Supplementary Material

Semisynthesis, an Anti-Inflammatory Effect of Derivatives of

1β-Hydroxy Alantolactone from Inula britannica

Lin Chen^{1,2}, Jian-Ping Zhang³, Xin Liu², Jiang-Jiang Tang⁴, Ping Xiang^{5,*} and Xing-Ming Ma^{1,*}

- ¹ Department of Immunology, Institute of Integrated Chinese and Western Medicine, School of Basic Medical Sciences, Lanzhou University, 730000, P.R. China; chenlinfree@126.com (L.C.)
- ² Department of Infectious Disease, the First Hospital of Lanzhou University, Lanzhou, 730000, P.R. China; liuxin1288@126.com (X.L.)
- ³ Department of Pharmacy, the First Hospital of Lanzhou University, Lanzhou, 730000, P.R. China; Zhangjianping0306@163.com (J.-P.Z.)
- ⁴ College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P.R. China; tangjiang11@nwafu.edu.cn (J.-J.T.)
- ⁵ College of Plant Protection, Northwest A&F University, Yangling, 712100, P.R. China;
- * Correspondence: xiangp02@163.com (P.X.); maxm@lzu.edu.cn (X.-M.M.); Tel.: +86-298-703-4332 (P.X.)

Scheme 1. Semisynthetic route of 1β -hydroxy alantolactone (1) derivatives.

The General Procedure for the Synthesis of Derivative 2

To a suspension of Dess–Martin periodinane (0.4 mmol) in anhydrous CH_2Cl_2 (1 mL), compound **1** (0.2 mmol) in anhydrous CH_2Cl_2 (1 mL) solution was added. The resulting solution was added to saturated aqueous NaHCO₃ and extracted with CH_2Cl_2 . After removal of the solvent, the crude product was purified by silica gel chromatography (EtOAc/PE) to afford compound **2**.

Derivative 2: White powder. $[\alpha]_D^{30} = +190.5^\circ$ (*c* 0.034 in CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 6.24 (d, *J* = 1.8 Hz, 1H, H-13a), 5.67 (d, *J* = 1.6 Hz, 1H, H-13b), 5.37 (d, *J* = 4.2 Hz, 1H, H-6), 4.84 (td, *J* = 6.6, 3.3 Hz, 1H, H-8), 3.56 (m, *J* = 9.6, 5.3 Hz, 1H, H-7), 2.74 (m, 1H, H-2a), 2.59 (m, 1H, H-4), 2.45 (dd, *J* = 15.0, 3.0 Hz, 1H, H-9a), 2.25 (m, 1H, H-2b), 1.95 (m, 1H, H-3a), 1.72 - 1.84 (m, 2H, H-3b, H-9b), 1.38 (s, 3H, H-14), 1.25 (d, *J* = 7.3 Hz, 3H, H-15); ¹³C NMR (125 MHz, CDCl₃): δ 213.3 (C-1), 170.0 (C-12), 145.85 (C-5), 139.3 (C-11), 122.4 (C-6), 121.8 (C-13), 75.3 (C-8), 47.0 (C-10), 39.4 (C-7), 36.0 (C-9), 35.6 (C-4), 34.0(C-2), 28.7 (C-3), 28.7 (C-14), 23.0 (C-15); ESI-MS: *m/z* 515.34 [2M+Na]⁺; HRMS (ESI): *m/z* calcd for C₁₅H₁₉O₃ [M+H]⁺ 247.13287, found 247.13283.

The General Procedure for the Synthesis of Derivatives 3 and 4

To a suspension of anhydride (0.2 mmol), Et₃N (0.3 mmol) and DMAP (0.01 mmol) in anhydrous CH_2Cl_2 (1 mL) in an ice-bath stirred for 30 min, compound 1 or anhydrous CH_2Cl_2 (1 mL) solution was added. After completion of the reaction for 30 min at room temperature, ice water (2 mL) was added to the solvent and stirred for 20 min, then extracted with CH_2Cl_2 , dried, and filtered. After removal of the solvent, the crude product was purified by silica gel chromatography (EtOAc/PE).

Derivative 3: White powder. $[α]_{10}^{30} = +190.5^{\circ}$ (*c* 0.036 in CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ 6.20 (d, *J* = 1.6 Hz, 1H, H-13a), 5.63 (d, *J* = 1.3 Hz, 1H, H-13b), 5.25 (d, *J* = 3.8 Hz, 1H, H-6), 4.79 (m, 1H, H-8), 4.53 (dd, *J* = 11.7, 3.9 Hz, 1H, H-1), 3.56 (s, 1H, H-7), 2.45 (m, 1H, H-4), 2.27 (dd, *J* = 15.0, 2.7 Hz, 1H, H-9b), 2.07 (s, 3H, CH₃CO -1), 1.87 (m, 1H, H-2a), 1.72–1.63 (m, 2H, H-3a, H-2b), 1.60–1.50 (m, 2H, H-3b, H-9a), 1.24 (s, 3H, H-14), 1.10 (d, *J* = 7.6 Hz, 3H, H-15); ¹³C NMR (125 MHz, CDCl₃): δ 170.9 (C-12), 170.2 (CH₃CO-1), 147.1 (C-5), 139.5 (C-11), 122.2 (C-13), 121.2 (C-6), 81.4 (C-1), 75.4 (C-8), 39.4 (C-7), 39.0 (C-9), 37.2 (C-10), 37.2 (C-4), 29.5 (C-3), 23.2 (CH₃CO-1), 22.7 (C-14), 22.4 (C-2), 21.3 (C-15); ESI-MS: *m/z* 271.5 [M+Na]⁺; HRMS (ESI): *m/z* calcd for C₁₇H₂₃O₄ [M+H]⁺ 291.15909, found 291.15909.

Derivative 4: Yellow powder. [α]_D³⁰ = +63.34° (*c* 0.31 in CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 6.24 (d, *J* = 1.5 Hz, 1H, H-13a), 5.68 (d, *J* = 1.2 Hz, 1H, H-13b), 5.29 (d, *J* = 3.8 Hz, 1H, H-6), 4.85 – 4.80 (m, 1H, H-8), 4.60 (dd, *J* = 11.7, 3.9 Hz, 1H, H-1), 3.62 – 3.57 (m, 1H, H-7), 2.72 (m, 2H, H-18), 2.71 – 2.67 (m, 2H, H-17), 2.51 – 2.44 (m, 1H, H-4), 2.32 (m, 1H, H-9b), 1.92 (m, 1H, H-2b), 1.74 – 1.53 (m, 4H, H-2a, H-3, H-9a), 1.27 (s, 3H, H-14), 1.14 (d, *J* = 7.6 Hz, 3H, H-15); ¹³C NMR (125 MHz, CDCl₃) δ 178.0 (C-19), 171.8 (C-16), 170.2 (C-12), 146.9 (C-5), 139.4 (C-11), 122.2 (C-3), 121.2 (C-6), 81.9 (C-1), 75.4 (C-8), 39.3 (C-9), 38.8 (C-7), 37.2 (C-10), 37.1 (C-4), 29.4 (C-3), 29.3 (C-17), 29.0 (C-18), 23.2 (C-2), 22.6 (C-14), 22.3 (C-15); HRMS (ESI): *m/z* calcd for C₁₉H₂₅O₆ [M+H]⁺ 349.16456, found 349.16519.

The General Procedure for the Synthesis of Derivative 5

NaBH₄ (1.2 mmol) was added to a solution of 1 β -hydroxy alantolactone (1) (0.3 mmol) in anhydrous THF (5 mL). The solution was stirred vigorously. The reaction was completed after ~2 h using TLC detection, and 1 M HCl (2 mL) solution was added to quench the reaction. The mixture was extracted with CH₂Cl₂, washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified via silica column chromatography with EtOAc/PE (3:1)

Derivative 5: White powder. $[\alpha]_D^{30} = -15.7^\circ$ (*c* 0.31 in MeOH); ¹H NMR (500 MHz, CDCl₃) δ 5.27 (d, *J* = 3.1 Hz, 1H, H-6), 4.77 (dt, *J* = 5.6, 2.7 Hz, 1H, H-8), 3.27 (dd, *J* = 11.7, 3.9 Hz, 1H, H-1), 3.00 (m, *J* = 8.7, 5.6, 3.2 Hz, 1H, H-7), 2.92–2.84 (m, 1H, H-11), 2.55 (dd, *J* = 14.8, 3.3 Hz, 1H, H-9b), 2.49–2.39 (m, 1H, H-4), 1.89–1.78 (m, 1H, H-2b), 1.67–1.58 (m, 2H, H-2a, H-9a), 1.54 (dt, *J* = 14.7, 2.8 Hz, 2H, H-3), 1.23 (d, *J* = 7.4 Hz, 3H, H-13), 1.22 (s, 3H, H-14), 1.12 (d, *J* = 7.6 Hz, 3H, H-15); ¹³C NMR (125 MHz, CDCl₃) δ 179.0 (C-12), 149.4 (C-5), 117.6 (C-6), 80.8 (C-1), 76.3 (C-8), 40.5 (C-11), 39.7 (C-7), 38.6 (C-9), 38.5 (C-10), 38.2 (C-4), 29.8 (C-3), 26.1 (C-2), 23.1 (C-14), 21.9 (C-15), 10.6 (C-13); ESI-MS: *m/z* 522.92 [2M+Na]⁺.

General Procedure for the Synthesis of Derivative 6

To a solution of newly-made *p*-methylbenzaldoxime chloride (0.105 mmol) and **2** (0.1 mmol) in CH₂Cl₂ (3 mL), Et₃N (0.125 mmol) at 0 °C was added. The resulting mixture was stirred at room temperature for 12 h. The solvent was evaporated in vacuo and the residue was purified via silica column chromatography with (EtOAc/PE) as eluent to provide compounds **6**.

Derivative 6: White powder. $[\alpha]_D^{30} = +208.7^\circ$ (*c* 0.28 in MeOH); ¹H NMR (500 MHz, CDCl₃): δ 7.59 (d, J = 8.2 Hz, 2H, H-19, H-19'), 7.23 (d, J = 7.9 Hz, 2H, H-18, H-18'), 5.34 (d, J = 3.4 Hz, 1H, H-6), 5.19 (m, J = 5.3, 2.8 Hz, 1H, H-8), 3.68 (d, J = 17.0 Hz, 1H, H-13a), 3.49 (d, J = 17.0 Hz, 1H, H-13b), 3.10-3.06 (m, 1H, H-7), 2.76–2.66 (m, 2H, H-2a, H-4), 2.52 (dd, J = 15.6, 3.6 Hz, 1H, H-9a),2.39 (s, 3H, H-20-Me), 2.24 (m, J = 16.2, 9.4, 4.9 Hz, 1H, H-2b), 2.02–1.94 (m, 1H, H-3a), 1.90 (dd, J = 15.6, 2.6 Hz, 1H, H-9b), 1.82–1.75 (m, 1H, H-3b), 1.45-1.41 (m, 3H, H-14), 1.30 (d, J = 7.3 Hz, 3H, H-15); ¹³C NMR (125 MHz, CDCl₃): δ 212.5 (C-1), 173.0 (C-12), 156.4 (C-16),

149.9 (C-5), 141.2 (C-20), 129.6 (C-17), 126.9 (C-19, C-19'), 125.6 (C-18, C-18'), 116.2 (C-6), 89.6 (C-11), 76.4 (C-8), 47.2 (C-10), 43.0 (C-7), 37.0 (C-13), 36.6 (C-4), 35.5 (C-2), 33.8 (C-9), 28.2 (C-3), 28.1 (C-14), 23.7 (C-15), 21.5 (C-20-Me); HRMS (ESI): m/z calcd for C₂₃H₂₆NO₄ [M+H]⁺ 380.18563, found 380.18564; calcd for C₄₆H₅₁N₂O₈ [2M+H]⁺ 759.36399, found 759.36407; HPLC: t_R = 39.0 min, purity = 95.1% @ 270 nm, 0-100% methanol in water for 50 min.

Spectral data for derivatives **2–6**: NMR Spectra and HRESI-MS

S7

HRMS (ESI) m/z calcd for C₁₇H₂₃O₄ (M+H)⁺ 291.15909, found 291.15909.

S8

¹H NMR (500 MHz, CDCl₃)

HRMS (ESI) m/z calcd for $C_{19}H_{25}O_6$ (M+H)⁺ 349.16456, found 349.16519.

HRMS (ESI) m/z calcd for $C_{15}H_{23}O_3$ (M+H)⁺ 251.16417, found 251.16432.

HRMS (ESI) *m/z* calcd for $C_{23}H_{26}NO_4^+(M+H)^+$ 380.18563, found 380.18564; calcd for $C_{46}H_{51}N_2O_8^+(2M+H)^+$ 759.36399, found 759.36407.

1: Purity 96.1%, $t_R = 11.9$ min at 215 nm by RP-HPLC using 50% methanol in water.

2: Purity 97.0%, $t_R = 10.2$ min at 230 nm by RP-HPLC using 50% methanol in water.

3: Purity 95.2%, $t_R = 12.8$ min at 210 nm by RP-HPLC using 60% methanol in water.

4: Purity 95.4%, $t_R = 23.1$ min at 210 nm by RP-HPLC using a 50 min gradient from 0% to 100% of methanol in water.

5: Purity 98.5%, $t_R = 34.4$ min at 210 nm by RP-HPLC using 50 min gradient from 0% to 100% of methanol in water.

6: Purity 95.1%, $t_R = 39.0$ min at 270 nm by RP-HPLC using 50 min gradient from 0% to 100% of methanol in water.