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Abstract: Spiroheterocycles are regarded as a privileged framework because of their wide distribution
in various natural products and synthetic molecules and promising bioactivities. This review focuses
on the recent advances in the synthesis of spiroheterocycles by using the strategy of N-heterocyclic
carbene (NHC) organocatalysis, and is organized based on the stereoselectivity and the reactive
intermediates. According to the stereochemistry, this review was divided into two main parts,
covering racemic and enantioselective versions. In each part, we firstly describe the synthetic
transformations using nucleophilic Breslow intermediates, and then discuss the reactions that
employ electrophilic acylazolium or radical cation intermediates. With those distinct catalytic
activation modes of NHC organocatlysis, we expect this synthetic protocol will possibly produce new
molecules with structural novelty and complexity, which may warrant further research in the field of
drug discovery.

Keywords: spiroheterocycles; N-heterocyclic carbene organocatalysis; diastereoselective synthesis;
enantioselective synthesis

1. Introduction

Spiroheterocycles are a class of privileged scaffolds widely occurring in many natural products
and pharmaceutical compounds [1–3]. Recently, spiroheterocycles have received special attention
in medicinal chemistry because of their promising bioactivities, such as antitubercular, antiparasitic,
and antitumor properties [2,4,5]. For example, citrinadins A and B isolated from Penicillium citrinum
N059 strain show modest cytotoxicity against murine leukemia L1210 cells [6]. The alkaloid citrinalin
A, a bioactive secondary metabolite of Penicillium species, exhibits antimycobacterial, cytotoxic and
antifungal activities [7]. The marine alkaloid discorhabdin A inhibits protein-protein interactions,
interrupting the interaction between hypoxia-inducible factor 1a (HIF-1a) and its transcriptional
coactivator p300 [8]. Trigolutes A–C isolated from Trigonostemon lutescens twigs, are used in Thai folk
medicine to cure food poisoning, asthma, and poisonous snake bites [9]. Spirotryprostatin B, which is a
diketopiperazine alkaloid isolated from Aspergillus fumigatus, displays cell cycle inhibitory activity [10]
(Figure 1). Due to their important physiological functions, the corresponding skeletons have therefore
attracted great interest from synthetic chemists.
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Figure 1. Select natural products containing spiroheterocycles. 

During the last two decades, with extensive and in-depth research on cycloadditions [11–14], 
spirocyclization reactions, such as alkylation [15,16], ring-expansion method [17], rearrangement- based 
approaches [18], the palladium-catalyzed [3+2] cycloaddition [19], [2+1] cycloadditions [20] and other 
methods, have been established to construct and modify these frameworks. Although significant 
advances have been achieved, constructing complex molecules with congested tetrasubstituted carbon 
stereocenters in one step under mild conditions still remains challenging [21–24]. 

In biological systems, many complicated biochemical transformations are catalyzed by enzymes; 
for example, the nucleophilic acylation reaction is catalyzed by transketolase enzymes [25], in the 
presence of a coenzyme named thiamine (1, Figure 2) [26]. This biocatalytic transformation is interesting 
to many chemists because it can help elucidate the nature and design of biomimic catalysis [27]. 

 
Figure 2. Coenzyme thiamine (vitamin B1). 

Early carbene chemistry was developed around the 1900s [27–32]. Since Bertrand [33,34], 
Arduengo [35] and their colleagues reported stable nucleophilic carbenes, chemists have set off a gold 
rush in this field, and NHCs have been successfully applied to organocatalysis, thereby enabling 
various unconventional chemical transformations via diverse reactive intermediates [36–39]. 
According to their different core structures, NHCs can be divided into four types, namely, thiazolium, 
triazolium, imidazolium, and imidazolin-2-ylidenes [37]. Rovis et al., further summarized diverse 
NHC catalysts with different substituents (for details, see Figure 3) [40]. 
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During the last two decades, with extensive and in-depth research on cycloadditions [11–14],
spirocyclization reactions, such as alkylation [15,16], ring-expansion method [17], rearrangement-
based approaches [18], the palladium-catalyzed [3+2] cycloaddition [19], [2+1] cycloadditions [20] and
other methods, have been established to construct and modify these frameworks. Although significant
advances have been achieved, constructing complex molecules with congested tetrasubstituted carbon
stereocenters in one step under mild conditions still remains challenging [21–24].

In biological systems, many complicated biochemical transformations are catalyzed by enzymes;
for example, the nucleophilic acylation reaction is catalyzed by transketolase enzymes [25], in the
presence of a coenzyme named thiamine (1, Figure 2) [26]. This biocatalytic transformation is interesting
to many chemists because it can help elucidate the nature and design of biomimic catalysis [27].
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Early carbene chemistry was developed around the 1900s [27–32]. Since Bertrand [33,34],
Arduengo [35] and their colleagues reported stable nucleophilic carbenes, chemists have set off
a gold rush in this field, and NHCs have been successfully applied to organocatalysis, thereby enabling
various unconventional chemical transformations via diverse reactive intermediates [36–39]. According
to their different core structures, NHCs can be divided into four types, namely, thiazolium, triazolium,
imidazolium, and imidazolin-2-ylidenes [37]. Rovis et al., further summarized diverse NHC catalysts
with different substituents (for details, see Figure 3) [40].
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Figure 3. General types of N-heterocyclic carbenes. 

In the presence of these NHC catalysts, various reactive species can be generated from aldehydes 
and other carbonyls. For example, Breslow intermediate 2, enolate 3, homoenolate 4, acylazolium 5, 
and α,β-unsaturated acylazolium 6 are the most investigated. Among these species, Breslow 
intermediate, enolate, and homoenolate are typically used as nucleophiles, and acylazolium and 
α,β-unsaturated acylazolium are used as electrophilic species. Mutual transformation among these 
intermediates enables the unique NHC-catalyzed reactions (Scheme 1) [41]. 
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This review includes recent examples of different catalysts and reactions used to synthesize 
spiroheterocycles via NHC organocatalysis. Examples have been selected to emphasize notable 
spirocyclization strategies and compare the reactivity and selectivity of different types of NHC 
organocatalysts. This synthetic protocol produces new spirocyclic molecules with structural novelty 
and complexity, which may warrant further research in the field of drug discovery. 
  

Figure 3. General types of N-heterocyclic carbenes.

In the presence of these NHC catalysts, various reactive species can be generated from aldehydes
and other carbonyls. For example, Breslow intermediate 2, enolate 3, homoenolate 4, acylazolium 5, and
α,β-unsaturated acylazolium 6 are the most investigated. Among these species, Breslow intermediate,
enolate, and homoenolate are typically used as nucleophiles, and acylazolium and α,β-unsaturated
acylazolium are used as electrophilic species. Mutual transformation among these intermediates
enables the unique NHC-catalyzed reactions (Scheme 1) [41].
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Scheme 1. Transformation of related intermediates under certain conditions.

This review includes recent examples of different catalysts and reactions used to synthesize
spiroheterocycles via NHC organocatalysis. Examples have been selected to emphasize notable
spirocyclization strategies and compare the reactivity and selectivity of different types of NHC
organocatalysts. This synthetic protocol produces new spirocyclic molecules with structural novelty
and complexity, which may warrant further research in the field of drug discovery.



Molecules 2017, 22, 1882 4 of 22

2. NHC-Catalyzed Synthesis of Spiroheterocycles

2.1. Synthesis of Racemic Spiroheterocycles via NHC-Catalyzed Reactions

2.1.1. Catalysis Involving Nucleophilic Breslow Intermediates

In 2006, Nair et al., reported the addition of enals to 1,2-dicarbonyl compounds via a homoenolate
pathway, thereby opening a route to γ-spirolactones [42] (Scheme 2). In this reaction, α,β-unsaturated
aldehydes 7 are used as nucleophiles in the presence of NHC catalyst, and 1,2-cyclohexanedione (8)
and isatins 10 are used as competent electrophiles. The yield of spirocyclohexanone products 9 ranges
from 60% to 74%, whereas spirooxindole γ-lactones 11 are obtained in 85–98% yields. However, the
diastereoselectivity of this method (1:1 dr) was unsatisfactory. After addition of the NHC catalyst
12 to the aldehydes 7 and subsequent proton transfer in the intermediate 13, this reaction begins
with the nucleophilic addition of Breslow intermediates 14 to 15, thereby giving enol azolium 16.
Tautomerization of 16 produces acylazolium 17, which subsequently cyclizes to deliver the γ-lactone
product 18 and release the catalyst.
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Later, Gravel and co-workers developed one-pot intermolecular Stetter reactions coupled with
intramolecular Michael or aldol reactions. In these reactions, after conjugate addition of the Breslow
intermediate 19 to the Michael acceptor, enolate 20 is trapped by an aldehyde or an Michael acceptor
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and gives intermediate 21 or 22 (Scheme 3). Later on, they expanded this reaction to spiroindane
skeletons. The corresponding spiroindanes 24 are synthesized from o-formylchalcone derivatives
23 in modest to good yields (31–86%) and with excellent diastereoselectivities (up to >20:1 dr)
(Scheme 4) [43].
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Scheme 4. Synthesis of spiroindanes 24 via Stetter–aldol–Michael reaction.

In 2011, Gravel and co-workers exploited a Stetter–aldol–aldol reaction starting with
phthaldialdehydes 25 and the acceptors 26 to generate spiro bis-indanes 27 in a diastereoselective
manner (Scheme 5). Electron-donating groups (EDGs) considerably affect the reactivity of the reaction,
resulting in a modest yield (25%); however, electron-withdrawing groups (EWGs) enhance the
electrophilicity of the Michael acceptor, thereby reducing the reaction time and increasing the product
yield (75%) [44].
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oxindoles 29 and 31 containing two quaternary carbons. Enal-derived homoenolate intermediates 
with three consecutive reactive positions are used in the reaction, and a special oxindole-derived 
α,β-unsaturated imines with β,β-disubstituents 28 and 30 are the reaction partner. Initial studies 
have shown that catalysts based on an imidazolium skeleton are ineffective in this reaction, 
whereas the triazolium-based catalyst D2 has proven to be promising. With this catalyst, the desired 
spiroindole products can be obtained in good to excellent isolated yields (69–96%) with moderate to 
good diastereoselectivity (2:1 to 12:1 dr) (Scheme 6) [45]. 
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In 2013, Yao and co-workers employed an efficient NHC-catalyzed [4+2] annulation of 
α,β-dibromoaldehyde 32 or α-bromo-α,β-unsaturated aldehydes 34 bearing γ-H with isatin 
derivatives to prepare spirocyclic oxindole–dihydropyranones 33 (Scheme 7). In this reaction, the 
condensation of the NHC catalyst B1 and 34 produces Breslow intermediate 35, which is 
subsequently oxidized to 36 through intramolecular debromination. Then, acylazoliumion 36 is 
deprotonated at the γ-position to give the vinyl enolate 37 under basic conditions. Afterward, 
intermediate 37 reacts with isatins 10 probably through an oxo-Diels–Alder reaction mechanism or a 
non-concerted nucleophilic addition followed by intramolecular cyclization for the target product 

Scheme 5. Synthesis of spiroindanes 27 via Stetter–aldol–aldol reaction.

Chi and colleagues developed a diastereoselective method for a facile access to spirocyclic
oxindoles 29 and 31 containing two quaternary carbons. Enal-derived homoenolate intermediates
with three consecutive reactive positions are used in the reaction, and a special oxindole-derived
α,β-unsaturated imines with β,β-disubstituents 28 and 30 are the reaction partner. Initial studies have
shown that catalysts based on an imidazolium skeleton are ineffective in this reaction, whereas the
triazolium-based catalyst D2 has proven to be promising. With this catalyst, the desired spiroindole
products can be obtained in good to excellent isolated yields (69–96%) with moderate to good
diastereoselectivity (2:1 to 12:1 dr) (Scheme 6) [45].
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In 2013, Yao and co-workers employed an efficient NHC-catalyzed [4+2] annulation of
α,β-dibromoaldehyde 32 or α-bromo-α,β-unsaturated aldehydes 34 bearing γ-H with isatin
derivatives to prepare spirocyclic oxindole–dihydropyranones 33 (Scheme 7). In this reaction, the
condensation of the NHC catalyst B1 and 34 produces Breslow intermediate 35, which is subsequently
oxidized to 36 through intramolecular debromination. Then, acylazoliumion 36 is deprotonated at the
γ-position to give the vinyl enolate 37 under basic conditions. Afterward, intermediate 37 reacts with
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isatins 10 probably through an oxo-Diels–Alder reaction mechanism or a non-concerted nucleophilic
addition followed by intramolecular cyclization for the target product 33 and and the catalyst is
released from intermediate 38 (Scheme 8). The yield of spirocyclic oxindole–dihydropyranones in this
reaction ranges from 75% to 93% [46].
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Later, Glorius and colleagues employed a conjugate umpolung strategy to synthesize
spirooxindole scaffolds with contiguous quaternary stereocenters. The mechanism of this reaction
involves an NHC catalyst and an enal 39 that initially form a tetrahedral intermediate and subsequently
transform to the Breslow intermediate. In the presence of an acid co-catalyst, the species can react
with isatin 10 via one of two possible pre-transition-state assemblies. The preference for the favored
pathway leads to the observed major diastereoisomer. After an adduct diastereoselectively forms,
an intramolecular alkoxide attack at the carbonyl group produces the desired spirooxindoles 40 and
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regenerates the NHC catalyst. The yields in this transformation range from 68% to 98%, and the
diastereoselectivity is generally good (8:1 to >20:1 dr) (Scheme 9) [47].Molecules 2017, 22, 1882 8 of 22 
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2.1.2. Catalysis Involving Acylazolium Intermediates

In recent years, efforts have been devoted to investigating NHC-based acylazolium and azolium
enolate intermediates. The most commonly used method to access NHC-derived α,β-unsaturated
acylazolium intermediates is based on an internal redox activation of α-oxidizable aldehydes. Du,
Lu and co-workers reported an effective strategy to synthesize spirooxindole 4H-pyran-2-one 43
derivatives through the NHC-catalyzed three-component domino reaction of oxindoles 42 and ynals
41. This reaction provides moderate to good yields (40–93%) with excellent diastereoselectivity (up to
>95:5 dr) (Scheme 10) [48].
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In 2017, the same group published an NHC-catalyzed formal [3+3] annulation of isatin-derived
α,β-unsaturated acids 44 with 1,3-dicarbonyl compounds 45 to synthesize 3,4′-spirooxindole lactones
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46. Of note, acid substrates are generally more bench stable than aldehydes; in this case, these
substrates can be activated in situ (Scheme 11). Under optimized conditions, a wide range of substrates
produce the corresponding products in moderate yields ranging from 18% to 90% [49].Molecules 2017, 22, 1882 9 of 22 
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Scheme 11. D2-catalyzed synthesis of spirooxindole lactones 46. 

Qi and co-workers established an NHC-catalyzed synthesis of dihydropyridinones and 
spirooxindoles. With the external oxidant 48, the reaction proceeds via a [3+3] annulation of 
cinnamaldehydes 7 or isatin-derived enals 51 in the presence of 2-aminoacrylates 47 (Scheme 12). 
Two different dihydropyridinones 49 and 50 are generated through this novel strategy by using 
different bases, and a series of spirooxindole derivatives 52 is also synthesized in moderate to good 
yields (61–98%) (Scheme 13) [50].  
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Qi and co-workers established an NHC-catalyzed synthesis of dihydropyridinones and
spirooxindoles. With the external oxidant 48, the reaction proceeds via a [3+3] annulation of
cinnamaldehydes 7 or isatin-derived enals 51 in the presence of 2-aminoacrylates 47 (Scheme 12).
Two different dihydropyridinones 49 and 50 are generated through this novel strategy by using
different bases, and a series of spirooxindole derivatives 52 is also synthesized in moderate to good
yields (61–98%) (Scheme 13) [50].
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2.2. Synthesis of Chiral Spiroheterocycles via NHC-Catalyzed Reactions

2.2.1. Catalysis Involving Chiral Nucleophilic Breslow Intermediates

Ye and colleagues demonstrated an enantioselective NHC-catalyzed cycloaddition reaction that
generates spirocyclic oxindole-β-lactones 54 from ketenes 53 and isatins 10 through a formal [2+2]
annulation (Scheme 14). This reaction efficiently forms products in good yields (36–99%) with good
diastereoselectivities (3:1 to >20:1 dr) and high enantioselectivities (83–99% ee) [51].
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Ye and co-workers further demonstrated that bifunctional NHC with a free hydroxyl group is
an efficient catalyst for the enantioselective Staudinger reaction of ketenes 53 with isatin-derived
ketimines 55 (Scheme 15), thereby producing the corresponding spirocyclic oxindolo-β-lactams 56
in high yields (70–92%) with excellent diastereoselectivities (up to >20:1 dr) and enantioselectivities
(87–99% ee) [52].
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Xu and Ren developed an NHC-catalyzed oxidative [2+2] annulation reaction to generate
spiro-β-lactams 56 bearing two vicinal stereogenic centers from simple aliphatic aldehydes 57 and
isatin-derived ketimines 55. This reaction efficiently delivers products in 33–82% yield, 93–98% ee, and
5:1 to 20:1 dr. The remarkable features of this formal [2+2] annulation reaction include direct carbon
functionalization of aliphatic aldehydes, easily accessible starting materials, mild reaction conditions,
and readily removable protecting groups (Scheme 16) [53].
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liberates free carbenes and affords the desired spiro-products 61. This transformation provides 
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In 2014, Ma group illustrated an asymmetric formal [3+2] annulation of aryl 3-bromoenals 58 and
isatins 10 to produce spirooxindole–butenolides 59 in excellent yield with high enantioselectivity
through hydrogen-bonding activation-assisted chiral NHC catalysis (Scheme 17). This reaction
provides excellent yield (85–99%) and high enantioselectivity (93:7–96:4 er) [54].
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Scheme 17. Asymmetric synthesis of the spirooxindole 58 via [3+2] annulation.

In the same year, Glorius and co-workers developed a highly enantioselective NHC-catalyzed
formal [3+2] annulation of α,β-unsaturated aldehydes 7 with azaaurones or aurone 60. This reaction
begins with an initial conjugate addition of homoenolate to a Michael acceptor. The resultant
enol−azolium tautomerizes to acylazolium. After the pendant undergoes cyclization, the enolate
liberates free carbenes and affords the desired spiro-products 61. This transformation provides
moderate to good yields ranging from 42% to 83%, a generally good diastereoselectivity (3:1 to
>20:1 dr) and an excellent enantioselectivity (88–95% ee) (Scheme 18) [36].
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In 2016, Glorius and colleagues successfully used modified benzofurans and benzothiophenes 62
as substrates in an enantioselective NHC-catalyzed intramolecular hydroacylation/dearomatization
transformation (Scheme 19). This reaction provides access to a class of scarcely explored spirocycles
63 and 64 with up to 99% ee in modest to good yields (51–97%). The products bear interesting
three-dimensional pseudo-axial chirality and shows a typical ketone reactivity [55].
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Scheme 19. NHC-catalyzed enantioselective hydroacylation of benzoheterocycle 62.

Scheidt’s group constructed chiral spirooxindole lactones 67 using a Lewis acid in conjunction
with an NHC without additives [56,57]. After Scheidt’s work, Xu et al., described a 1-hydroxy-
benzotriazole (HOBt, 66)-assisted, NHC-catalyzed direct β-functionalization reaction of saturated
carboxylic esters 65 that undergo a formal [3+2] annulation with isatins 10 in a highly efficient,
diastereoselective, and enantioselective manner to afford chiral spirooxindole lactones 67. Notably, the
use of a catalytic amount of HOBt in this reaction remarkably improves diastereoselectivity (>20:1 dr)
and enantioselectivity (58–98% ee) (Scheme 20) [58].
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Later on, Xu and co-workers developed an efficient reaction to produce heterocyclic
ortho-quinodimethanes 69 from 2-methyl-heteroarene-3-carboxylic esters 68 through NHC catalysis.
The heterocyclic ortho-quinodimethanes generated in situ behave as 1,4-dipolarophiles to undergo
a formal [4+2] annulation reaction with isatin-derived ketimines. The reaction affords chiral
heteroarene-fused δ-lactams bearing a quaternary stereogenic center in moderate to good yields
ranging from 57% to 81% and with high to excellent enantioselectivities (87 to >99% ee)
(Scheme 21) [59].
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Very recently, Enders and co-workers reported an NHC-catalyzed asymmetric synthesis of
spirobenzazepinones 71, spiro-1,2-diazepinones 73 via [3+4]-cycloaddition reactions of enals derived
from isatins 51 and aza-o-quinone methides or nitrosoalkenes in situ from N-(o-chloro-methyl)aryl
amide 70 or a-halohydrazones 72. The spirocyclic products containing a seven-membered ring are
synthesized in good yields with excellent enantioselectivities (Scheme 22) [60].
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Wang and co-workers developed a cascade asymmetric Michael-intramolecular
aldol-lactonization of enals 7 with oxindolyl-β,γ-unsaturated α-ketoesters 74. In this reaction,
the desired β-propiolactone-fused spiro[cyclopentane-oxindoles] 75 contain four contiguous
stereocenters, including a spiro all-carbon center and a quaternary carbon center. A variety of chiral
NHC catalysts and bases have been investigated, and the results have shown that NHC D9 and
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DIPEA can provide the highest enantioselectivity (up to 99% ee) and diastereoselectivity (>99:1 dr)
(Scheme 23) [22].
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2.2.2. Catalysis Involving Chiral Acylazolium Intermediates

In recent years, many research groups have made impressive contributions to the applications
of α,β-unsaturated acyl azoliums generated from different precursors, such as ynals, enals,
α,β-unsaturated acyl fluorides, and esters. After Yao’s work [61], Du and colleagues reported a formal
[3+2] annulation of α-bromoenals 76-derived α,β-unsaturated acyl azoliums with 3-amino-oxindoles
77 via NHC organocatalysis. The functionalized spirooxindole γ-butyrolactams 78 are synthesized
with high diastereoselectivities (up to >95:5 dr) and enantioselectivities (86–95% ee) (Scheme 24) [62].
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Biju, Yetra and co-workers presented an enantioselective NHC-catalyzed annulation of enals 7
with 3-hydroxy oxindoles 79, resulting in the formation of spiro γ-butyrolactones 80. The products
are formed in moderate to good yields (63–88%) and with good enantioselectivity (up to 99:1 er)
and diastereoselectivity (up to 7:1 dr). The reaction likely proceeds via the generation of the chiral
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α,β-unsaturated acyl azolium intermediate, followed by its interception with oxindoles in a formal
[3+2] cyclization to afford the spiro compounds (Scheme 25) [63].
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Recently, Qi and colleagues reported an efficient strategy to access 5,6-dihydropyridinones,
3,4-dihydropyridinones and spirooxindoles via the NHC-catalyzed [3+3] annulation of
2-aminoacrylates with cinnamaldehydes and oxindole-derived enals. Moreover, two different
dihydropyridinones were produced by using this novel strategy with two different bases, namely,
DABCO and LiOAc. They also synthesized a series of spirooxindole products in moderate to
good yields (61–98%). An asymmetric catalytic version of this methodology has been conducted to
investigate this novel strategy, and the desired product yields range from 67% to 83% with up to
99% ee [50].

In 2017, Ye and co-workers developed an NHC-promoted synthesis of chiral
spirocyclopentene-2-oxindoles 82 via a Michael–aldol–lactonization decarboxylation cascade
of bromoenals 76 and oxindoles 81. The spirocyclopentene-2-oxindoles bearing two contiguous
stereocenters are obtained in good yields (35–74%) with good to excellent diastereoselectivity (up to
>20:1 dr) and high enantioselectivities (up to 92% ee) (Scheme 26) [64].
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An asymmetric intramolecular dearomatization of indoles using oxidative NHC catalysis was
reported by Studer and co-workers. In this reaction, the NH-free indolyls 83 as starting materials, can
be easily transformed to valuable spirocyclic indolenines 84 with an all-carbon quaternary stereocenter
through catalytic asymmetric dearomatization of an indole core (Scheme 27). The products form in
good yields of up to 98% and >99% ee are obtained [65].
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2.2.3. Catalysis Involving Radical Cation Intermediates

In addition to the aforementioned synthesis of spiroheterocycles via Breslow and acylazolium
intermediates, the oxidative cross-coupling of homoenolate and enolate remains unexplored. Ye,
Sun and co-workers developed an NHC-catalyzed oxidative cross-coupling of dioxindoles 79 and
enals 7. The corresponding spirooxindole-γ-lactones 80 are generated in good yields (67–98%) with
high to excellent diastereoselectivities (6:1 to >20:1 dr) and enantioselectivities (80–99% ee). This
NHC-catalyzed oxidative [3+2] annulation reaction of dioxindoles and enals is proposed to occur via a
radical-radical cross-coupling pathway (Scheme 28).
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3. Conclusions

Firstly, Breslow intermediate 85 is formed by the addition of D8 and enals 7. Subsequently, in the
presence of nitrobenzene 86, Breslow intermediate is oxidized to the radical cation intermediate 87.
Meanwhile, the cross-coupling of the homoenolate radical 87 and enolate radical 88 generated from
dioxindole 79 affords adduct 89, which is tautomerized to acylazolium 90. Finally, with the assistant of
base, the lactonization of 90 generates the spiro-product 80 and releases the NHC catalyst [66]. In the
past decades, spiroheterocycles have attracted great interests among the scientific community due
to their special physiological and pharmacological properties, such as antitubercular, antiparasitic,
antifungal and antitumor activities [8,67,68]. Thus, chemists have made a lot of efforts on the synthesis
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of the corresponding skeletons to find promising compounds that might be useful in the area of drug
research and development.

This review highlights the recent application of NHC organocatalysis in the synthesis of
spiroheterocyles, and the aforementioned excellent works show that complex molecular skeletons can
be constructed efficiently and rapidly by using simple starting materials under mild conditions.
Although certain NHC catalysts and strategies are possible “privileged” routes for the efficient
construction of spirocyclic derivatives, several problems, such as high catalyst loading and sensitivity
to water and air, remain unsolved and thus need further investigations to develop new strategies.
Nevertheless, we believe that the existing synthetic protocols and the developing transformations
will provide powerful and efficient NHC organocatalytic reactions for the continuous construction of
useful spiroheterocycles.
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