (GC) content. The gene map corresponds to A. pseudolaeve. LSC: large single copy; IR:
inverted repeat; SSC: small single copy; GC: guanine-cytosine; ORF: open reading frame.
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Table 1. Size comparison of two Aconitum species’ CP genomic regions.

Species Aconitum pseudolaeve Aconitum longecassidatum

Total CP genome size (bp) 155,628 155,524
LSC region (bp) 86,683 86,466
IR region (bp) 51,854 52,108

SSC region (bp) 17,091 16,950
GC content (%) 38.0 38.1

LSC (%) 36.1 36.1
IR (%) 43.1 43.0

SSC (%) 32.6 32.7
Number of genes 112 112

Protein-coding genes 78 78
rRNAs 4 4
tRNAs 30 30

CP: chloroplast; LSC: large single copy; IR: inverted repeat; SSC: small single copy; tRNAs: transfer RNAs; rRNAs:
ribosomal RNAs. GC: guanine-cytosine.

Gene content and gene order were similar to those in other Aconitum CP genomes [7]. Both the
A. pseudolaeve and A. longecassidatum CP genomes have 112 unique genes, including 78 protein-coding
genes, 30 tRNAs, and 4 rRNAs (Table 2). Of these, 18 genes are present as duplicates: seven tRNAs, four
rRNAs, and seven protein-coding genes (ndhB, rpl2, rpl23, rps7, rps12, ycf1 and ycf2). The two Aconitum
CP genomes each have 17 intron-containing genes, including 15 genes with a single intron and two
with two introns; rps12 is trans-spliced, as in other Aconitum species. The trnK-UUU gene (2526 bp in
A. pseudolaeve and 2525 bp in A. longecassidatum) has the longest intron region with matK (Table 3). The
ndhD and rpl2 genes use the alternative start codon ACG; rps19 and ycf2 use GTG; and rpl2 and rps19
use ACG or GTG, as previously reported [26]. rps16 contains one exon deletion in both A. pseudolaeve
and A. longecassidatum. ycf1 is present in two copies; one ycf1 copy was located in the boundary region
between IRa and SSC in A. pseudolaeve. The 78 protein-coding sequences comprise 26,459 codons in
A. pseudolaeve and 26,487 codons in A. longecassidatum (Table S3). Leucine and isoleucine are abundant
in both CP genomes. (Figure S1). Two or more synonymous codons are used for all amino acids
except methionine and tryptophan (Figure 2). The most preferred synonymous codons (relative
synonymous codon usage; RSCU > 1) contain A or T in the third position, contributing to the AT bias,
as in other Aconitum CP genomes [7,27]. Arginine, leucine, and serine are each represented by six
synonymous codons with higher RSCU values [26,28]. This may be for protecting protein mutations
due to important amino acids in biosynthesis. The sequence of both Aconitum CP genomes consists
of 58% protein-coding genes, 1.8% tRNA genes, and 5.8% rRNA; the remaining 41.4% is comprised
of non-coding regions, including pseudogenes and introns. ycf1 and rps16 are pseudogenes, as in
other Aconitum species [27,29]. Both CP genomes are very similar in terms of gene order, content, and
structure, and are highly conserved relative to the CP genomes of other Aconitum species [7,27,29].

Table 2. Genes present in the CP genomes of A. pseudolaeve Nakai and A. longecassidatum Nakai.

Gene Products of Aconitum Species

Photosystem I psaA, B, C, I, J
Photosystem II psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z

Cytochrome b6_f petA, B (1), D (1), G, L, N
ATP synthase atpA, B, E, F (1), H, I

Rubisco rbcL
NADH oxidoreductase ndhA (1), B (1),(3), C, D, E, F, G, H, I, J, K

Large subunit ribosomal proteins rpl2 (1),(3), 14, 16 (1), 20, 22, 23 (3), 32, 33, 36
Small subunit ribosomal proteins rps2, 3, 4, 7 (3), 8, 11, 12 (2)–(4), 14, 15, 18, 19

RNA polymerase rpoA, B, C1 (1), C2
Unknown function protein-coding gene ycf1 (3), 2 (3), 3 (2), 4

Other genes accD, ccsA, cemA, clpP (2), infA, matK
Ribosomal RNAs rrn16 (3), rrn23 (3), rrn4.5 (3), rrn5 (3)
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Table 2. Cont.

Gene Products of Aconitum Species

Transfer RNAs

trnA-UGC (1),(3), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA,
trnG-UCC (1), trnG-GCC, trnH-GUG, trnI-CAU (3), trnI-GAU

(1),(3) trnK-UUU (1), trnL-UAA (1), trnL-UAG, trnL-CAA (3),
trnM-CAU, trnfM-CAU, trnN-GUU (3), trnP-UGG, trnQ-UUG,

trnR-ACG (3), trnR-UCU, trnS-GCU, trnS-GGA, trnS-UGA,
trnT-GGU, trnT-UGU, trnV-UAC (1), trnV-GAC (3), trnW-CCA,

trnY-GUA
(1) Gene containing a single intron; (2) gene containing two introns; (3) two gene copies in inverted repeats;
(4) trans-spliced gene. CP: chloroplast.

Table 3. Genes with introns in the A. pseudolaeve Nakai CP genome, and lengths of exons and introns.

Gene Region Exon I Intron I Exon II Intron II Exon III

trnk-UUU LSC 37 2526 (2525) 35
trnG-UCC LSC 23 744 (747) 48

atpF LSC 145 733 (735) 410
rpoC1 LSC 432 757 1635 (1611)
ycf3 LSC 124 730 (729) 230 761 (762) 153

trnL-UAA LSC 35 501 (495) 50
trnV-UAC LSC 39 597 37

rps12 * LSC 114 - 232 - 26
clpP LSC 71 833 (830) 292 651 (661) 246
petB LSC 6 801 642
petD LSC 8 704 496
rpl16 LSC 9 1045 (1054) 399
rpl2 IR 391 667 434

ndhB IR 777 702 756
trnI-GAU IR 42 937 35
trnA-UGC IR 38 802 35

ndhA SSC 553 1006 (1004) 539

* rps12 gene is a trans-spliced gene. Gene length in A. longecassidatum Nakai is shown in parentheses. CP: chloroplast;
LSC: large single copy; IR: inverted repeat; SSC: small single copy.

Molecules 2017, 22, 2012 5 of 16 

 

 
Figure 2. Codon content for the 20 amino acids and stop codon in 78 protein-coding genes in the A. 
pseudolaeve Nakai and A. longecassidatum Nakai CP genomes. Colors in the column graph reflect 
codons in the same colors shown in the lower part of the figure. RSCU: relative synonymous codon 
usage; Ala: alanine; Arg: arginine; Asn: asparagine; Asp: asparagine; Cys: cysteine; Gln: glutamine; 
Glu: glutamic acid; Gly: glycine; His: histidine; Leu: leucine; Ile: isoleucine; Lys: lysine; Met: 
methionine; Phe: phenylalanine; Pro: proline; Ser: serine; Thr: threonine; Trp: tryptophan; Tyr: 
tyrosine; Val: valine. 

Table 2. Genes present in the CP genomes of A. pseudolaeve Nakai and A. longecassidatum Nakai. 

Gene Products of Aconitum Species
Photosystem I psaA, B, C, I, J 
Photosystem II psbA, B, C, D, E, F, H, I, J, K, L, M, N, T, Z 

Cytochrome b6_f petA, B (1), D (1), G, L, N 
ATP synthase atpA, B, E, F (1), H, I 

Rubisco rbcL 
NADH oxidoreductase ndhA (1), B (1),(3), C, D, E, F, G, H, I, J, K 

Large subunit ribosomal proteins rpl2 (1),(3), 14, 16 (1), 20, 22, 23 (3), 32, 33, 36 
Small subunit ribosomal proteins rps2, 3, 4, 7 (3), 8, 11, 12 (2)–(4), 14, 15, 18, 19 

RNA polymerase rpoA, B, C1 (1), C2 
Unknown function protein-coding gene ycf1 (3), 2 (3), 3 (2), 4 

Other genes accD, ccsA, cemA, clpP (2), infA, matK 
Ribosomal RNAs rrn16 (3), rrn23 (3), rrn4.5 (3), rrn5 (3) 

Transfer RNAs 

trnA-UGC (1),(3), trnC-GCA, trnD-GUC, trnE-UUC, trnF-
GAA, trnG-UCC (1), trnG-GCC, trnH-GUG, trnI-CAU (3), 

trnI-GAU (1),(3) trnK-UUU (1), trnL-UAA (1), trnL-UAG, 
trnL-CAA (3), trnM-CAU, trnfM-CAU, trnN-GUU (3), trnP-

UGG, trnQ-UUG, trnR-ACG (3), trnR-UCU, trnS-GCU, 
trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-UAC (1), 

trnV-GAC (3), trnW-CCA, trnY-GUA 
(1) Gene containing a single intron; (2) gene containing two introns; (3) two gene copies in inverted 
repeats; (4) trans-spliced gene. CP: chloroplast. 

  

Figure 2. Codon content for the 20 amino acids and stop codon in 78 protein-coding genes in the
A. pseudolaeve Nakai and A. longecassidatum Nakai CP genomes. Colors in the column graph reflect
codons in the same colors shown in the lower part of the figure. RSCU: relative synonymous codon
usage; Ala: alanine; Arg: arginine; Asn: asparagine; Asp: asparagine; Cys: cysteine; Gln: glutamine;
Glu: glutamic acid; Gly: glycine; His: histidine; Leu: leucine; Ile: isoleucine; Lys: lysine; Met:
methionine; Phe: phenylalanine; Pro: proline; Ser: serine; Thr: threonine; Trp: tryptophan; Tyr:
tyrosine; Val: valine.
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2.2. Repeat Analysis in Two Aconitum Chloroplast Genomes

Microsatellites or simple sequence repeats (SSRs) are made up of abundant tandem repeat
sequences consisting of 1–6-nt motifs. These elements are useful markers due to their high degree of
polymorphism. In addition, SSRs are used for phylogenic analysis in population genetics [30,31].
We identified SSR loci, revealing 268 and 277 SSRs in the CP genomes of A. pseudolaeve Nakai
and A. longecassidatum Nakai, respectively (Figure 3). Mononucleotides were the most abundant
motifs, constituting 128 (47.8%) and 126 (45.5%) of the SSRs in A. pseudolaeve and A. longecassidatum,
respectively. Approximately 37% of SSRs were distributed in coding regions. More SSRs were present
in single-copy regions than in IR regions. To detect potential SSR loci for development of markers to
distinguish the two Aconitum species, we identified 36 SSR indels consisting of A or T motifs, ranging
in length from 1 to 6 bp (Table 4). The region exhibiting the greatest difference between species was a
6-bp SSR in psbM-trnD (IGS). One SSR is present in an exon of ndhG (Table 4).

Table 4. Polymorphic SSRs between the A. pseudolaeve Nakai and A. longecassidatum Nakai CP genomes.
CP: chloroplast; IGS: intergenic sequence.

No. Location Region Motif
Repeat Number

A. pseudolaeve A. longecassidatum

1 trnH-psbA IGS A 9 8
2 trnK-matK IGS T 13 12
3 trnK-trnQ IGS A 12 10
4 trnK-trnQ IGS T 9 10
5 trnG intron T 15 18
6 atpF intron T 16 14
7 psbM-trnD IGS T 16 11
8 psbM-trnD IGS AT 18 12
9 trnS-psbZ IGS A 11 10

10 trnG-trnfM IGS A 18 19
11 psaA-ycf3 IGS T 9 10
12 ycf3 intron T 11 12
13 ycf3 intron A 9 8
14 rps4-trnT IGS A 12 11
15 trnF-ndhJ IGS T 8 10
16 ndhC-trnV IGS A 9 11
17 ndhC-trnV IGS A 14 9
18 accD-psaI IGS A 9 8
19 accD-psaI IGS A 13 12
20 psaI-ycf4 IGS T 10 11
21 ycf4-cemA IGS T 10 9
22 petA-psbJ IGS T 10 9
23 psbE-petL IGS T 9 8
24 psbE-petL IGS A 9 8
25 psbE-petL IGS T 11 10
26 rps12-clpP IGS ATT 12 9
27 clpP intron A 13 11
28 clpP intron A 14 11
29 rpl16 intron A 12 15
30 rpl16-rps3 IGS T 11 14
31 ndhF-trnL IGS A 12 11
32 ndhF-trnL IGS T 12 11
33 ccsA-ndhD IGS T 13 10
34 ndhD-psaC IGS A 8 9
35 ndhG Exon T 11 10
36 ndhA intron A 11 9
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Nakai CP genomes. (A) Distribution of SSR types in the two Aconitum CP genomes. (B) Distribution of
SSRs between coding and non-coding regions. (C) Number of SSRs per unit length in the indicated
genomic regions of Aconitum CP genomes. CP: chloroplast; LSC: large single copy; IR: inverted repeat;
SSC: small single copy.

Repeat sequences play important evolutionary roles, influencing changes in genome structure
such as duplication and rearrangement [32]. We detected tandem repeats of 20 or 21 bp in A. pseudolaeve
and 19 bp in A. longecassidatum (Table S4). Most tandem repeats were located in IGS regions, and were
present in both the ycf1 and ycf2 genes. Fourteen repeats were shared between the two Aconitum species.
Three tandem repeats were located in ycf2, and two in trnK-rps16. In both species, six palindromic
repeats were present, ranging in size from 21 to 33 bp (Table 5). In particular, the ycf2 gene contained
short tandem repeats as well as a palindromic repeat.

Table 5. Distribution of palindromic repeats in the CP genomes of A. pseudolaeve Nakai and
A. longecassidatum Nakai.

Species Position Repeat Unit
Length (bp) Repeat Units Sequences Region

A. pseudolaeve

IGS (trnE-trnT) 31 TCTATTTCTTATTTCTATATATTCTAATGAT LSC
IGS (petA-psbJ) 33 GTAAGAATAAGAACTCAATGGACCTTGCCCCTC LSC
IGS (psbT-psbN) 28 TTGAAGTAAAGTAATGAGCCTCCCATAT LSC
IGS (petD-rpoA) 24 ATGTATCTAGGGACTAGTCCCTTC LSC

Exon (ycf2) 24 AGATCCATTAGATAATGAACTATT IR
Exon (ycf15) 21 TGGTTGTTCGCCGTTCAAGAA IR

A. longecassidatum

IGS (trnE-trnT) 31 TCTATTTCTTATTTCTATATATTCTAATGAT LSC
IGS (petA-psbJ) 33 GTAAGAATAAGAACTCAATGGACCTTGCCCCTC LSC
IGS (psbT-psbN) 28 TTGAAGTAAAGTAATGAGCCTCCCATAT LSC
IGS (petD-rpoA) 24 ATGTATCTAGGGACTAGTCCCTTC LSC

Exon (ycf2) 24 AGATCCATTAGATAATGAACTATT IR
Exon (ycf15) 21 TGGTTGTTCGCCGTTCAAGAA IR

CP: chloroplast; IGS: intergenic sequence; LSC: large single copy; IR: inverted repeat region.
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2.3. Comparison of the Chloroplast Genomes of A. pseudolaeve Nakai, A. longecassidatum Nakai and Aconitum
barbatum Patrin ex Pers.

Based on a phylogenetic analysis of the CP genome sequence, A. pseudolaeve and A. longecassidatum
have been clustered within the Aconitum subgenus Lycoctonum, genetically closest to A. barbatum [27].
Consistent with this, the CP genomes of A. pseudolaeve and A. longecassidatum are 99.7% similar, with
nearly identical genome structure, gene content, and gene order, although the single-copy (LSC and
SSC) and IR regions differ slightly. The LSC and IR regions of the A. barbatum CP genome are slightly
longer than those of A. pseudolaeve and A. longecassidatum, whereas the SSC regions are shorter. Thus,
overall, the CP genomes of the three Aconitum species are very similar.

To identify divergent regions among the three species, we performed sequence alignment against
the A. barbatum CP genome (Figure 4). The greatest divergence was observed in non-coding regions.
In particular, A. barbatum contains a large insertion in trnK-trnQ that is not present in the other two
species. Smaller divergent regions are present in petN-psbM, trnT-trnL, ndhC-trnV, rbcL-accD, and other
loci; A. barbatum has more divergent regions than the other two species. Almost all divergent regions
are located in non-coding regions such as trnR-atpA, trnT-psbD, ycf4-cemA, ndhC-trnV, and ycf1-ndhF.
As noted above, coding regions are highly conserved between A. pseudolaeve and A. longecassidatum
(Figure S2). The most divergent regions were found in non-coding regions such as trnR-atpA, trnT-psbD,
ycf4-cemA, ndhC-trnV, and ycf1-ndhF (Figure S2). In addition, to analyze divergence at the sequence
level among the three Aconitum CP genomes, we also calculated the nucleotide variability (Pi) value
(Figure 5). As expected, IR regions are dramatically conserved among the three species. In other words,
single-copy (LSC and SSC) regions are more variable than IR regions. The divergence among the
three Aconitum species is greater than that between A. pseudolaeve and A. longecassidatum. As shown in
Figure 5, a few regions exhibited divergence (atpH, trnL, ndhJ, rpl16, ycf1, and ndhA), with a maximal Pi
value of 0.7%.

2.4. Indel and SNP Mutation between A. pseudolaeve and A. longecassidatum

Indels and SNPs are common events in the evolution of higher plant CP genomes [9,33–35]. These
mutations provide information that is useful for resolving evolutionary relationships in phylogenetic
analyses of related taxa [36]. We detected 61 indels between A. pseudolaeve Nakai and A. longecassidatum
Nakai (Table S5), of which 53 are located in IGS regions and the remaining eight are in coding regions.
Most indels range from 1 to 6 bp, and eight indels are longer than 10 bp; the longest indel, in ycf4-cemA,
has a length of 256 bp. No indels were found in IR regions. Comparison of the Aconitum species
revealed a large insertion (1582 bp) in A. barbatum Patrin ex Pers. not present in A. pseudolaeve or
A. longecassidatum. trnK-trnQ is highly conserved between A. pseudolaeve and A. longecassidatum.

We also detected 62 SNPs consisting of 27 transitions (Ts) and 35 transversions (Tv) between
two CP genomes (Figure 6 and Table S6). The ratio of Ts/Tv was 1:0.77, similar to that of other CP
genomes [9,37]. Some nucleotides were substituted A-to-C and T-to-G (32%). Substitution of C-to-G
and G-to-C showed the lowest frequency (3%). Of these 62 SNPs, 26 are located in coding regions. In
particular, the ycf1 gene contains nine SNPs (three Ts, six Tv), and thus represents a hotspot region
containing clustered variation [9,38]. We detected no non-synonymous SNPs between A. pseudolaeve
and A. longecassidatum.
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2.5. Development and Validation of the Indel Marker for Authentication of Three Species in the Aconitum
Subgenus Lycoctonum

Indel regions are commonly used for development of markers because they are easy to detect,
and it is straightforward to design suitable primers for them [14,15,39]. We developed indel markers
using the sequence variability of the large indel regions in A. pseudolaeve Nakai, A. longecassidatum
Nakai, and A. barbatum Patrin ex Pers. (Figure 4). Specifically, we designed indel primers based on
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the conserved regions of trnK-trnQ and ycf1-ndhF. AcoTT (Aconitum trnK-trnQ) and AcoYN (Aconitum
ycf1-ndhF) primers successfully amplified the predicted products in all three Aconitum species (Figure 7
and Data S1). A. pseudolaeve and A. longecassidatum exhibit a small length difference in AcoTT, whereas
A. barbatum exhibits a longer PCR product than the other two species, as expected. As shown in
Figure 7, A. barbatum, A. pseudolaeve, and A. longecassidatum yielded amplicons of 1865 bp, 275 bp, and
283 bp, respectively. Furthermore, A. longecassidatum has a 6-bp insertion relative to A. pseudolaeve.
In AcoYN, only A. longecassidatum (259 bp) exhibits a difference to A. pseudolaeve and A. barbatum
(370 bp). In the previous study analyzing molecular phylogeny based on the CP genome sequences
of Aconitum species, we found that two Aconitum subgenera, Aconitum and Lycoctonum, were clearly
classified [7]. To confirm the variability of indel regions between Aconitum species and subgenera, we
conducted analysis of PCR amplification profiles using the indel markers AcoTT and AcoYN, and a
total 27 samples of Aconitum species (nine species and one variety) consisting of Aconitum subgenera
Aconitum and Lycoctonum (Figure 7). Interestingly, all 27 other Aconitum samples yielded only the
877-bp amplicon for AcoTT, but three band patterns for AcoYN (Figure 7): the PCR products for
A. monanthum Nakai and A. kirinense Nakai were 431 bp; that of A. coreanum was 410 bp; and those of
the other species were 502 bp. However, A. longecassidatum was clearly distinguished from the other
Aconitum species. Taken together, these findings confirm that the three Aconitum species each have
specific sequences, and that it is possible to distinguish them from other Aconitum species.Molecules 2017, 22, 2012 12 of 16 
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trnK-trnQ 
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ycf1-ndhF 
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Figure 7. Schematic diagram of development of indel markers (AcoTT and AcoYN) in A. pseudolaeve
Nakai, A. longecassidatum Nakai, and A. barbatum Patrin ex Pers. (A) Primers for AcoTT were tested in
13 Aconitum species. AcoTT length of A. barbatum was measured in the CP sequence; (B) Primers for
AcoYN were validated in 13 Aconitum species: (1) A. barbatum, (2) A. pseudolaeve, (3) A. longecassidatum,
(4) A. coreanum (H.Lév.) Rapaics, (5) A. carmichaelii Debeaux, (6) A. voluvile var. pubescens Regel, (7) A.
jaluense var. triphyllum (Nakai) U.C.La, (8) A. kusnezoffii Rchb., (9) A. jaluense Kom., (10) A. austrokoreense
Koidz., (11) A. monanthum Nakai, (12) A. kirinense Nakai, (13) A. chiisanense Nakai. * The CP genomes of
A. pseudolaeve and A. longecassidatum were completed in this study. AcoYN: Aconitum ycf1-ndhF; AcoTT:
Aconitum trnK-trnQ. CP: chloroplast.

Because A. pseudolaeve and A. longecassidatum have highly conserved CP genome structures,
it is difficult to develop markers for the Aconitum genus that can distinguish at the species level.
Furthermore, A. pseudolaeve and A. longecassidatum had consistent sequences in the universal DNA
barcode regions such as internal transcribed spacer (ITS), matK. By comparative analysis, however,
we detected genetic variants and used them to develop indel markers. Specifically, the trnK-trnQ
region could distinguish A. pseudolaeve, A. longecassidatum, and A. barbatum. These three species
of the Aconitum subgenus Lycoctonum contain specific indel regions not present in the subgenus
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Aconitum. In this study, we overcame the limitations of universal DNA barcodes for inter-species
identification. Thus, our indel markers (AcoTT and AcoYN) will be useful in identification of
A. pseudolaeve, A. longecassidatum, and A. barbatum (Table 6). Furthermore, we confirmed that these
markers can be used to distinguish Aconitum at the subgenus level. It is likely that the subgenus
Aconitum exhibits greater conservation (i.e., less variation) than the subgenus Lycoctonum. Although
only a few Aconitum species were used in this study, our findings will contribute to species classification
in Aconitum subgenus Lycoctonum.

Table 6. Primer information for insertion and selection (indel) marker development in this study.

Primer Name Primer Sequence (5′ > 3′) Position

AcoTT-F TGC TTA CGA AGT TGT TCC GGC T trnK-trnQ
AcoTT-R CAC AAA CCA AAT CCG AGT ACC GA

AcoYN-F GAT GGA ATC GTC CAT CGC GT ycf1-ndhF
AcoYN-R TGT AAG TGG AGG ACG GAT CTC T

3. Materials and Methods

3.1. Plant Materials and Genome Sequencing

We collected fresh leaves of A. pseudolaeve Nakai (KIOM201401010986) and A. longecassidatum
Nakai (KIOM201401010506) from medicinal plantations in Korea, and subjected the samples to CP
genome sequencing. A. pseudolaeve and A. longecassidatum were given identification numbers, and
specimens were registered in the Korean Herbarium of Standard Herbal Resources (Index-Herbarium
code KIOM) at the Korea Institute of Oriental Medicine (KIOM) [20]. DNA was extracted using the
DNeasy Plant Maxi kit (Qiagen, Valencia, CA, USA). Illumina paired-end sequencing libraries were
constructed and generated using MiSeq platform (Illumina, San Diego, Valencia, CA, USA).

3.2. Assembly and Annotation of Two Aconitum Species

CP genomes were obtained by de novo assembly from low-coverage whole-genome sequence
data. Trimmed paired-end reads (Phred scores ≥ 20) were assembled using CLC Genome Assembler
(ver. 4.06 beta, CLC Inc, Aarhus, Denmark) with default parameters. The principal contigs representing
the CP genome were retrieved from total contigs using Nucmer [40] using the CP genome sequence
of Aconitum barbatum var. puberulum (KC844054) as the reference sequence. Gene annotation was
performed using DOGMA [41] and manual curation using BLAST. The circular maps of A. pseudolaeve
and A. longecassidatum were obtained using OGDRAW [42]. Codon usage and base composition
analysis of CP genomes were performed using MEGA6 [43]. NCBI accession numbers of CP genome
sequences are KY407562 and KY407561 for A. pseudolaeve and A. longecassidatum, respectively.

3.3. SSR, Tandem, and Palindromic Repeat Analysis in Two Aconitum CP Genomes

Tandem repeats were ≥20 bp with minimum alignment score and maximum period size set at 50
and 500, respectively, and identity of repeats was set at ≥90% [44]. SSRs were detected using MISA [45]
with the minimum repeat numbers set to 10, 5, 4, 3, 3 and 3 for mono-, di- tri- tetra-, penta-, and
hexanucleotides, respectively. IRs were detected using the Inverted Repeats Finder [46] with default
parameters. IRs were required to be ≥20 bp in length with 90% similarity.

3.4. Comparative Analysis of CP Genomes of A. pseudolaeve and A. longecassidatum

The mVISTA program [47] was used to compare the CP genomes of Aconitum barbatum var.
puberulum (KC844054), A. pseudolaeve, and A. longecassidatum. To calculate nucleotide variability (Pi)
between CP genomes, we performed sliding-window analysis using DnaSP version 5.1 [48] with a
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window length of 600 bp and step size of 200 bp. Indels and SNPs were analyzed based on sequence
alignments using MAFFT [49].

3.5. Development and Validation of Indel Markers (AcoTT and AcoYN) Among Aconitum Species

We selected indel regions based on mVISTA similarities and designed primers using
Primer-BLAST (NCBI). Indel regions were amplified from 20 ng of genomic DNA in a 20-µL PCR
mixture (SolgTM 2X Taq PCR smart mix 1, Solgent, Daegeon, Korea) with 10 pmol of each primer
(Bioneer, Daejeon, Korea). Amplification was performed on a Pro Flex PCR system (Applied
Biosystems, Waltham, MA, USA) according to the following program: (1) AcoTT primer: initial
denaturation at 95 ◦C for 2 min; 35 cycles at 95 ◦C for 1 min, 61 ◦C for 1 min, and 72 ◦C for 1.5 min;
and final extension at 72 ◦C for 5 min; and (2) AcoYN primer: initial denaturation at 95 ◦C for 2 min;
35 cycles at 95 ◦C for 50 s, 60 ◦C for 50 s, and 72 ◦C for 50 s; and final extension at 72 ◦C for 5 min. PCR
products were separated on 2% agarose gels at 150 V for 40 min. To validate the specificity of indel
markers and confirm the variability of indel regions between Aconitum species and subgenera Aconitum
and Lycoctonum, we checked PCR amplification profiles using 27 additional samples from nine species
and one variety of Aconitum consisting of both Aconitum subgenus Aconitum and Lycoctonum, which
were provided from the KIOM herbarium. In addition, to confirm that the sizes of the PCR products
were accurate, two samples per species were sequenced. Each PCR product was rescued from the
agarose gel, subcloned into the pGEM-T Easy vector (Promega, Madison, WI, USA), and sequenced on
a DNA sequence analyzer (ABI 3730, Applied Biosystems Inc., Foster City, CA, USA) to estimate sizes
and verify the sequences of amplicons.

Supplementary Materials: Supplementary Materials are available online.
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