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Abstract: Chiral N-protected α-amino aryl-ketones are one of the useful precursors used in the
synthesis of various biologically active compounds and can be constructed via Friedel–Crafts
acylation of N-protected α-amino acids. One of the drawbacks of this reaction is the utilization
of toxic, corrosive and moisture-sensitive acylating reagents. In peptide construction via amide bond
formation, N-hydroxysuccinimide ester (OSu), which has high storage stability, can react rapidly
with amino components and produces fewer side reactions, including racemization. This study
reports the first synthesis and utilization of N-trifluoroacetyl (TFA)-protected α-amino acid-OSu as a
potential acyl donor for Friedel–Crafts acylation into various arenes. The TFA-protected isoleucine
derivative and its diastereomer TFA-protected allo-isoleucine derivative were investigated to check
the retention of α-proton chirality in the Friedel–Crafts reaction. Further utilization of OSu in other
branched-chain and unbranched-chain amino acids results in an adequate yield of TFA-protected
α-amino aryl-ketone without loss of optical purity.

Keywords: N-hydroxysuccinimide ester; Friedel–Crafts acylation; α-amino acid; α-amino
aryl-ketone; racemization

1. Introduction

Chiral N-protected α-amino aryl-ketone are usually used as a precursor in the synthesis of various
biologically active compounds [1,2]. The most favorable strategy to synthesize α-amino aryl-ketone is by
Friedel–Crafts acylation [3,4] of arenes, which is known as a reliable method that results in satisfactory
product yields [5] and can utilize convenient optically pure α-amino acid derivatives as skeletons [6].
The α-amino acid chloride [1,2,7,8] is widely used as an acyl donor to undergo Friedel–Crafts acylation
due to its reactivity. However, this acyl donor is unstable, sensitive to moisture and difficult to handle [9].
Therefore, it should be used instantly and cannot be stored. In some case, α-amino acid chloride
utilization also cannot prevent the chirality [1,9]. Moreover, α-amino acid anhydride can be employed
as an acylating agent and can be used to obtain the α-amino aryl-ketone without the N-protecting group.
Unfortunately, α-amino acid anhydride only shows reactivity for electron-rich arene acyl acceptor [10]
and needed to be prepared by using a toxic gas, such as phosgene or triphosgene [11]. Since α-amino
acid anhydride consists of two possible α-amino acids, one of the unacylated molecules will be wasted
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during the reaction. Recently, N-protected N-(α-aminoacyl)benzotriazole has been reported to acylate
benzene by using Lewis acid [12]. Despite this N-acylbenzotriazole being more convenient to handle
compared to α-amino acid chloride, only a moderate yield of α-aminoacyl phenyl-ketone can be
synthesized. However, the preparation of N-protected N-(α-aminoacyl)benzotriazole [12–14] was
conducted under in situ conditions, which indicated that its isolation takes more effort.

N-hydroxysuccinimide ester (OSu) derivatives of α-amino acids have high storage stability [15]
and have enough reactivity with amino components under moderate conditions. OSu modified in
α-amino acid derivatives are adequately commercially available, which indicate that it would be a
convenient reagent in peptide synthesis. The OSu modified in α-amino acid is also known to facilitate
peptide synthesis as a good alkoxy-leaving group in the early 1950s [16]. This utility indicated that
OSu derivatives may act as an acyl donor for the Friedel–Crafts reaction. In peptide construction,
it is known to produce fewer side reactions, including racemization. The Friedel–Crafts acylation of
electron-rich arene (ferrocene and pyrene) with N-hydroxysuccinimidyl of benzoic or p-methoxybenzoic
acid is previously reported, which is activated by superacidic trifluoromethanesulfonic acid [17].
Until now, no study has reported the use of α-amino acid-OSu as a representative skeleton for direct
Friedel–Crafts acylation. In this work, the synthesis and properties of a potential acyl donor for
Friedel–Crafts acylation, namely N-trifluoroacetyl (TFA)-protected α-amino acid-OSu, are described.
We demonstrated the utility of optically active isoleucine, which has two chiral centers in the molecules,
and its diastereomer allo-isoleucine to identify chilarity of the Friedel–Crafts acylation product’s
α-proton by nuclear magnetic resonance (NMR). The application of α-amino acid-OSu derivatives for
synthesis of TFA-protected α-amino aryl-ketone is assumed to retard its chirality which might act as a
potential acyl donor for the Friedel–Crafts acylation.

2. Results and Discussion

L-Isoleucine is known to have the ability to undergo epimerization at the α-position to produce
D-allo-isoleucine. As for chiral N-protected α-amino aryl-ketone synthesis, especially the reaction
involving direct acylation of α-amino acids, the product’s chirality is commonly determined by
complexation with a chiral shift reagent [7]. This racemic α-amino aryl-ketone can be detected by
the appearance of two separated proton signals by NMR. Up to now, there is no reported study
that has checked the chirality of the TFA-protected α-amino aryl-ketone based on isoleucine and its
diastereomer allo-isoleucine. Since the asymmetric carbon at α-position within these stereoisomers can
be detected by 1H-NMR [18], utilization within isoleucine and its diastereomer allo-isoleucine (four
types of stereoisomers; Figure 1) might be useful in describing a change in configuration of their chiral
center during the chemical modification.

Initially in our study, the corresponding amino group of optical active L-/D-isoleucine and
L-/D-allo-isoleucine underwent TFA protection by using ethyl trifluoroacetate in the presence of
triethylamine in methanol [19,20] to generate TFA-L-/D-Ile (L-/D-1a) and TFA-L-/D-allo-Ile (L-/D-2a;
Figure 1a; see Supplementary Materials Scheme SM-1 and Table SM-1). The optically active L-/D-1a
and L-/D-2a show nonequivalence signals arising from epidemically related α-proton (Figure 1b).
The comparison between L-/D-1a (δ = 4.68 ppm) and its diastereomer L-/D-2a (δ = 4.76 ppm) show
the chemical shift differences of α-proton appearance at 1H-NMR, which is suggested as a sufficient
method for checking the epimerization during the reaction. In this study, the protection by TFA is
preferred due to its stability in the presence of Lewis acid, which is an essential reagent for conventional
Friedel–Crafts acylation, compared with most carbamate-based protecting groups, such as t-butyl
(BOC), benzyl (Cbz) or fluorenylmethyloxycarbonyl (Fmoc). The optically active L-/D-1a and L-/D-2a
was transformed into TFA-L-/D-Ile-OSu (L-/D-1b) and TFA-L-/D-allo-Ile-OSu (L-/D-2b) within 3 h
at room temperature by utilization of 1.1 equiv. NHS (N-hydroxysuccinimide) and 1.0 equiv. of
WSCD-HCl (water soluble carbodiimide hydrochloride) in CH2Cl2 (Figure 1a). The characterization of
L-/D-1b and L-/D-2b by 1H-NMR can serve the purpose for checking the chirality preservation [18]
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during the modification or reaction process, of which only the α-proton signal of L-/D-1b in 1H-NMR
(δ = 4.97 ppm, Figure 1c) can be observed. No trace of L-/D-2b (δ = 5.10 ppm) was detected (Figure 1c).
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2a); (c) Selected 1H-NMR of L-/D-1b and L-/D-2b; (d) Selected 1H-NMR of TFA-L-/D-Ile-Ph (L-/D-1c) and 
TFA-L-/D-allo-Ile-Ph (L-/D-2c). (Full NMR data was available in Supplementary Materials Scheme SM-2). 
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Figure 1. Synthesis and application of TFA-L-/D-Ile-OSu (L-/D-1b) and TFA-L-/D-allo-Ile-OSu
(L-/D-2b). (a) Synthesis of L-/D-1b and L-/D-2b and its application for acylation of benzene
by conventional Friedel–Crafts conditions; (b) Selected 1H-NMR of TFA-L-/D-Ile (L-/D-1a) and
TFA-L-/D-allo-Ile (L-/D-2a); (c) Selected 1H-NMR of L-/D-1b and L-/D-2b; (d) Selected 1H-NMR
of TFA-L-/D-Ile-Ph (L-/D-1c) and TFA-L-/D-allo-Ile-Ph (L-/D-2c). (Full NMR data was available in
Supplementary Materials Scheme SM-2).

The L-/D-1b and L-/D-2b are stable for storage at −20 ◦C for more than six months and can
be readily used as an acyl donor to undergo Friedel–Crafts acylation into benzene. The preliminary
study for the variance of the proportion of AlCl3 utilized for the acylation of L-1b into benzene is
shown at 70 ◦C (Table 1, Entries 1–3). Less than 3 equiv. of AlCl3 did not result in any Friedel–Crafts
product (Table 1, Entries 1–2). Therefore, utilization of 6 equiv. AlCl3 is suitable for acylation in
which only Friedel–Crafts product of TFA-L-Ile-Ph (L-1c) was obtained with a good yield within
2 h (Table 1, Entry 3). Based on 1H-NMR (Figure 1d), the chiral center at α-position of L-/D-1c at
δ = 5.60 ppm clearly shows no appearance of any nonequivalence signals, which contribute to D-2c
(δ = 5.74 ppm). This indicates that either L-/D-1c or its diastereomer is different in chiral center only
at the α-position of L-/D-2c and it shows no epimerization after the acylation. Compared with the
acylation of aryl N-hydroxysuccinimide ester derivatives and electron-rich arenes, such as ferrocene
and pyrene [17], L-/D-1b and L-/D-2b are reactive in relatively electron-poor acyl acceptors of benzene
when conventional AlCl3 is used. Thus, the activation is not necessary under harsh conditions, such
as utilization of super acidic trifluoromethanesulfonic acid [5,6]. Moreover, L-/D-1b and L-/D-2b
can dissolve well in benzene and thus, no solvent is needed for the reaction system. In comparison,
the reported N-protected N-(α-aminoacyl)benzotriazole, which was previously used as an acyl donor
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for the Friedel–Crafts reaction, showed low solubility for the selected acyl acceptor and utilized
CH2Cl2 as the solvent [12]. However, when isoleucine derivative and its diastereomer allo-isoleucine
derivative are utilized for checking the chiral center by 1H-NMR, it can offer a simple analysis that
is able to comprehensively examine all the processes of TFA-protected α-amino acid-OSu synthesis
as the acyl donor of Friedel–Crafts acylation. To support our understanding, the optical rotation
of all corresponding L-/D-α-amino acid derivatives was also conducted for checking the retention
of α-proton chirality during the process. Moreover, based on our finding of α-protons in 1H-NMR
(Figure 1d), it appears that the acylium ion formation of the common Friedel–Crafts intermediate
successfully retarded the α-proton chirality.

Table 1. Friedel–Craft reaction of TFA-L-Ile-OSu (L-1b) and benzene with various Lewis acids.
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Entry Lewis acid
(equiv.) Time TFA-L-Ile-Ph

(L-1c, % Yield) a

1 AlCl3 (1.5) 3 day N.R. b

2 AlCl3 (3) 9 h N.R. c

3 AlCl3 (6) 2 h 86
4 SnCl2 (6) 7 day ≤ N.R. d

5 ZnCl2 (6) 7 day ≤ N.R. d

6 FeCl3 (6) 2 day N.R. d

7 TiCl4 (6) 1 day N.R. d

8 GaCl3 (6) 2 h 4 c,e

9 InCl3 (6) 2 h N.R. b

a N.R. stands for no reaction. b Starting material of TFA-L-Ile-OSu (L-1b) was retained. c A complex mixture was
recovered. d Hydrolysis is preferred rather than acylation. TFA-L-Ile (L-1a) was recovered. e Calculated from
1H-NMR.

The screening of Lewis acid utilization for acylation of L-1b into benzene has been examined.
When the conventional catalyst AlCl3 (Table 1, Entry 3) was replaced with other common Lewis acids
(Table 1, Entries 4–7) under the same reaction conditions (6 equiv. Lewis acid was used at 70 ◦C),
instead of desired product formation, we found that hydrolysis occurred and L-1a was detected after
quenching the reaction mixture. The other metal halide of GaCl3 contributed to the acylation of the
result in L-1c (Table 1, Entry 8). Compared with GaCl3, InCl3 showed the lowest reactivity due to the
starting material of L-1b being recovered after the reaction mixture was quenched (Table 1, Entry 9).
However, although the L-1c was produced from acylation utilized by GaCl3 and showed retention
of α-proton chirality, the chemical yield of the desired α-amino phenyl-ketone is far less than that
produced with the reaction utilizing AlCl3. If excess AlCl3 were used, the Lewis acid apparently will
coordinate to the most basic site [21] (the carbonyl oxygen atoms of OSu and N-acyl groups) and
Friedel–Crafts acylation can take place to result in a high yield of the desired product. Therefore, AlCl3
is preferred to undergo the reaction due to its high reactivity and also the fact that it has a considerably
lower cost that brings economic benefits.

For further applications of α-amino acid-OSu as a potential acyl donor that can be easily activated
by the conventional Friedel–Craft catalyst of AlCl3, we tried to use L-1b in acylation reactions to
convert it into various arenes (Scheme 1). L-1b reacted with arenes when 6 equiv. AlCl3 was added for
3 h. TFA-L-Ile-Ar (L-1d–L-1h) was produced with a high yield. The acylation into electron-donating
arenes, such as toluene, anisole, and m-xylene mainly occurs at a less hindered position (ratio of
p- and o-position for compound L-1d, L-1e, L-1g is 5:1, 18:1 and 11:1, respectively). From 1H-NMR
(see Supplementary Materials Scheme SM-2), only the α-proton signal of desired L-1d–L-1h can be
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observed which implies that there is no other diastereomer showing the α-proton chirality retention
of TFA-protected α-amino aryl-ketone. Unlike TFA-protected α-amino acid-OSu that can utilize
various commercially available acyl acceptors, Weinreb amides (N-methoxy-N-methylamides) [22]
(popular methods for the synthesis of α-amino aryl-ketones [23]) are considerably less efficient for
direct acylation due to limitation of Grignard or organolithium reagents, which sometimes need to be
synthesized before use. Moreover, the limited study of TFA-protected α-amino aryl-ketone synthesis
during the last decade is due to the extremely basic condition of the Weinreb amides system, in which
carbamate-based protected α-amino acid is preferred to undergo the reaction.
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AlCl3 to result in TFA-L-Ile-Ar (L-1d–L-1h).

Other natural and unnatural α-amino acids are subjected to Friedel–Crafts reactions (Scheme 2).
glycine and optically pure alanine, valine, and leucine, norvaline, and norleucine were protected
by TFA to result in TFA-protected α-amino acid (3a, L-/D-4a–L-/D-8a) and directly converted
into TFA-protected α-amino acid-OSu (3b, L-/D-4b–L-/D-8b; see Supplementary Materials Scheme
SM-1). Next, conventional Friedel–Craft conditions are applied for the acylation of TFA-protected
α-amino acid-OSu (3b, L-/D-4b–L-/D-8b) with benzene to produce TFA-protected α-amino acid-Ph
(3c, L-/D-4c–L-/D-8c, Scheme 2). In the previous study, TFA N-(α-aminoacetyl)benzotriazole was
reported to be converted to acylate benzene when using AlCl3 with CH2Cl2 as a solvent at 20 ◦C for
3 h, and produced a moderate yield of α-aminoacetyl phenyl-ketone (63% yield) [12]. In comparison,
TFA-L-/D-Ala-OSu (L-/D-4b) utilization can result in a high yield of TFA-L-/D-Ala-Ph (L-/D-4c,
82–85%, Scheme 2) at 70 ◦C for 2 h. Unlike reaction acylation with TFA N-(α-aminoacyl)benzotriazole
that needs CH2Cl2 as a solvent, L-/D-4b can be easily dissolved in excess benzene. Thus, it implies
that the reaction is more efficient and produces considerably less organic solvent waste. Moreover,
L-/D-4b can also cause the acylation of benzene at room temperature for 36 h to result in a high yield
(L-/D-4c 78–84%, Scheme 2), which ensured its reactivity as a potential acyl donor for this reaction.

In this study, the introduction of two pure enantiomers of L- and D-α-amino acids showed
identical optical rotation with the opposite sign after being modified into TFA-protected α-amino
acid-OSu and utilized as potential acyl donors to synthesize TFA-protected α-amino aryl-ketone.
Hence, the construction of either TFA-protected α-amino acid-OSu or its application for acylation
under Friedel–Craft conditions shows the retention of α-proton chirality. In line with the utilization of
L-/D-isoleucine and its diastereomer L-/D-allo-isoleucine that showed no epimerization during the
modification, TFA-protected α-amino acid-OSu is applicable for various α-amino acids and can broadly
be used for the various syntheses of important biologically active intermediates for vast applications.
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Scheme 2. Synthesis and application of TFA-α-Amino Acid-OSu (3b, L-/D-4b–L-/D-8b). a Utilization
of dimethylformamide as solvent and 1.0 equiv. N-hydroxysuccinimide (NHS). The reaction was
conducted at room temperature for 1 h. b WSCD-HCl was directly added into the reaction and the
reaction mixture was directly washed by sat. NaCl to purify the product. c Utilization of 1.1 equiv.
WSCD-HCl at 0 ◦C. d Reaction at room temperature for 36 h. e Calculated from 1H-NMR.

3. Materials and Methods

3.1. General Procedures

All reagents used were of analytical grade. FTIR spectra were recorded on a FT-IR 4100
spectrometer (JASCO, Tokyo, Japan). NMR spectra were measured by an EX 270 spectrometer (JEOL,
Tokyo, Japan). Optical rotations were measured at 23 ◦C on a JASCO DIP370 polarimeter (JASCO,
Tokyo, Japan). HRMS-ESI spectra were obtained with a Waters UPLC ESI-TOF mass spectrometer
(Waters, Milford, CT, USA).

3.2. General Procedure for the Preparation of TFA-α-Amino Acid

The procedure was based on that of previous studies [19,20] with slight modifications.
The corresponding amino groups of α-amino acid underwent TFA protection by using ethyl
trifluoroacetate in the presence of triethylamine in methanol to generate TFA-α-amino acid
(L-/D-1a–L-/D-2a, 3a, L-/D-4a–L-/D-8a; see Supplementary Materials Scheme SM-1).

3.3. General Procedure for the Preparation of TFA-α-Amino Acid N-Hydroxysuccinimide Ester

NHS (N-hydroxysuccinimide, 1.1 equiv.) was added to a solution of TFA-α-amino acid
(L-/D-1a–L-/D-2a, 3a, L-/D-4a–L-/D-8a, 1.0 mmol) in pre-cooled CH2Cl2 (10 mL). The suspension
of WSCD-HCl (water soluble carbodiimide hydrochloride, 1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide monohydrochloride, 1.0 equiv.) in CH2Cl2 (10 mL) was added drop-wise at 0 ◦C
and the reaction was stirred for 2–4 h. The solvent was removed by rotary evaporation. The residue
that remained was dissolved in ethyl acetate; washed with water, sat. NaHCO3, sat. NaCl, dried over
MgSO4, and then evaporated. The product was solidified by washing with hexane to be used for
further reaction.
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(2S,3S)-2,5-Dioxopyrrolidin-1-yl 3-methyl-2-(2,2,2-trifluoroacetamido)pentanoate (TFA-L-Ile-OSu, L-1b) [24]:
Colorless amorphous mass. [α]D = −4.0 (c 1.0, CHCl3). IR (neat) ν: 3265, 2965, 1785, 1740 cm−1.
1H-NMR (270 MHz, CDCl3) δ: 7.41 (d, J = 8.6 Hz, 1H, NH), 4.97 (dd, J = 8.6, 5.3 Hz, 1H, CHNH), 2.89
(s, 4H, 2 × CH2), 2.23–2.08 (m, 1H, CHCH3), 1.75–1.60 (1H, m, CH2CH3), 1.45–1.29 (1H, m, CH2CH3),
1.11 (d, J = 6.9 Hz, 3H, CHCH3), 1.02 (t, J = 7.4 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3)
δ: 168.5 (2 × CO), 166.3, 156.9 (q, 2JCF = 38.4 Hz), 115.5 (q, 1JCF = 287.9 Hz), 55.3, 38.0, 25.5 (2 × CH2),
24.7, 14.8, 11.3 ppm. HRMS-ESI (m/z) [M + Na]+ calcd for C12H15F3N2O5Na 347.0831, found 347.0822.

(2R,3R)-2,5-Dioxopyrrolidin-1-yl 3-methyl-2-(2,2,2-trifluoroacetamido)pentanoate (TFA-D-Ile-OSu, D-1b):
Colorless amorphous mass. [α]D = +4.0 (c 1.0, CHCl3). IR (neat) ν: 3285, 2968, 1789, 1731 cm−1.
1H-NMR (270 MHz, CDCl3) δ: 6.97 (d, J = 8.2 Hz, 1H, NH), 4.97 (dd, J = 8.6, 4.9 Hz, 1H, CHNH), 2.86
(s, 4H, 2 × CH2) 2.20–2.05 (m, 1H, CHCH3), 1.71–1.56 (m, 1H, CH2CH3), 1.41–1.21 (m, 1H, CH2CH3),
1.07 (d, J = 6.9 Hz, 3H, CHCH3), 1.00 (t, J = 7.4 Hz, 3H, CH2CH3) ppm. 13C NMR (67.5 MHz, CDCl3)
δ: 168.7 (2 × CO), 166.2, 156.9 (q, 2JCF = 38.2 Hz), 115.5 (q, 1JCF = 287.5 Hz), 55.3, 37.7, 25.4 (2 × CH2),
24.6, 14.7, 11.1 ppm. HRMS-ESI (m/z) [M + Na]+ calcd for C12H15F3N2O5Na 347.0831, found 347.0833.

(2S,3R)-2,5-Dioxopyrrolidin-1-yl 3-methyl-2-(2,2,2-trifluoroacetamido)pentanoate (TFA-L-allo-Ile-OSu,
L-2b): Colorless amorphous mass. [α]D = −4.0 (c 1.0, CHCl3). IR (neat) ν: 3316, 2929, 1788, 1752
cm−1. 1H-NMR (270 MHz, CDCl3) δ: 7.06 (d, J = 9.2 Hz, 1H, NH), 5.10 (dd, J = 9.2, 4.0 Hz, 1H,
CHNH), 2.86 (s, 4H, 2 × CH2), 2.31–2.15 (m, 1H, CHCH3), 1.54–1.41 (m, 1H, CH2CH3), 1.37–1.23 (m,
1H, CH2CH3), 1.05 (d, J = 6.9 Hz, 3H, CHCH3), 1.00 (t, J = 7.4 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5
MHz, CDCl3) δ: 168.4 (2 × CO), 166.8, 157.0 (q, 2JCF = 38.2 Hz), 115.5 (q, 1JCF = 287.7 Hz), 54.1, 38.2,
25.9, 25.5 (2 × CH2), 14.1, 11.6 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C12H16F3N2O5 325.1011,
found 325.1013.

(2R,3S)-2,5-Dioxopyrrolidin-1-yl 3-methyl-2-(2,2,2-trifluoroacetamido)pentanoate (TFA-D-allo-Ile-OSu,
D-2b): Colorless amorphous mass. [α]D = +4.0 (c 1.0, CHCl3). IR (neat) ν: 3327, 2971, 1752 cm−1.
1H-NMR (270 MHz, CDCl3) δ: 7.07 (d, J = 9.2 Hz, 1H, NH), 5.10 (dd, J = 9.1, 4.1 Hz, 1H, CHNH), 2.86
(s, 4H, 2 × CH2), 2.28–2.17 (m, 1H, CHCH3), 1.57–1.39 (m, 1H, CH2CH3), 1.37–1.22 (m, 1H, CH2CH3),
1.05 (d, J = 6.9 Hz, 3H, CHCH3), 1.00 (t, J = 7.4 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ:
168.7 (2 × CO), 166.7, 157.1 (q, 2JCF = 38.2 Hz), 115.5 (q, 1JCF = 287.3 Hz), 54.1, 37.9, 25.8, 25.4 (2 × CH2),
14.0, 11.4 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C12H16F3N2O5 325.1011, found 325.1014.

2,5-Dioxocyclopentyl 2-(2,2,2-trifluoroacetamido)acetate (TFA-Gly-OSu, 3b) [25]: Colorless amorphous
mass. IR (neat) ν: 3313, 2998, 1690 cm−1. 1H-NMR (270 MHz, CD3OD) δ: 4.44 (s, 2H, CH2NH), 2.84
(s, 4H, 2 × CH2) ppm. 13C NMR (67.5 MHz, ACETONE-d6) δ: 170.1 (2 × CO), 165.7 158.2 (q, 2JCF =
37.4 Hz), 116.8 (q, 1JCF = 287.0 Hz), 39.5, 26.2 (2 × CH2) ppm. HRMS-ESI (m/z) [M + H]+ calcd for
C8H7F3N2O5Na 291.0205, found 291.0208.

(S)-2,5-Dioxopyrrolidin-1-yl 2-(2,2,2-trifluoroacetamido)propanoate (TFA-L-Ala-OSu, L-4b): Colorless
amorphous mass. [α]D = −46 (c 1.0, CHCl3). IR (neat) ν: 3332, 2999, 1793, 1734 cm−1. 1H-NMR
(270 MHz, CDCl3) δ: 7.39 (d, J = 7.3 Hz, 1H, NH), 5.08–4.97 (m, 1H, CHCH3), 2.86 (s, 4H, 2 × CH2),
1.68 (d, J = 7.3 Hz, 3H, CHCH3) ppm. 13C NMR (67.5 MHz, CDCl3) δ: 168.8 (2 × CO), 167.4, 156.8 (q,
2JCF = 38.4 Hz), 115.6 (q, 1JCF = 287.2 Hz), 46.7, 25.5 (2 × CH2), 17.6 ppm. HRMS-ESI (m/z) [M + H]+

calcd for C9H10F3N2O5 283.0542, found 283.0555.

(R)-2,5-Dioxopyrrolidin-1-yl 2-(2,2,2-trifluoroacetamido)propanoate (TFA-D-Ala-OSu, D-4b): Colorless
amorphous mass. [α]D = +46 (c 1.0, CHCl3). IR (neat) ν: 3350, 2999, 1798, 1726 cm−1. 1H-NMR
(270 MHz, CDCl3) δ: 7.73 (d, J = 7.6 Hz, 1H, NH), 5.05–4.94 (m, 1H, CHCH3), 2.85 (s, 4H, 2 × CH2),
1.66 (d, J = 7.3 Hz, 3H, CHCH3) ppm.13C NMR (67.5 MHz, CDCl3) δ: 169.0 (2 × CO), 167.1, 156.8 (q,
2JCF = 38.2 Hz), 115.4 (q, 1JCF = 287.3 Hz), 46.7, 25.4 (2 × CH2), 17.1 ppm. HRMS-ESI (m/z) [M + H]+ calcd
for C9H10F3N2O5 283.0542, found 283.0553.



Molecules 2017, 22, 1748 8 of 14

(S)-2,5-Dioxopyrrolidin-1-yl 3-methyl-2-(2,2,2-trifluoroacetamido)butanoate (TFA-L-Val-OSu, L-5b) [24]:
Colorless amorphous mass. [α]D = −22 (c 1.0, CHCl3). IR (neat) ν: 3310, 2979, 1796, 1725 cm−1.
1H-NMR (270 MHz, CD3Cl3) δ: 7.49 (d, J = 8.9 Hz, 1H, NH), 4.88 (dd, J = 8.7, 5.4 Hz, 1H, CHNH),
2.84 (s, 4H, 2 × CH2), 2.47–2.34 (m, 1H, CHCH3), 1.08 (d, J = 6.9 Hz, 6H, 2 × CH3) ppm. 13C-NMR
(67.5 MHz, CDCl3) δ: 168.9 (2 × CO), 166.1, 157.1 (q, 2JCF = 38.2 Hz), 115.5 (q, 1JCF = 287.5 H), 55.9,
31.2, 25.4 (2 × CH2), 18.3, 17.2 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C11H14F3N2O5 311.0855,
found 311.0858.

(R)-2,5-Dioxopyrrolidin-1-yl 3-methyl-2-(2,2,2-trifluoroacetamido)butanoate (TFA-D-Val-OSu, D-5b):
Colorless amorphous mass. [α]D = +22 (c 1.0, CHCl3). IR (neat) ν: 3298, 2975, 1725 cm−1. 1H-NMR
(270 MHz, CD3Cl3) δ: 6.93 (d, J = 8.6 Hz, 1H, NH), 4.95 (dd, J = 8.9, 4.9 Hz, 1H, CHNH), 2.87 (s, 4H, 2 ×
CH2), 2.53–2.35 (m, 1H, CHCH3), 1.09 (d, J = 6.9 Hz, 6H, 2 × CH3) ppm. 13C-NMR (67.5 MHz, CDCl3)
δ: 168.4 (2 × CO), 166.4, 157.0 (q, 2JCF = 38.0 Hz), 115.5 (q, 1JCF = 287.7 Hz), 55.9, 31.7, 25.5 (2 × CH2),
18.4, 17.2 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C11H14F3N2O5 311.0855, found 311.0857.

(S)-2,5-Dioxopyrrolidin-1-yl 4-methyl-2-(2,2,2-trifluoroacetamido)pentanoate (TFA-L-Leu-OSu, L-6b) [24]:
Colorless amorphous mass. [α]D = −42 (c 1.0, CHCl3). IR (neat) ν: 3295, 2967, 1734, 1712 cm−1.
1H-NMR (270 MHz, CD3Cl3) δ: 6.86 (d, J = 8.6 Hz, 1H, NH), 5.04 (td, J = 8.9, 4.9 Hz, 1H, CHNH),
2.86 (s, 4H 2 × CH2), 2.00–1.72 (m, 3H, CH2CH), 1.02 (d, J = 2.3 Hz, 3H, CH3), 1.00 (d, J = 2.3 Hz, 3H,
CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ 168.6 (2 × CO), 167.2, 156.9 (q, 2JCF = 38.2 Hz), 115.5 (q,
1JCF = 287.7 Hz), 49.3, 41.0, 25.5 (2 × CH2), 24.7, 22.6, 21.5 ppm. HRMS-ESI (m/z) [M + Na]+ calcd for
C12H15F3N2O5Na 347.0831, found 347.0832.

(R)-2,5-Dioxopyrrolidin-1-yl 4-methyl-2-(2,2,2-trifluoroacetamido)pentanoate (TFA-D-Leu-OSu, D-6b):
Colorless amorphous mass. [α]D = +42 (c 1.0, CHCl3). IR (neat) ν: 3305, 2965, 1733, 1719 cm−1.
1H-NMR (270 MHz, CD3Cl3) δ: 6.97 (br s, 1H, NH), 5.05 (td, J = 8.7, 4.9 Hz, 1H), 2.86 (s, 4H, 2 × CH2),
2.00–1.74 (m, 3H, CH2CH), 1.03–0.98 (m, 6H, 2 × CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 168.6
(2 × CO), 167.2, 156.9 (q, 2JCF = 38.2 Hz), 115.5 (q, 1JCF = 287.7 Hz), 49.3, 41.0, 25.5 (2 × CH2), 24.7, 22.6,
21.5 ppm. HRMS-ESI (m/z) [M + Na]+ calcd for C12H15F3N2O5Na 347.0831, found 347.0830.

(S)-2,5-Dioxopyrrolidin-1-yl 2-(2,2,2-trifluoroacetamido)pentanoate (TFA-L-Nva-OSu, L-7b): Colorless
amorphous mass. [α]D = −27 (c 1.0, CHCl3). IR (neat) ν: 3325, 2962, 1744, 1711 cm−1. 1H-NMR
(270 MHz, CDCl3) δ: 6.83 (d, J = 7.3 Hz, 1H, NH), 5.03 (td, J = 8.0, 5.5 Hz, 1H, CHNH), 2.87 (s, 4H,
2 × CH2), 2.17–2.02 (m, 1H, CHCH2), 1.99–1.85 (m, 1H, CHCH2), 1.59–1.40 (m, 2H, CH2CH3), 1.01 (t,
J = 7.3 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 168.6 (2 × CO), 166.9, 156.9 (q, 2JCF =
38.0 Hz), 115.5 (q, 1JCF = 287.7 Hz), 50.7, 34.0, 25.5 (2 × CH2), 18.2, 13.3 ppm. HRMS-ESI (m/z) [M +
H]+ calcd for C11H14F3N2O5 311.0855, found 311.0856.

(R)-2,5-Dioxopyrrolidin-1-yl 2-(2,2,2-trifluoroacetamido)pentanoate (TFA-D-Nva-OSu, D-7b): Colorless
amorphous mass. [α]D = +27 (c 1.0, CHCl3). IR (neat) ν: 3322, 2962, 1744, 1711 cm−1. 1H-NMR
(270 MHz, CDCl3) δ: 7.11 (d, J = 8.2 Hz, 1H, NH), 5.02 (td, J = 8.1, 5.4 Hz, 1H, CHNH), 2.86 (s, 4H, 2 ×
CH2), 2.15–2.01 (m, 1H, CHCH2), 1.98–1.84 (m, 1H, CHCH2), 1.60–1.43 (m, 2H, CH2CH3), 1.00 (t, J =
7.3 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 168.6 (2 × CO), 166.9, 156.9 (q, 2JCF = 38.2
Hz), 115.5 (q, 1JCF = 287.9 Hz), 50.7, 34.0, 25.5 (2 × CH2), 18.2, 13.3 ppm. HRMS-ESI (m/z) [M + H]+

calcd for C11H14F3N2O5 311.0855, found 311.0861.

(S)-2,5-Dioxopyrrolidin-1-yl 2-(2,2,2-trifluoroacetamido)hexanoate (TFA-L-Nle-OSu, L-8b): Colorless
amorphous mass. [α]D = −18 (c 1.0, CHCl3). IR (neat) ν: 3332, 2958, 1721, 1703 cm−1. 1H-NMR
(270 MHz, CDCl3) δ: 7.34 (d, J = 8.2 Hz, 1H, NH), 4.98 (td, J = 8.2, 5.3 Hz, 1H, CHNH), 2.85 (s, 4H,
2 × CH2), 2.16–2.03 (m, 1H, CHCH2), 1.99–1.85 (m, 1H, CHCH2), 1.52–1.32 (m, 4H, 2 × CH2), 0.93 (t,
J = 7.1 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 168.8 (2 × CO), 166.8, 156.9 (q, 2JCF =
38.2 Hz), 115.5 (q, 1JCF = 287.7 Hz), 50.8, 31.5, 26.9, 25.4 (2 × CH2), 21.9, 13.5 ppm. HRMS-ESI (m/z) [M
+ H]+ calcd for C12H16F3N2O5 325.1011, found 325.1021.



Molecules 2017, 22, 1748 9 of 14

(R)-2,5-Dioxopyrrolidin-1-yl 2-(2,2,2-trifluoroacetamido)hexanoate (TFA-D-Nle-OSu, D-8b): Colorless
amorphous mass. [α]D = +18 (c 1.0, CHCl3). IR (neat) ν: 3324, 2958, 1724, 1708 cm−1. 1H-NMR
(270 MHz, CDCl3) δ: 6.89 (br s, 1H, NH), 5.01 (td, J = 7.8, 5.5 Hz, 1H, CHNH), 2.87 (s, 4H, 2 × CH2),
2.18–2.04 (m, 1H, CHCH2), 2.00–1.86 (m, 1H, CHCH2), 1.52–1.36 (m, 4H, 2 × CH2), 0.94 (t, J = 7.1 Hz,
3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 168.6 (2 × CO), 166.9, 156.9 (q, 2JCF = 38.4 Hz),
115.5 (q, 1JCF = 287.3 Hz), 50.8, 31.7, 26.8, 25.5 (2 × CH2), 21.9, 13.6 ppm. HRMS-ESI (m/z) [M + H]+

calcd for C12H16F3N2O5 325.1011, found 325.1016.

3.4. General Procedure for the Preparation of TFA-Protected α-Amino Aryl-Ketones

TFA-α-amino acid-OSu (L-/D-1b–L-/D-2b, 3b, L-/D-4b–L-/D-8b, 0.9–1.6 mmol) was suspended in
arene. Into the suspension, pulverized AlCl3 (6 equiv.) was added and then stirred at a temperature of
70 ◦C. The reaction was monitored by the consumption of starting material on TLC. Then, the mixture
was poured into an ethyl acetate-H2O two-phase system to quench the reaction. The organic layer was
washed with H2O, sat. NaCl, dried over MgSO4, and then evaporated. The crude product was purified
by silica column chromatography (ethyl acetate/hexane 1:3 L-/D-1c, L-/D-2c, 3c, and L-/D-4b–L-/D-8b;
and diethyl ether/hexane 1:6 L-/D-1d–L-/D-1h).

2,2,2-Trifluoro-N-((2S,3S)-3-methyl-1-oxo-1-phenylpentan-2-yl)acetamide (TFA-L-Ile-Ph, L-1c): Colorless
needles. [α]D = +70 (c 2.0, CHCl3). IR (neat) ν: 3317, 3073, 2972, 1722, 1694 cm−1. 1H-NMR (270 MHz,
CDCl3) δ: 7.97 (d, J = 7.4 Hz, 2H, Ar-H), 7.66 (t, J = 7.4 Hz, 1H, Ar-H), 7.53 (t, J = 7.4 Hz, 2H, Ar-H), 5.60
(dd, J = 8.6, 4.3 Hz, 1H, CHNH), 2.10–1.95 (m, 1H, CHCH3), 11.40–1.25 (m, 1H, CH2CH3), 1.12–0.95
(m, 4H, overlap CH2CH3 and CHCH3), 0.82 (t, J = 7.3 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz,
CDCl3) δ: 197.5, 157.1 (q, 2JCF = 37.4 Hz), 134.7, 134.3, 129.0 (2 × CH), 128.7 (2 × CH), 115.9 (q, 1JCF =
288.1 Hz), 58.4, 38.7, 23.7, 16.2, 11.4 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C14H17F3NO2 288.1211,
found 288.1212.

2,2,2-Trifluoro-N-((2R,3R)-3-methyl-1-oxo-1-phenylpentan-2-yl)acetamide (TFA-D-Ile-Ph, D-1c): Colorless
needles. [α]D = −70 (c 2.0, CHCl3). IR (neat) ν: 3337, 3069, 2969, 1721, 1699 cm−1. 1H-NMR (270 MHz,
CDCl3) δ: 7.98 (d, J = 7.6 Hz, 2H, Ar-H), 7.66 (t, J = 7.6 Hz, 1H, Ar-H), 7.53 (t, J = 7.6 Hz, 2H, Ar-H),
5.60 (dd, J = 8.6, 4.0 Hz, 1H, CHNH), 2.10–1.95 (m, 1H, CHCH3), 1.40–1.23 (m, 1H, CH2CH3), 1.12–0.95
(m, 4H, overlap CH2CH3 and CHCH3), 0.82 (t, J = 7.3 Hz, 3H, CH2CH3) ppm.13C-NMR (67.5 MHz,
CDCl3) δ: 197.5, 157.1 (q, 2JCF = 37.2 Hz), 134.7, 134.3, 129.0 (2 × CH), 128.7 (2 × CH), 115.9 (q, 1JCF =
288.3 Hz), 58.4, 38.7, 23.7, 16.2, 11.4 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C14H17F3NO2 288.1211,
found 288.1215.

2,2,2-Trifluoro-N-((2S,3S)-3-methyl-1-oxo-1-(p-tolyl)pentan-2-yl)acetamide (TFA-L-Ile-Ph(4-Me), L-1d):
Colorless needles. [α]D = +83 (c 1.0, CHCl3). IR (neat) ν: 302, 3023, 2925, 1700 cm−1. 1H-NMR
(270 MHz, CDCl3) δ: 7.87 (d, J = 8.2 Hz, 2H, Ar-H), 7.32 (d, J = 8.6 Hz, 2H, Ar-H), 5.56 (dd, J = 8.6, 4.3
Hz, 1H, CHNH), 2.45 (s, 3H, CH3), 2.06–1.95 (m, 1H, CHCH3), 1.39–1.26 (m, 1H, CH2CH3), 1.11–0.94
(m, 4H, overlap CH2CH3 and CHCH3), 0.82 (t, J = 7.3 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz,
CDCl3) δ: 197.0, 157.1 (q, 2JCF = 37.2 Hz), 145.5, 132.1 (2 × CH), 129.7 (2 × CH), 128.8, 115.9 (q, 1JCF
= 287.9 Hz), 58.3, 38.9, 23.7, 21.8, 16.2, 11.4 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C15H19F3NO2

302.1368 found 302.1353.

2,2,2-Trifluoro-N-((2S,3S)-1-(4-methoxyphenyl)-3-methyl-1-oxopentan-2-yl)acetamide (TFA-L-Ile-Ph(4-OMe),
L-1e): Colorless oil. [α]D = +66 (c 1.0, CHCl3). IR (neat) ν: 3320, 3079, 2934, 1726, 1675 cm−1. 1H-NMR
(270 MHz, CDCl3) δ: 7.96 (d, J = 8.9 Hz, 2H, Ar-H), 6.99 (d, J = 8.9 Hz, 2H, Ar-H), 5.53 (dd, J = 8.7, 4.5 Hz,
1H, CHNH), 3.90 (s, 3H, OCH3), 2.08–1.93 (m, 1H, CHCH3), 1.42-1.20 (m, 1H, CH2CH3), 1.10–0.95
(m, 4H, overlap CH2CH3 and CHCH3), 0.82 (t, J = 7.4 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz,
CDCl3) δ: 195.6, 164.5, 157.0 (q, 2JCF = 37.2 Hz), 131.1 (2 × CH), 127.5, 115.9 (q, 1JCF = 288.6 Hz), 114.2
(2 × CH), 58.0, 55.6, 39.0, 23.7, 16.2, 11.4 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C15H18F3NO3Na
340.1136 found 340.1145.
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N-((2S,3S)-1-(3,4-Dimethylphenyl)-3-methyl-1-oxopentan-2-yl)-2,2,2-trifluoroacetamide (TFA-L-Ile-Ph(3,4-Me),
L-1f): Colorless needles. [α]D = +82 (c 1.0, CHCl3). IR (neat) ν: 3343, 3075, 2979, 1742, 1691 cm−1.
1H-NMR (270 MHz, CDCl3) δ: 7.71 (d, J = 11.2 Hz, 2H, Ar-H), 7.29 (s, 1H, Ar-H), 5.56 (dd, J = 8.7,
4.1 Hz, 1H, CHNH), 2.35 (s, 6H, 2 × CH3), 2.06–1.95 (m, 1H, CHCH3), 1.40–1.26 (m, 1H, CH2CH3),
1.08–0.93 (m, 4H, overlap CH2CH3 and CHCH3), 0.81 (t, J = 7.4 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5
MHz, CDCl3) δ: 197.2, 157.1 (q, 2JCF = 37.2 Hz), 144.3, 137.6, 132.5, 130.2, 129.7, 126.5, 115.9 (q, 1JCF =
287.9 Hz), 58.3, 38.9, 23.7, 20.1, 19.8, 16.2, 11.4 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C16H21F3NO2

316.1524, found 316.1506.

N-((2S,3S)-1-(2,4-Dimethylphenyl)-3-methyl-1-oxopentan-2-yl)-2,2,2-trifluoroacetamide (TFA-L-Ile-Ph(2,4-Me),
L-1g): Colorless needles. [α]D = +49 (c 0.25, CHCl3). IR (neat) ν: 3294, 3097, 2969, 1714, 1685 cm−1.
1H-NMR (270 MHz, CDCl3) δ: 7.63 (d, J = 8.6 Hz, 1H, Ar-H), 7.14-7.02 (m, 2H, Ar-H), 5.49 (dd, J = 8.4,
4.1 Hz, 1H, CHNH), 2.49 (s, 3H, CH3), 2.38 (s, 3H, CH3), 1.99–1.87 (m, 1H, CHCH3), 1.32–1.19 (m, 1H,
CH2CH3), 1.07–0.87 (m, 4H, overlap CH2CH3 and CHCH3), 0.81 (t, J = 7.3 Hz, 3H, CH2CH3) ppm.
13C-NMR (67.5 MHz, CDCl3) δ: 199.9, 157.1 (q, 2JCF = 37.4 Hz), 143.2, 139.5, 133.3, 132.2, 129.4, 126.6,
115.9 (q, 1JCF = 288.3 Hz), 59.8, 38.5, 24.1, 21.2, 21.0, 15.9, 11.2 ppm. HRMS-ESI (m/z) [M + H]+ calcd
for C16H21F3NO2 316.1524, found 316.1526.

N-((2S,3S)-1-(2,5-Dimethylphenyl)-3-methyl-1-oxopentan-2-yl)-2,2,2-trifluoroacetamide (TFA-L-Ile-Ph(2,5-Me),
L-1h): Colorless needles. [α]D = +68 (c 1.0, CHCl3). IR (neat) ν: 3302, 3024, 2934, 1714, 1686, 1567 cm−1.
1H-NMR (270 MHz, CDCl3) δ: 7.5 (s, 1H, Ar-H), 7.3 (d, J = 7.6 Hz, 1H, Ar-H), 7.2 (d, J = 7.6 Hz, 1H,
Ar-H), 5.5 (dd, J = 8.6, 4.0 Hz, 1H, CHNH), 2.4 (s, 3H, CH3), 2.4 (s, 3H, CH3), 2.0–1.8 (m, 1H, CHCH3),
1.4–1.2 (m, 1H, CH2CH3), 1.1–0.9 (m, 3H overlap CH2CH3 and CHCH3), 0.8 (t, J = 7.3 Hz, 3H, CH2CH3)
ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 200.7, 157.1 (q, 2JCF = 37.2 Hz), 135.9, 135.6, 135.0, 133.3, 132.3,
129.3, 115.9 (q, 1JCF = 287.9 Hz), 60.1, 38.4, 24.1, 20.7, 20.3, 15.9, 11.3 ppm. HRMS-ESI (m/z) [M + H]+

calcd for C16H21F3NO2 316.1524, found 316.1530.

2,2,2-Trifluoro-N-((2S,3R)-3-methyl-1-oxo-1-phenylpentan-2-yl)acetamide (TFA-L-allo-Ile-Ph, L-2c): Colorless
needles. [α]D = +79 (c 2.0, CHCl3). IR (neat) ν: 3335, 3068, 2971, 1741, 1693 cm−1. 1H-NMR (270 MHz,
CDCl3) δ: 7.98 (d, J = 7.6 Hz, 2H, Ar-H), 7.65 (t, J = 7.6 Hz, 1H, Ar-H), 7.53 (t, J = 7.6 Hz, 2H, Ar-H), 5.74
(dd, J = 8.9, 3.0 Hz, 1H, CHNH), 2.09–1.94 (m, 1H, CHCH3), 1.62–1.49 (m, 1H, CH2CH3), 1.38–1.21 (m,
1H, CH2CH3), 1.06 (t, J = 7.3 Hz, 3H, CH2CH3), 0.76 (d, J = 6.9 Hz, 3H, CHCH3) ppm. 13C NMR (67.5
MHz, CDCl3) δ: 197.1, 157.3 (q, 2JCF = 37.1 Hz), 134.4, 134.0, 129.1 (2 × CH), 128.7 (2 × CH), 115.9 (q,
1JCF = 287.7 Hz), 57.1, 38.7, 27.3, 13.4, 12.0 ppm. HRMS-ESI (m/z) [M + Na]+ calcd for C14H16F3NO2Na
310.1031, found 310.1039.

2,2,2-Trifluoro-N-((2R,3S)-3-methyl-1-oxo-1-phenylpentan-2-yl)acetamide (TFA-D-allo-Ile-Ph, D-2c): Colorless
needles. [α]D = −79 (c 2.0, CHCl3). IR (neat) ν: 3331, 3067, 2969, 1738, 1692 cm−1. 1H-NMR (270 MHz,
CDCl3) δ: 7.98 (d, J = 7.4 Hz, 2H, Ar-H), 7.66 (t, J = 7.4 Hz, 1H, Ar-H), 7.53 (t, J = 7.4 Hz, 2H, Ar-H), 5.74
(dd, J = 8.7, 2.8 Hz, 1H, CHNH), 2.07–1.94 (m, 1H, CHCH3), 1.66–1.48 (m, 1H, CH2CH3), 1.38–1.21 (m,
1H, CH2CH3), 1.06 (t, J = 7.3 Hz, 3H, CH2CH3), 0.76 (d, J = 6.9 Hz, 3H, CHCH3) ppm. 13C-NMR (67.5
MHz, CDCl3) δ: 197.1, 157.3 (q, 2JCF = 37.4 Hz), 134.4, 134.1, 129.1 (2 × CH), 128.7 (2 × CH), 115.9 (q,
1JCF = 287.9 Hz), 57.1, 38.7, 27.3, 13.4, 12.0 ppm. HRMS-ESI (m/z) [M + Na]+ calcd for C14H16F3NO2Na
310.1031, found 310.1040.

2,2,2-Trifluoro-N-(2-oxo-2-phenylethyl)acetamide (TFA-Gly-Ph, 3c) [2]: Colorless oil. IR (neat) ν: 3327,
3103, 2927, 1733, 1703 cm−1. 1H-NMR (270 MHz, CDCl3) δ: 7.99 (d, J = 7.4 Hz, 2H, Ar-H), 7.68 (t, J =
7.4 Hz, 1H, Ar-H), 7.54 (t, J = 7.4 Hz, 2H, Ar-H), 4.83 (d, J = 4.3 Hz, 2H, CH2NH) ppm. 13C NMR (67.5
MHz, CDCl3) δ: 192.1, 157.1 (q, 2JCF = 37.6 Hz), 134.6, 133.6, 129.1 (2 × CH), 127.9 (2 × CH), 115.7 (q,
1JCF = 287.3 Hz), 46.1 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C10H9F3NO2 232.0585, found 232.0595.

(S)-2,2,2-trifluoro-N-(1-oxo-1-phenylpropan-2-yl)acetamide (TFA-L-Ala-Ph, L-4c) [7,12,26]: Colorless oil.
= −7.0 (c 1.0, CHCl3). Lit. [26] [α]D = −8.6 (c 0.17, CHCl3). IR (neat) ν: 3331, 3070, 2991, 1738, 1701 cm−1.
1H-NMR (270 MHz, CDCl3) δ: 7.99 (d, J = 7.4 Hz, 2H, Ar-H), 7.67 (t, J = 7.4 Hz, 1H, Ar-H), 7.54 (t, J = 7.4



Molecules 2017, 22, 1748 11 of 14

Hz, 2H, Ar-H), 5.60–5.50 (m, 1H, CHCH3), 1.53 (d, J = 7.3 Hz, 3H, CHCH3) ppm.13C NMR (67.5 MHz,
CDCl3) δ: 197.0, 156.5 (q, 2JCF = 37.6 Hz), 134.5, 132.9, 129.1 (2 × CH), 128.8 (2 × CH), 115.7 (q, 1JCF =
287.3 Hz), 50.8, 19.2 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C11H11F3NO2 246.0742, found 246.0748.

(R)-2,2,2-Trifluoro-N-(1-oxo-1-phenylpropan-2-yl)acetamide (TFA-D-Ala-Ph, D-4c): Colorless oil. [α]D =
+7.0 (c 1.0, CHCl3). IR (neat) ν: 3337, 3091, 2948, 1725, 1700 cm−1. 1H-NMR (270 MHz, CDCl3) δ: 7.99
(d, J = 7.3 Hz, 2H, Ar-H), 7.67 (t, J = 7.4 Hz, 1H, Ar-H), 7.54 (t, J = 7.4 Hz, 2H, Ar-H), 5.60–5.49 (m,
1H, CHCH3), 1.53 (d, J = 6.9 Hz, 3H, CHCH3) ppm. 13C NMR (67.5 MHz, CDCl3) δ: 197.0, 156.5 (q,
2JCF = 37.6 Hz), 134.5, 132.9, 129.1 (2 × CH), 128.8 (2 × CH), 115.7 (q, 1JCF = 287.7 Hz), 50.8, 19.2 ppm.
HRMS-ESI (m/z) [M + H]+ calcd for C11H11F3NO2 246.0742, found 246.0750.

(S)-2,2,2-Trifluoro-N-(3-methyl-1-oxo-1-phenylbutan-2-yl)acetamide (TFA-L-Val-Ph, L-5c) [7]: Colorless oil.
[α]D = +83 (c 1.0, CHCl3). IR (neat) ν: 3347, 3071, 2972, 1728, 1679 cm−1. (270 MHz, CDCl3) δ: 7.99 (d, J
= 7.7 Hz, 2H, Ar-H), 7.66 (t, J = 7.7 Hz, 1H, Ar-H), 7.53 (t, J = 7.7 Hz, 2H, Ar-H), 7.32 (br s, 1H, NH),
5.61 (dd, J = 8.6, 4.0 Hz, 1H, CHNH), 2.39–2.23 (m, 1H, CHCH3), 1.07 (d, J = 6.9 Hz, 3H, CHCH3), 0.80
(d, J = 6.9 Hz, 3H, CHCH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 197.2, 157.3 (q, 2JCF = 37.6 Hz), 134.4,
129.1 (2 × CH), 128.7 (2 × CH), 115.9 (q, 1JCF = 287.7 Hz), 58.6, 32.2, 20.0, 16.4 ppm. HRMS-ESI (m/z)
[M + H]+ calcd for C13H15F3NO2 274.1055, found 274.1057.

(R)-2,2,2-Trifluoro-N-(3-methyl-1-oxo-1-phenylbutan-2-yl)acetamide (TFA-D-Val-Ph, D-5c): Colorless oil.
[α]D = −83 (c 1.0, CHCl3). IR (neat) ν: 3344, 3070, 2972, 1720, 1672 cm−1. 1H-NMR (270 MHz, CDCl3)
δ: 7.99 (d, J = 7.3 Hz, 2H, Ar-H), 7.66 (t, J = 7.3 Hz, 1H, Ar-H), 7.53 (t, J = 7.3 Hz, 2H, Ar-H), 7.30 (br
s, 1H, NH), 5.61 (dd, J = 8.7, 3.8 Hz, 1H, CHNH), 2.39–2.22 (m, 1H, CHCH3), 1.07 (d, J = 6.9 Hz, 3H,
CHCH3), 0.79 (d, J = 6.9 Hz, 3H, CHCH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 197.2, 157.3 (q, 2JCF =
36.7 Hz), 134.4, 129.1 (2 × CH), 128.7 (2 × CH), 115.9 (q, 1JCF = 287.7 Hz), 58.6, 32.1, 19.9, 16.3 ppm.
HRMS-ESI (m/z) [M + H]+ calcd for C13H15F3NO2 274.1055, found 274.1057.

(S)-2,2,2-Trifluoro-N-(4-methyl-1-oxo-1-phenylpentan-2-yl)acetamide (TFA-L-Leu-Ph, L-6c): Colorless oil.
[α]D = +26 (c 2.0, CHCl3). IR (neat) ν: 3334, 3092, 2963, 1726, 1683 cm−1. 1H-NMR (270 MHz, CDCl3) δ:
7.98 (d, J = 7.3 Hz, 2H, Ar-H), 7.66 (t, J = 7.4 Hz, 1H, Ar-H), 7.54 (t, J = 7.6 Hz, 2H, Ar-H), 5.68 (td, J =
8.9, 2.6 Hz, 1H, CHNH), 1.79–1.49 (m, 3H, CH2CH), 1.10 (d, J = 5.9 Hz, 3H, CHCH3), 0.89 (d, J = 6.3 Hz,
3H, CHCH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 197.4, 156.9 (q, 2JCF = 37.4 Hz), 134.4, 133.6, 129.1
(2 × CH), 128.7 (2 × CH), 115.8 (q, 1JCF = 287.7 Hz), 52.9, 42.7, 25.1, 23.3, 21.7 ppm. HRMS-ESI (m/z)
[M + H]+ calcd for C14H17F3NO2 288.1211, found 288.1214.

(R)-2,2,2-Trifluoro-N-(4-methyl-1-oxo-1-phenylpentan-2-yl)acetamide (TFA-D-Leu-Ph, D-6c): Colorless oil.
[α]D = −26 (c 2.0, CHCl3). IR (neat) ν: 3335, 3094, 2931, 1731, 1685 cm−1. 1H-NMR (270 MHz, CDCl3)
δ: 7.98 (d, J = 7.3 Hz, 2H, Ar-H), 7.66 (t, J = 7.3 Hz, 1H, Ar-H), 7.54 (t, J = 7.3 Hz, 2H, Ar-H), 5.68 (td,
J = 9.1, 2.5 Hz, 1H, CHNH), 1.79–1.53 (m, 3H, CH2CH), 1.10 (d, J = 5.9 Hz, 3H, CHCH3), 0.89 (d, J =
5.9 Hz, 3H, CHCH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 197.4, 156.9 (q, 2JCF =37.4 Hz), 134.4, 133.6,
129.1 129.1 (2 × CH), 128.7 129.1 (2 × CH), 115.8 (q, 1JCF = 287.7 Hz), 52.9, 42.6, 25.1, 23.2, 21.7 ppm.
HRMS-ESI (m/z) [M + H]+ calcd for C14H17F3NO2 288.1211, found 288.1220.

(S)-2,2,2-Trifluoro-N-(1-oxo-1-phenylpentan-2-yl)acetamide (TFA-L-Nva-Ph, L-7c): Colorless oil. [α]D =
+46 (c 1.0, CHCl3). IR (neat) ν: 3341, 3074, 2979, 1733 cm−1. 1H-NMR (270 MHz, CDCl3) δ: 7.98 (d, J =
7.3 Hz, 2H, Ar-H), 7.67 (t, J = 7.3 Hz, 1H, Ar-H), 7.54 (t, J = 7.3 Hz, 2H, Ar-H), 7.44 (br s, 1H, NH), 5.62
(td, J = 7.4, 4.5 Hz, 1H, CHNH), 2.08–1.95 (m, 1H, CHCH2), 1.76–1.62 (m, 1H, CHCH2), 1.48–1.17 (m,
2H, CH2CH3) 0.90 (t, J = 7.3 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 197.0, 156.8 (q,
2JCF = 37.1 Hz), 134.5, 133.6, 129.1 (2 × CH), 128.7 (2 × CH), 115.8 (q, 1JCF = 286.8 Hz), 54.4, 35.2, 18.0,
13.7 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C13H15F3NO2 274.1055, found 274.1064.

(R)-2,2,2-Trifluoro-N-(1-oxo-1-phenylpentan-2-yl)acetamide (TFA-D-Nva-Ph, D-7c): Colorless oil. [α]D =
−46 (c 1.0, CHCl3). IR (neat) ν: 3339, 3073, 2977, 1732 cm−1. 1H-NMR (270 MHz, CDCl3) δ: 7.99 (d, J =
7.4 Hz, 2H, Ar-H), 7.67 (t, J = 7.4 Hz, 1H, Ar-H), 7.54 (t, J = 7.4 Hz, 2H, Ar-H), 7.45 (br s, 1H, NH), 5.62
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(td, J = 7.3, 4.4 Hz, 1H, CHNH), 2.08–1.95 (m, 1H, CHCH2), 1.76–1.62 (m, 1H, CHCH2), 1.48–1.13 (m,
2H, CH2CH3), 0.90 (t, J = 7.3 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 197.0, 156.8 (q,
2JCF = 37.4 Hz), 134.5, 133.6, 129.1 (2 × CH), 128.7 (2 × CH), 115.8 (q, 1JCF = 288.3 Hz), 54.4, 35.2, 18.1,
13.7 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C13H15F3NO2 274.1055, found 274.1058.

(S)-2,2,2-Trifluoro-N-(1-oxo-1-phenylhexan-2-yl)acetamide (TFA-L-Nle-Ph, L-8c): Colorless oil. [α]D = +60
(c 0.5, CHCl3). IR (neat) ν: 3326, 3068, 2960, 1728, 1687 cm−1. 1H-NMR (270 MHz, CDCl3) δ: 7.98 (d, J =
7.4 Hz, 2H, Ar-H), 7.66 (t, J = 7.4 Hz, 1H, Ar-H), 7.53 (t, J = 7.4 Hz, 2H, Ar-H), 7.46 (br s, 1H, NH), 5.61
(td, J = 7.3, 4.6 Hz, 1H, CHNH), 2.12–1.98 (m, 1H, CHCH2), 1.77–1.63 (m, 1H, CHCH2), 1.41–1.15 (m,
4H, 2 × CH2), 0.83 (t, J = 6.9 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 197.0, 156.8 (q,
2JCF = 37.4 Hz), 134.4, 133.6, 129.0 (2 × CH), 128.6 (2 × CH), 115.8 (q, 1JCF = 287.7 Hz), 54.5, 32.7, 26.7,
22.2, 13.6 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C14H17F3NO2 288.1211, found 288.1224.

(R)-2,2,2-Trifluoro-N-(1-oxo-1-phenylhexan-2-yl)acetamide (TFA-D-Nle-Ph, D-8c): Colorless oil. [α]D = −60
(c 0.5, CHCl3). IR (neat) ν: 3327, 3069, 2961, 1732, 1691 cm−1. 1H-NMR (270 MHz, CDCl3) δ: 7.99 (d, J =
7.3 Hz, 2H, Ar-H), 7.67 (t, J = 7.3 Hz, 1H, Ar-H), 7.54 (t, J = 7.3 Hz, 2H, Ar-H), 7.47 (br s, 1H, NH), 5.61
(td, J = 7.3, 4.6 Hz, 1H, CHNH), 2.12–1.98 (m, 1H, CHCH2), 1.78–1.63 (m, 1H, CHCH2), 1.39–1.14 (m,
4H, 2 × CH2), 0.83 (t, J = 6.9 Hz, 3H, CH2CH3) ppm. 13C-NMR (67.5 MHz, CDCl3) δ: 197.0, 156.8 (q,
2JCF = 37.4 Hz), 134.4, 133.6, 129.1 (2 × CH), 128.6 (2 × CH), 115.8 (q, 1JCF = 287.7 Hz), 54.5, 32.7, 26.7,
22.2, 13.6 ppm. HRMS-ESI (m/z) [M + H]+ calcd for C14H17F3NO2 288.1211, found 288.1216.

4. Conclusions

Through the reaction of TFA-protected α-amino acid-OSu (L-/D-1b–L-/D-2b, 3b, L-/D-4b–
L-/D-8b) and arenes under conventional Friedel–Crafts conditions, it is more convenient to
synthesize chiral TFA-protected α-amino aryl-ketone (L-/D-1c–L-/D-2c, 3c, L-/D-4c–L-/D-8b) as its
skeleton can be synthesized from optically active material. The TFA-protected α-amino acid-OSu
(L-/D-1b–L-/D-2b, 3b, L-/D-4b–L-/D-8b) showed high reactivity and is easier to handle during the
reaction. The introduction of TFA-protected α-amino acid-OSu as a representative acyl donor can
broaden the utilization of various materials for the Friedel–Crafts reaction. These materials contribute
to new synthetic pathways and can be part of the comprehensive future study into their exploitation
in bio-organic synthesis.

Supplementary Materials: Analytical data for TFA-α-amino acids, optimization for synthesis of TFA-α-amino
acid-OSu, 1H- and 13C-NMR for all synthetic compounds are available online.
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