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Abstract: With the development of next generation sequencing techniques, it is fast and cheap to
determine protein sequences but relatively slow and expensive to extract useful information from
protein sequences because of limitations of traditional biological experimental techniques. Protein
function prediction has been a long standing challenge to fill the gap between the huge amount of
protein sequences and the known function. In this paper, we propose a novel method to convert
the protein function problem into a language translation problem by the new proposed protein
sequence language “ProLan” to the protein function language “GOLan”, and build a neural machine
translation model based on recurrent neural networks to translate “ProLan” language to “GOLan”
language. We blindly tested our method by attending the latest third Critical Assessment of Function
Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins
whose function was released after CAFA competition. The good performance on the training and
testing datasets demonstrates that our new proposed method is a promising direction for protein
function prediction. In summary, we first time propose a method which converts the protein function
prediction problem to a language translation problem and applies a neural machine translation model
for protein function prediction.

Keywords: protein function prediction; neural machine translation; machine learning

1. Introduction

With the wide application of next generation sequencing techniques, it takes a short time with
low cost to generate millions of protein sequences [1]. Understanding the properties (e.g., protein
function, protein structure) of each protein sequence becomes an urgent task, which not only helps
us better understanding their role in our life, but more importantly their potential biomedical and
pharmaceutical applications, such as drug discovery [2,3]. The traditional biological experimental
methods to determine a protein’s properties (e.g., protein function and structure) can be very slow
and also resource-demanding [3,4]. Moreover, sometimes it has the limitation that may not faithfully
reflect the protein’s activity in vivo [3,5]. Due to these limitations, the computation method that could
accurately and quickly predict protein function from its sequence is greatly desired. The computation
protein function prediction method can be used to fill the gap between the large amount of sequence
data and the unknown properties of these proteins.
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Protein function prediction is usually treated as a multi-label classification problem. Researchers
have tried different computation methods in the last few decades for this problem [6–12]. In general,
the following methods are used for protein function prediction.

The first and the most widely used method for protein function prediction is the Basic Local
Alignment Search Tool (BLAST) [13] used to search the query sequence against the existing protein
databases, which contain experimentally determined protein function information, and then use
these homologous proteins’ function information for the function prediction of the query sequence.
For example, the methods of Gotcha [14], OntoBlast [15], and Goblet [16]. Except for using the BLAST
tool, some methods use the tool PSI-BLAST [13] to find the remote homologous, such as the PFP
method [17].

The second includes network based methods. Most methods in this category use protein–protein
interaction networks for protein function prediction based on the assumption that interacted proteins
share similar functions [10,18–23]. Instead of protein–protein interaction networks, some methods use
other kind of networks for protein function prediction, such as gene–gene interaction network and
domain co-occurance networks [3,10,24].

The third is other information based methods. Some methods use protein structure or microarray
gene expression data [25–28] or combinations of different resources for protein function prediction [29–32].

The most challenging method is to directly use protein sequence without searching any database
or any other resource for protein function prediction. For this kind of methods, the machine learning
techniques are usually used to predict protein function from scratch. Currently most machine learning
methods use features generated from the protein sequences for model training, and use that model
to classify a number of function categories for an input sequence [33,34]. The most commonly used
features in these methods are protein sequence [35,36], protein secondary structure, hydrophobicity,
subcellular location, solvent accessibility, etc. For example, PANNZER and MS-kNN use the machine
learning method k-nearest neighbour to predict protein function [37]. SMISS uses an apriori algorithm
to mine the association rules for protein function prediction [3], whereas methods like SVMProt use the
machine learning method SVM for protein function prediction [38–40], and some methods use naïve
Bayes classifiers [41,42]. Except for the protein sequence, most other features are usually predicted
from the protein sequence, so more errors could be involved for these features and also for the final
protein function prediction.

The latest state-of-the-art machine learning method—deep learning which uses multiple layers
representation and abstraction of data has drastically improved the accuracy of speech-recognition,
visual object recognition, language translation, protein structure prediction, etc. [43–48]. For example,
Google developed its neural machine translation system based on Neural Machine Translation (NMT)
in November 2016 to increase accuracy in Google Translate [49]. It would be interesting to apply these
latest machine learning methods for the protein function prediction problem. Based on our knowledge,
currently there are very few methods that only use protein sequence without any additional features.
Researchers have tried to derive more features from protein sequence, and applied machine learning
techniques for the protein function prediction problem [50], but most methods have additional features
combined with protein sequence to prediction protein functions [3,37]. The reason is because protein
function prediction from sequence only is really challenging, there is no such kind of method that
achieves or is even close to the state-of-the-art performance. In addition, there is no method that
applies the state-of-the-art machine learning method Neural Machine Translation (NMT) for the protein
function prediction problem. In this work, we developed a novel method called ProLanGO, which
first converts the protein sequence and protein function into the “ProLan” and “GOLan” language,
respectively, and then builds the NMT model based on recurrent neural network to translate “ProLan”
to “GOLan” for the protein function prediction. Our new proposed method based on the ProLanGO
model provides a new way of predicting protein functions.

Despite the protein function prediction methods, how to test these methods is also important.
There is a worldwide experiment—the Critical Assessment of Function Annotation (CAFA,
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http://biofunctionprediction.org/) [2,51], which is designed to provide a large-scale unbiased
benchmarking of different protein function prediction methods to test their ability to predict protein
function on the same set of proteins within a specific time frame [2,51]. There are three stages for
CAFA: prediction phase, the organizer releases protein sequences with unknown or incomplete
function for collecting the submission of predictions (usually about four months); target accumulation
phase, waiting for the biological experiment to determine protein’s function (usually between 6 and
12 months); and analysis phase, the organizer evaluates and ranks the performance of different methods
based on their prediction on proteins whose function is known during the target accumulation phase.
Until now, three CAFA experiments have been conducted. The first CAFA (CAFA1) showed the good
performance of applying a machine learning method to integrate multiple sequence hits and data
types for protein function prediction. We have attended the third CAFA (CAFA3) in 2016 to blindly
test our method on a large scale of protein sequences to evaluate the performance of our model.

The rest of the paper is organized as follows. In Section 2, we describe some results on training
and testing datasets. In Section 3, we describe the data and detailed method to build and test our
method. In Section 4, we summarize our work and discuss the future directions.

2. Results and Discussions

2.1. Performance during Training of Neural Machine Translation Model

The overall flowchart of our method is shown in Figure 1. In the training step, we use 419,192
protein sequences to train the ProLanGO model and another 104,798 protein sequences as testing data
to evaluate the performance of our model. The perplexity has been used to evaluate the performance
of our language model ProLanGO on training datasets and testing datasets. Figure 2 shows how
the perplexity changes on training datasets and performance on testing datasets based on buckets.
The buckets are techniques used in RNN to efficiently handle protein sequences with different length,
which may not influence the performance too much. For our method, we select the bucket size based
on our analysis of protein sequences in the protein database so that it could handle most protein
sequences efficiently. We ran 300,000 steps for training, and the learning rate in the range of [0–1].
As we can see from the picture, the perplexity on training datasets is stable after 10,000 steps, and
the perplexity for each buckets on testing datasets is still fluctuating. The result of first 10,000 steps is
not included because RNN is not stable with few training steps and the perplexity is huge. Based on
the performance for every 200 steps, we finally select the model at step 78,400 (learning rate is 0.5472)
and 95,200 (learning rate is 0.5639) for the normal and extended neural machine translation model
respectively, and combine these two models as our final ProLanGO model for prediction.

2.2. Performance on Validation Dataset

We use the UnitProtKB database on 1 June 2016 to train and test our model and blindly tested
on around 100,000 protein sequences from CAFA3. Some of these protein sequences’ function has
been released later in UnitProtKB database, and we evaluate the performance of our model on those
proteins. We have not performed a homology search against the database, so part of the proteins
may have homologies in the database of 1 June 2016, and it may influence the evaluation. However,
this problem would be solved after CAFA officially release their evaluation later. In total, we find
332 proteins that are added after 1 June 2016. We propagate both real and predicted GO terms to the
root of the Gene Ontology Directed Acyclic tree structure as described in method section, and the
evaluation of precision and recall is described in method section.

http://biofunctionprediction.org/
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Figure 1. The flowchart of our method for protein function prediction. Three layers of RNN is used for
the NMT model.

Figure 2. (A) The accuracy during training process for NMT model; (B) The accuracy during training
process for extended NMT model. The x-axis represents the steps during the training, we scaled it by
dividing 10,000, and the first 10,000 steps are not shown in the figure since the perplexity is very big.

Figure 3 demonstrates that the NMT model achieves the relatively lower recall, and the
probabilistic based model achieves relatively higher recall. The reason is because NMT model makes
six predictions for most proteins, and the maximum number of predictions is 10, however, the
probabilistic based model makes more predictions than NMT. The extended NMT model gets relatively
higher performance compared to NMT model. The ProLanGO model, which is a combination of NMT
and extended NMT model, achieves better performance on both recall and precision. This result shows
that our ProLanGO model has potential to accurately predict protein function from sequences.
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Figure 3. Precision and recall of different methods on selected proteins. The top n metric is used, and
n is set to be 20. The area under curve (AUC) for NMT, extended NMT, ProLanGO, and Probability
based model is 0.286, 0.305, 0.333, and 0.390, respectively.

2.3. Comparison with Other Selected Methods on CAFA3

CAFA3 officially releases true functions for part of CAFA3 targets around 5 June 2017. In total,
674 targets’ BPO (Biological Process Ontology) function, 539 targets’ CCO (Cellular Component
Ontology), and 684 target’s MFO (Molecular Function Ontology) function are released. In order to
evaluate the effectiveness of our ProLanGO model in CAFA3 blind experiment, we compare the
performance with four state-of-the-art protein function prediction methods in CAFA2: the SMISS
model [3,52], PANNZER model [53], FANN-GO model [54], and DeepGO model [55]. The FANN-GO
and DeepGO model are both sequence-based protein function prediction methods, PANNZER is a
k-nearest neighbour method, and the SMISS model contains both sequence-based and network-based
predictions. We calculate the average GO similarities of all GO pairs between predicted and true GO
for each targets. The GO similarity is defined as the number of shared GO inner nodes divided by
the largest number of GO inner nodes when propagating predicted and true GO term in the Gene
Ontology Directed Acyclic tree. Figures 4 and 5 describe the performance of the ProLanGO model
and three different scores from the SMISS model, and also PANNZER model. Most protein function
prediction methods search against protein function databases, and very few of them try to predict
protein function from sequence only without using additional database information. The SEQ score
from SMISS model is only based on protein sequence, and the NETscore is based on protein–protein
and gene–gene interaction networks information. From this figure, we can see that our model achieves
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a better performance, on average, compared to the SEQ score from SMISS for most of the different
thresholds. At the same time, I also want to mention that the gap between sequence based protein
function prediction and methods using other information is still big. The MIS score from the SMISS
model only uses information from PSI-BLAST searches, and we can find out that the MIS score and
PANNZER have better performance comparing to our method. We mention that the average GO
similarity score between predicted and true for PANNZER is around 0 for a threshold more than
0.9—the reason could be that our target protein sequences from CAFA are not included in protein
sequence databases at the time of our submission. This issue would be solved later when these protein
sequences are annotated and added to the database. The result could be different than what we have
got after PANNZER updates their database. Our method achieves a similar performance based on
Threshold metrics compared to the DeepGO model, while DeepGO performs better than our method
for thresholds between 0.10 and 0.80. The FANN-GO model performs better than our method and
DeepGO for threshold larger than 0.10. A similar pattern has been observed based on Top n metrics in
Figure 5. However, our model doesn’t do especially well for the top one GO term prediction. This
is probably because of the lack of ranking GO terms predictions in RNN output. Some additional
information might be used in future to improve the ranking of GO terms in our model. Overall,
our model shows better performance than the SEQ score in SMISS model, but it also shows that our
method is not performing well for the prediction of top GO terms, which need to be improved in
future. Supplementary Table S4 describes additional resources for protein function prediction methods
that we have tried but not succeed because of the availability of these methods.
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Figure 5. Average GO similarities of ProLanGO and other methods on top n metric.

3. Methods

In this paper, we construct the method ProLanGO which uses a neural machine translation model
based on a recurrent neural network to predict protein function from protein sequence, and also we
construct a baseline method which uses probability theory as a comparison.

3.1. Data Preparation

The training data of our model comes from UniProtKB knowledge database [56] with the version
of 1 June 2016. We only consider Gene Ontology (GO) terms ID which are valid from the date of
1 June 2016. In total, 523,990 protein sequences and 42,819 GO terms are used to train our model.
We blindly test our method on CAFA3, which includes 130,787 protein sequences in 23 species.

3.2. Understanding Protein Sequence as a Language

Our assumption is that protein sequences are similar to human language; each protein sequence
can be represented as a sentence consisting of protein “words”. Proteins are composed of amino acids,
and we use 20 letters to represent each of 20 standard amino acids found in protein. Each protein
sequence is a string of these 20 letters, and we use to represent the set of these 20 letters. We let Ak be
k-mers or fragment with length k, which is a k-th cartesian power of A or a string of k letters from
A. The k-mers are considered as protein “word” [57–60]. The following algorithm has been used to
divide protein sequence into a set of k-mers or protein “word”:
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Step 1. Scan the whole training dataset - UniProtKB knowledge database to get a protein “word”
database, which includes all k-mers whose frequency fk is larger than 1,000, where k ∈ [3, 5].

Step 2. For each protein sequence s, we divide it into a set of protein “word” based on Step 1.
In this step, the longer protein “word” are preferred for matching, and each amino acid can only
belong to one protein “word”. If t continuous amino acids cannot match with any fragment from
Step 1, we let these continuous amino acids be a new protein “word” At, t ∈ [1, ∞).

We ranked all k-mers based on its frequency in training dataset, and the frequency of k-mers
ranked at 1000th is 47,802, 7167, 1232, 650, 565 for each k of three, four, five, six, and seven respectively.
We did not evaluate performance of k-mers with k larger than five, because low frequency in training
dataset for these large k could be less reliable. We have also tried to add six-mers and seven-mers
(the best loss on testing dataset is 8.62, 9.26, 8.59 for k ∈ [3–5], [3–6], and [3–7] respectively), and no
significant improvement has been found in our experiment. More details of our experiments are in
Supplementary Tables S1–S3.

3.3. Understanding Gene Ontology Terms as a Language

The traditional protein function prediction methods directly predict Gene Ontology (GO) terms
for a protein sequence. The GO terms are represented by GO term ID using a seven digit number
(e.g., GO:0000001), and these GO terms are used to form a directed acyclic tree structure based on the
relationship between each other (e.g., some GO terms are part-of other GO terms). There are three
trees to represent the GO terms in each of the three biological categories (Biology Process, Cellular
Component, Molecular Function). The traditional GO term ID does not considered the relationship
between each GO term (e.g., GO:0015772 is a GO:2001088, but it is not reflected from the GO ID).
Moreover, it needs seven digits to describe a GO term. In this paper, we describe a new way to encode
GO terms, and consider the encoded GO terms as a new language to describe functions of proteins.

We do a depth-first search (DFS) on Biological Process, Cellular Component, and Molecular
Function tree respectively, and assign the 26-base Alphabet number to each GO term as a new ID
(Alphabet ID). For example, GO:0008150 is the root of Biological Process (BP) tree, and there are 28,678
GO terms in BP tree, so GO:0008150 is the number 28,678th node to be visited by DFS, and we can
convert 10-base number 28,678 to 26-base Alphabet ID: BQKZ. In theory, a four letter Alphabet ID
can represent 264 GO terms, which is more than the current total number of GO terms. In summary,
the new Alphabet ID has a maximum length of four, and considers the relationship of GO terms in the
Gene Ontology tree. For a protein with multiple functions (GO terms), we simply convert each GO
term to a Alphabet ID, and the order of these Alphabet IDs is based on the order of the respective GO
term from the UniProtKB knowledge database (See Figure 1).

3.4. ProLanGO Model by Neural Machine Translation Based on Recurrent Neural Network

In the previous sections, we convert protein sequences into a new language based on the protein
“word” generated from UniProtKB database; we call it the “ProLan” language. Also, the functions of
each protein are converted into a new language based on the Alphabet ID, we let it be the “GOLan”
language (See Figure 1). We now convert the protein function prediction problem into a language
translation problem. The neural machine translation model based on two recurrent neural networks is
used to solve the language translation problem [61,62]. The first recurrent neural network encodes a
sentence in “ProLan” into vectors of fixed length, and the second recurrent neural network decodes
the representation into a sentence of “GOLan”. The encoder and decoder RNN are trained together
to maximize the conditional probability of “GOLan” sentence given “ProLan” sentence. In general,
there are two multi-label classification methods [63]: problem transformation methods and algorithm
adaptation methods. Our method based on RNN is one type of problem transformation method.
The RNN could be considered as a chain of repeating modules of a neural network, and each
neural network is used to handle a single-label classification problem by outputting a “word” in a



Molecules 2017, 22, 1732 9 of 14

“GOLan” sentence. In another word, our method is suitable for protein function prediction (multi-label
classification problem) by transforming it into several single-label classification problems and solving
each of them with a module of a neural network in RNN. In addition, the attention mechanism [64] is
used in the system to align and translate jointly, which would be helpful to solve the problem when
the “ProLan” sentence is relatively long, because it would be difficult for encoder RNN to convert a
long “ProLan” sentence into a fixed length of vector.

There are in total 420,127 different protein “words” in “ProLan”, and 25,160 different Alphabet
IDs in “GOLan”. In order to simplify the training and decoding complexity with this big “ProLan”
and “GOLan” data, we use sampled softmax [65] based on importance sampling which samples on a
small subset of the target “GOLan” Alphabet ID for decoding. In addition, the bucketing and padding
technique is used to efficiently handle “ProLan” and “GOLan” with different length L1 and L2. We use
a number of buckets and a special symbol PAD to pad each “ProLan” and “GOLan” into the buckets.
The following buckets have been used:

buckets = [(64, 3), (109, 4), (164, 6), (300, 10)].

The buckets are used to improve the efficiency of RNN. For example, let’s assume there are three
protein “words” in a ProLan sentence and four outputs in a GOLan sentence, then the length for input
(L1) is three, and the length for output (L2) is four. Even though the input length L1 can fit the first
bucket (64, 3), the output length L2 is larger than the output limit three for the first bucket. In this case,
we finally use the second bucket (109, 4), and add special symbol PAD to fill the rest so that the input
length L1 would be 109, and output length L2 would be four. Figure 1 illustrates the overall flowchart
of our method. In order to decide the upper and lower bounds for buckets, we analyze the number
of input “words” and outputs from ProLan sentences and GOLan sentences in the training data sets.
This bounds number is selected so that there are a similar number of data falling into each bucket for
training data sets.

It should be mentioned here that the maximum number of outputs is 10, based on the bucketing
and padding technique, which means we can predict a maximum of 10 GO term functions for each
protein sequence. Some proteins may contain more than 10 functions and in order to solve this problem,
we add an extended NMT model. For this extended NMT model, we still keep the same “ProLan”
language, and change a little bit of the “GOLan” language. For the GO terms of the protein in the
training dataset, we add all descendants of each of the GO terms in the directed acyclic tree to extend
the sentence in “GOLan” language. The same NMT framework is used except the following buckets
are used instead:

buckets = [(64, 25), (164, 50), (250, 60)]

In this extended NMT model, the maximum number of function prediction could be 60, which
is big enough for most proteins. As we could imagine, the new added descendants could be less
accurate especially when the descendant is much deeper from the real GO term in the tree structure.
A decreased rate is added to each new added descendant GO term, so that the one far away from the
original true GO term would have lower score.

Finally, the ProLanGO model is a combination of the NMT and extended NMT model by giving
different weights for each model based on their performance on training data.

The prediction part is straightforward, for each protein sequence, we first convert it to a “ProLan”
sentence, and then applied the trained neural machine translation model to translate the “ProLan”
sentences to “GOLan” sentences and extended “GOLan” sentences. Finally, we apply the ProLanGO
model to combine these predicted “GOLan” sentences and convert these “GOLan” sentences back to
GO terms by a simple mapping.

3.5. Baseline Method on Probability Theory

In order to benchmark our neural machine translation model for protein function prediction,
we create a benchmark method which applies simple probability theory to make the protein function
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prediction. Let x be the fragments vectors from the “ProLan” space, and y be the Alphabet ID for all
possible protein functions. Here, x is a vector [x1,x2,...,xn], and the n is decided by the total number of
fragments generated for each protein sequence. Here, y is a vector [y1, y2, . . . , ym] and m is the total
number GO terms. We use the following probability theory to calculate the probability of each yj given
the x generated for each protein sequence:

P(x1, x2, ..., xn) = 1−∏n
i=1(1− P(yj|xi))

P(yj|xi) is calculated from the UniProtKB knowledge database by counting the frequency of yj in
all proteins with xi

3.6. Evaluation Method

We evaluate the performance of different methods based on precision and recall of top n
predictions ranked by the confidence score of predictions. Here the n is in the range of 1 and 10.
The precision and recall are calculated by the following formula:

Precision = totalnumbero f correctedpredictions
totalnumbero f GOpredictions

Recall = totalnumbero f correctedpredictions
totalnumbero f trueGOterms

The true GO terms are determined by biological experiment for each protein and here we simply
use the UnitProtKB database to extract the true GO terms for each protein. We propagate all true and
predicted GO terms to the root of Gene Ontology Directed Acyclic tree structure, and any propagated
GO term predictions that exist in the path of true GO terms to the root are considered to be correct.
The top n metric is used for the evaluation, which pick n GO term predictions based on the confidence
score to calculate the precision and recall.

4. Conclusions

In this paper, we propose a novel language model ProLanGO for the protein function prediction
problem. We first convert protein sequences into a language space “ProGO” based on the frequency of
k-mers on around 500,000 protein sequences, and also encode Gene Ontology terms into a language
space “LanGO”. It uses at most four letters to represent a GO term, while the relationship of these
GO terms in Gene Ontology Directed Acyclic Graph is considered during the translation. In addition,
we convert the protein function prediction problem to a language translation problem which is on
the new proposed language space, and apply the state-of-the-art Neural Machine Translation Model
based on the recurrent neural network to predict protein function. We evaluate the performance of our
ProLanGO model and also compare it with another probability based model proposed by us. The result
shows that our ProLanGO model (Combination of NMT and extended NMT model) achieves better
performance compared to the NMT and extended NMT model on both recall and precision, and similar
performance are achieved compared to the probability based model. We also compare with four
other state-of-the-art protein function prediction methods, and our methods show better performance
than the SEQ score from SMISS model, but there is still a big gap between our method and the top
homologous based method. There are 332 proteins selected by us for the evaluation, but more proteins
with real functions would be released later , and the official evaluation result from CAFA will also be
released. We could rigorously evaluate our method at that time and compare our method with other
protein function prediction methods.

In general, we propose a new method for protein function prediction. We compare our method
with four state-of-the-art protein function prediction methods. The good performance of our model
ProLanGO demonstrates the potential application for protein function prediction problem. There are
a lot of improvements that can be done in future. For example, the cross-validation can be included
in the training part to improve the reliability of the ProLanGO model. Also, in the Prolan language,
we use the frequency of k-mers while the k in the range of three and five is used, the accuracy could
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be improved by a larger k. In addition, instead of using the frequency of k-mers, a more biologically
fragment could be used to divide the protein sequences, such as using a fragment of binding site for a
protein. For the bucketing technique, different sizes for each bucket could be tested to additionally
improve the performance. The GO terms predicted by our model could be ranked by using other
information. Finally, it will be very interesting to see how the order of these k-mers improve the
performance.

Supplementary Materials: Supplementary materials are available online. Table S1: The loss on training, testing
dataset and training steps for k in range of 3 and 5, Table S2: The loss on training, testing dataset and training
steps for k in range of 3 and 6, Table S3: The loss on training, testing dataset and training steps for k in range of 3
and 7, Table S4: Reference papers of protein function prediction methods that are not used in this manuscript.
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