
 

Molecules 2017, 22, 1716; doi:10.3390/molecules22101716 www.mdpi.com/journal/molecules 

Article 

Validation of Molecular Dynamics Simulations for 
Prediction of Three-Dimensional Structures of  
Small Proteins 
Koichi Kato 1,2, Tomoki Nakayoshi 1,3, Shuichi Fukuyoshi 3, Eiji Kurimoto 1 and Akifumi Oda 1,3,4,* 

1 Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya,  
Aichi 468-8503, Јapan; 144331503@ccalumni.meijo-u.ac.jp (K.K.);  
ray-sc76@stu.kanazawa-u.ac.jp (T.N.); kurimoto@meijo-u.ac.jp (E.K.) 

2 Department of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya,  
Aichi 463-8521, Japan 

3 Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University,  
Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; fukuyosi@p.kanazawa-u.ac.jp 

4 Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan 
* Correspondence: oda@meijo-u.ac.jp; Tel.: +81-52-832-1151 

Received: 20 September 2017; Accepted: 10 October 2017; Published: 12 October 2017 

Abstract: Although various higher-order protein structure prediction methods have been 
developed, almost all of them were developed based on the three-dimensional (3D) structure 
information of known proteins. Here we predicted the short protein structures by molecular 
dynamics (MD) simulations in which only Newton’s equations of motion were used and 3D 
structural information of known proteins was not required. To evaluate the ability of MD 
simulationto predict protein structures, we calculated seven short test protein (10–46 residues) in 
the denatured state and compared their predicted and experimental structures. The predicted 
structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD 
simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were 
larger than those for Trp-cage. However, secondary structures could be reproduced by MD 
simulations for proteins with 10–34 residues. Simulations by replica exchange MD were performed, 
but the results were similar to those from normal MD simulations. These results suggest that normal 
MD simulations can roughly predict short protein structures and 200-ns simulations are frequently 
sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural 
prediction method using only fundamental physical laws are useful for investigating non-natural 
proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems. 

Keywords: molecular dynamics simulation; protein structure prediction; replica exchange 
molecular dynamics; secondary structure 

 

1. Introduction 

Various methods for precise three-dimensional (3D) protein structure prediction have been 
developed [1–3]. Homology modeling, in which 3D structural models are generated from known 
experimental homologue protein structures, can provide high precision structural models for drug 
discovery applications [4,5]. Even when the structure of a homolog is not available, structural 
modeling is possible using protein threading and ab initio protein modeling [2,6]. Iterative Threading 
ASSEmbly Refinement (I-TASSER) is one of the most successful protein structure prediction  
methods [7,8]. This method requires detection of structural templates from the Protein Data Bank 
(PDB) by threading. In Phyre2, another well-known protein structure prediction method, secondary 
structures are predicted on the basis of amino acid sequences, and then loops are created to connect 
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the structural motifs [9]. These methods are used for proteins consisting of approximately 20 natural 
amino acids (Magic 20) because the structural information of existing proteins is used. For 3D 
structural predictions of non-natural proteins, such as those with amino acid residues other than the 
Magic 20 and/or very short proteins, these prediction methods frequently fail to construct 3D 
structures. For example in SWISS-MODEL [10], the target sequence must be >30 residues, and 
predictions for shorter sequences are not possible. In addition, these structure prediction methods 
are inappropriate for generating conformer sets for short proteins or peptides because these methods 
can generate only a limited number of structures. In a typical case, only one structural model is 
obtained for one input protein sequence. Even if the set of conformations were generated, the 
conformational tendency based on statistical mechanics ensembles would not be evaluated. For short 
protein structure predictions, PEP-FOLD is a well-known successful method; however, this approach 
requires known protein structures for constructing structure fragments and cannot be used for 
peptides with D-amino acids or unusual amino acids [11,12]. The proteins containing D-amino acids 
and/or β-amino acids can result in the protein conformational changes and cause aggregation leading 
to diseases [13–15]; therefore, predictions of those structures in the same way as ordinary proteins 
are inappropriate. In such cases, it is necessary to estimate proteins/peptides structures by methods 
that do not refer to 3D structures of known proteins consisting of the Magic 20. 3D structure 
predictions of non-natural proteins are important for artificial protein design for drug design and 
development. Recently, peptide-based drug delivery systems (DDS) have been developed and 
methods for directly combining a drug and a peptide, such as peptide drug conjugates, are of 
particular interest [16]. In particular, peptide-based DDS using cell-penetrating peptides (CPPs) have 
been developed [17]. Most CPPs have cationic properties, some of which arrange a plurality of basic 
amino acid residues; however, some form helix structures to concentrate the positive charge by the 
tertiary structures [17,18]. The development of DDS using such peptides that form specific structures 
will be improved by structure prediction methods for small proteins and such methods are important 
for drug development. In addition, non-natural proteins that are not presently found on the Earth 
frequently play significant roles in investigations of the origin of life. Although extant proteins consist 
of the Magic 20, many researchers have proposed that the earliest primitive proteins were constructed 
of a more limited number of amino acids [19–23]. For example, Ikehara et al. [23] hypothesized that 
life originated from proteins constructed of only glycine, alanine, aspartic acid, and valine. These 
proteins are called as [GADV]-proteins. Van der Gulik et al. [21] also hypothesized that [GADV]-
peptides and metal ions played important roles in the protobionts of the RNA world hypothesis. 
Structural predictions of these primitive proteins are useful for investigations of the chemical (and 
biological) environment of primitive Earth. 

For protein structure calculations, molecular dynamics (MD) simulations use only Newton’s 
equations of motion, and no information on the 3D structures of extant proteins is required. Thus, 
MD simulations seem to be appropriate for structural predictions of non-natural proteins, such as 
artificial proteins for peptide-based DDS and primitive proteins. Oda et al. described the efficacy of 
MD simulations in predicting 20 residue [GADV]-protein structures [24], where the secondary 
structure formation tendencies of the [GADV]-proteins can be clarified using MD simulations.  
In addition, several properties of the 42 residue amyloid β1–42 containing D-aspartic acid can be 
estimated by the replica exchange MD (REMD) method [25,26]. Therefore, MD simulations may be 
effective for predicting short protein structures and for investigation of the conformational tendencies 
of peptides. In this study, we simulated proteins of 10–46 residues with known 3D structures to 
investigate whether MD simulation is effective for short-sequence protein structure predictions. 
These test proteins are shown in Table 1. Chignolin, CLN025, and Trp-cage, comprising 10–20 residues, 
are often used for folding simulations [27–29]. 2I9M is also used as a model of folding because of its 
rapid folding. The structure is reproduced by the polarization-adapted hydrogen-bond-specific 
charge scheme; however, it is difficult to simulate using normal MD simulations [30,31]. In full 
sequence design 1 of the beta alpha motif (FSD-1), the folding process is observed by action-derived 
molecular dynamics. In contrast, majority conformations observed in normal MD simulations do not 
converge to the experimental structure [32,33]. Human parathyroid hormone (HPH), which is the 
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extracted 1–34th residue of parathyroid hormone, was used as a model of structure prediction by 
generalized-ensemble simulations [34,35]. The highly ordered crystal structure of crambin has been 
solved and is used as a model of small proteins for structure predictions and simulations [36–39]. In 
this study, 3D structural predictions of these small proteins by MD simulations were performed using 
the same conditions. Although several procedures, as described above, have been frequently used in 
previous studies, in this study, we tested normal MD and REMD simulations without special 
treatments under consistent conditions. After the simulations, we evaluated whether our results 
reproduced the experimental structures. We assessed not only convergence to the “correct answer” 
structure, but also the ability of the method to estimate the approximate shape, i.e., the reproduction 
of secondary structure formation. The goals of our study were to test the abilities of MD simulations 
to predict the small protein structures and to clarify the limitations of this approach. 

Table 1. Proteins used in this study. 

Name Number of Residues PDB ID
Chignolin 10 1UAO 
CLN025 10 - c 

2I9M 17 2I9M 
Trp-cage 20 1L2Y 
FSD-1 a 28 1FSD 
HPH

 
b 34 1ET1 

Crambin 46 1CRN 
a FSD-1: Full sequence design 1 of the beta alpha motif. b HPH: Human parathyroid hormone. c The experimental 
3D structure of CLN025 was not in the Protein Data Bank (PDB), but has been reported in [40]. 

2. Results and Discussion 

2.1. Root Mean Square Deviations (RMSDs) between Predicted and Experimental Structures 

The smallest root mean square deviation (RMSD) values during MD trajectories compared with 
experimental structures are shown in Table 2 to evaluate whether short proteins can form  
3D-structures in MD simulations. Minimum RMSD values have frequently been discussed in previous 
studies [27]. As depicted in this table, calculated structures that were close to the experimental structures 
(RMSD < 2.0 Å) were obtained for chignolin, CLN025, 2I9M and Trp-cage using 200-ns normal MD 
simulations at 300 K. It is expected that computations of approximately 20 residue proteins can 
achieve a close match to the experimental structures using 200-ns MD simulations. RMSDs of all 
proteins, except FSD-1, decreased for 2000-ns MD simulations compared with those obtained using 
200-ns MD simulations. Especially, RMSD of both chignolin and HPH were <1.0 Å. Therefore, 
structures closely approximating the experimental structures can be obtained for 10–34 residue 
proteins using 2000-ns MD simulations. In contrast, even the minimum RMSD value of crambin is 
substantial; consequently, it may be difficult to apply this method to >40 residue protein structure 
predictions. Because Table 2 shows the minimum value of RMSD, the closest structures to 
experimental data were not obtained in the end of simulations. A previous study reported that the 
tertiary structure for chignolin and Trp-cage was reproduced by MD simulations; however, the 
structures closest to the experimental data were not obtained at the end of the simulations [29].  
To evaluate convergences of the simulations, RMSD plots are shown in Figure 1 for all simulations, 
and average RMSD values at the end of simulations are shown in Table 3. For the average calculations, 
the last 10 ns of the trajectories for 200-ns MD simulations and the last 100 ns of the trajectories for 
2000-ns MD simulations were used to eliminate bias from the initial structure. As shown Figure 1, 
the RMSD values of all proteins largely altered during the simulation and neither predicted structures 
converged. Even proteins with small minimum RMSD values, as shown in Table 2, did not converge 
to resemble the experimental structure at the end of the simulation. Among these, the average RMSD 
value for Trp-cage < 2.0 Å by 2000-ns simulation, and the extension of the simulation time improved 
the average RMSD of 2I9M. These results indicate that structures closely matching the experimental 
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structures for 20-residue proteins are obtained at the end of 2000-ns MD simulations. In particular, 
the experimental structure is generally well reproduced for Trp-cage. In chignolin and CLN025, 
whose minimum RMSD values were small, the average RMSD values were large. The structural 
fluctuations of these proteins were assumed to be large because of fewer intermolecular interactions. 
The snapshots of the small test proteins whose RMSDs were the maximum and the minimum values 
calculated by the 2000-ns MD simulations are shown in Figure 2. The minimum values are shown in 
Table 2, and the maximum values were evaluated throughout the last 100 ns trajectories.  
The minimum RMSD structures almost completely matched the experimental structures in chignolin, 
CLN025, 2I9M, Trp-cage, and HPH. Also in that of FSD-1, the helix-forming region was consistent. 
In addition, the calculated structure for Trp-cage resembled the experimental structure in the 
structural motif formation even when RMSD values were maximum (Figure 2G). Also for FSD-1 and 
HPH, helical tendencies could be reproduced even for the conformations with maximum RMSDs 
(Figure 2I,K). 

Table 2. The minimum RMSDs/Å values between calculated and experimental structures during MD 
trajectories. 

Protein 200 ns 2000 ns
Chignolin 1.338 0.433 
CLN025 0.501 0.380 

2I9M 0.791 0.670 
Trp-cage 0.747 0.451 

FSD-1 2.906 2.906 
HPH 3.258 0.744 

Crambin 7.496 5.598 

Table 3. Average RMSDs/Å values between calculated and experimental structures during MD trajectories. 

Protein 200 ns 2000 ns
Chignolin 3.982 4.123 
CLN025 4.180 4.186 

2I9M 3.834 2.902 
Trp-cage 5.007 1.546 

FSD-1 8.313 7.460 
HPH 10.206 12.345 

Crambin 8.266 8.843 

2.2. Analyses of Secondary Structures 

Even if the simulated structures did not converge to match the experimental structures at the 
end of the simulations, secondary structures may be accurately predicted by MD simulations because 
secondary structures acquire a rough form prior to folding [29]. Furthermore, some structural motif 
formations of the maximum RMSD structures were similar to experimental structures, as shown in 
Figure 2. Therefore, 3D structures of small proteins can be roughly predicted using snapshots as the 
structural ensemble but not a single snapshot. Even if the fluctuations in structural motifs are large, 
structure formation tendency can be predicted by accurate assignments of secondary structures. 
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Figure 1. Root mean square deviations (RMSDs) of (A) chignolin; (B) CLN025; (C) 2I9M; (D) Trp-cage, 
(E) FSD-1; (F) HPH; and (G) crambin in normal MD simulations. The reference structures for RMSD 
calculations were experimental structures shown in Table 1. 

To evaluate the abilities of MD simulations, we evaluated the occurrence frequencies of 
secondary structures (helix and β structures) in the last 10 ns and the last 100 ns of trajectories for 
200-ns and 2000-ns normal MD simulations, respectively. In order to follow protein folding, the 
secondary structure formation process is important; however, we investigated not protein folding 
but protein structure prediction in this study. Thus, we focused on the evaluation of secondary 
structure tendencies, and the snapshots were used not as time-course data but as ensembles. 
Occurrence rates of secondary structures in chignolin and CLN025, both of which comprise 10 amino 
acid residues, are shown in Figure 3. The red and blue lines show the occurrence rate of helix and β 
structures in MD simulations, respectively. The background of the graph area for the residues 
forming helix and β structures in the experimental structures are colored in light red and light  
blue, respectively. 
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Figure 2. Snapshots at the time of maximum (A,C,E,G,I,K,M) and minimum (B,D,F,H,J,L,N) RMSD 
values. The experimentally determined structures (blue) and calculated structures (red) of chignolin 
(A,B); CLN025 (C,D); 2I9M (E,F); Trp-cage (G,H); FSD-1 (I,J); HPH (K,L) and crambin (M,N) are 
illustrated along with the simulation time and the RMSD values. 

 
Figure 3. Analysis of the secondary structure formation in chignolin and CLN025 (10 residues) by 
normal MD simulations. The occurrence rate of secondary structures of (A) chignolin; and (B) CLN025 
in 200-ns simulations and (C) chignolin; (D) CLN025 in 2000-ns simulations. Red and blue lines show 
the occurrence rate of helix and β structures in MD simulations, respectively. The background of the 
graph area for the residues forming helix and β structures in the experimental structures are colored 
in light red and light blue, respectively. 
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In both proteins, the experimental structures were reproduced in some residues; however, the 
occurrence rates of secondary structures were generally low. In CLN025, the structure was 
comparatively close to the experimental data because the occurrence rate of β structures was greater 
than that of helix structures obtained by 2000-ns MD simulations. The results for 2I9M (17 residues) 
and Trp-cage (20 residues) are shown in Figure 4. The experimental secondary structures were 
sufficiently reproduced using 200-ns MD simulations for these proteins. In 2I9M, although the 
occurrence rate of β structures in 15th residue was lower than that of helix structures, the 200-ns MD 
simulation reproduced the experimental secondary structures for all other residues (Figure 4A). The 
secondary structures of Trp-cage were reproduced in all residues using 200-ns MD simulations, 
furthermore, the differences in occurrence rates between helix and β structures became clearer by 
2000-ns MD simulation (Figure 4B,D). These results suggest that secondary structures in for 
approximately 20-residue proteins can be reproduced using normal MD simulations. 

 
Figure 4. Analysis of the secondary structure formation in 2I9M (17 residues) and Trp-cage (20 residues) 
using normal MD simulations. The occurrence rate of secondary structures of (A) 2I9M; (B) Trp-cage 
using 200-ns simulations and (C) 2I9M and (D) Trp-cage in 2000-ns simulations. Color coding is the 
same as Figure 3. 

In 200-ns MD simulations of FSD-1 and HPH (Figure 5A,B), which are longer proteins, high 
occurrence rates of secondary structures were observed; however, these occurrence rates were not 
consistent with the experimental structures included in the Protein Data Bank (PDB). The N-terminus 
of FSD-1 forms a loop structure in the experimental data, whereas helices were formed in most of the 
residues by 200-ns MD simulation (Figure 5A). On the other hand, the occurrence rate of helix 
structures in the N-terminus of FSD-1 was lower in the 2000-ns MD simulation, which was relatively 
close to the experimental structure (Figure 5C). In a previous study on the folding process of FSD-1 
by Lee et al. [32], it was reported that FSD-1 forms β structures after forming helix structures. Because 
the occurrence rates of the helix structures decreased in our 2000-ns simulations compared with those 
in our 200-ns simulations, the results shown in Figure 5A,C were consistent with the presumptions 
proposed by Lee et al. The extension of the simulation time remarkably improved the occurrence rate 
of secondary structures in HPH and the experimental secondary structure was almost reproduced, 
except that the occurrence rate of helix structures decreased at the 15–17th residues (Figure 5B,D). 
With respect to crambin, the secondary structure was not consistent with the experimental data in 
200-ns MD simulation (Figure 6). It was somewhat improved by 2000-ns MD simulation, but it could 
still not explain the experimental structures. 
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Figure 5. Analysis of the secondary structure formation in FSD-1 (28 residues) and HPH (34 residues) 
by normal MD simulations. The occurrence rate of secondary structures of (A) FSD-1; (B) HPH in 200-ns 
simulations and of (C) FSD-1, and (D) HPH in 2000-ns simulations. Color coding is the same as that 
in Figure 3. 

 
Figure 6. Analysis of the secondary structure formation in crambin (46 residues) using normal MD 
simulations. The occurrence rate of secondary structures of crambin using 200-ns simulations (A) and 
2000-ns simulations (B). Color coding is the same as that in Figure 3. 

2.3. Structure Predictions Using REMD 

As mentioned above, structural predictions were performed using normal MD simulations and 
our results indicated that the secondary structures of proteins composed of <34 residues could almost 
be predicted. In addition, we investigated whether the “correct answer” was obtained using REMD, 
which is one of the extended ensemble methods. The RMSD plots obtained using REMD simulations 
are shown in Figure 7. Large structural fluctuations were observed, and those predicted structures 
did not converge just like the results from normal MD simulation. The smallest and average RMSDs 
values between experimental and calculated structures in REMD trajectories are shown in Table 4. 
The last 10 ns of REMD trajectories were used for RMSD calculations.  
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Table 4. The minimum and average RMSDs/Å values in REMD trajectories. 

Protein Min Average
Chignolin 0.474 4.191 
CLN025 0.446 4.694 

2I9M 0.582 3.375 
Trp-cage 0.485 1.966 

FSD-1 2.555 7.697 
HPH 0.959 8.769 

Crambin 3.898 7.595 

 
Figure 7. Root mean square deviations (RMSDs) of (A) chignolin; (B) CLN025; (C) 2I9M; (D) Trp-cage; 
(E) FSD-1; (F) HPH and (G) crambin in REMD simulations. The reference structures of RMSD 
calculations were experimental structures shown in Table 1. 

The minimum value of crambin was improved compared with that from normal MD 
simulations; however, values of the others were comparable to those using 2000-ns MD simulations. 
The average value of Trp-cage was <2.0 Å; however, it was inferior to that of 2000-ns normal MD 
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simulation. Even though the average value of HPH using REMD was lower than that by normal MD 
simulations, it was still high at 8.769 Å. As with the results of RMSD analyses, there was little 
improvement compared with normal MD simulations. 

Occurrence rates of secondary structures in the last 5 ns of REMD trajectories were analyzed and 
the results are shown in Figure 8. In chignolin, the β structure predominated after the 4th residue, 
although the frequency of secondary structure was comparatively low because of its small size 
(Figure 8A). The frequency of β structures in CLN025 increased compared with normal MD 
simulations, but the frequency of the 9th residue was lower than that obtained using 2000-ns MD 
simulation (Figure 8B). The secondary structures of 2I9M and Trp-cage which were almost 
reproduced using normal MD simulations, were also reproduced by REMD (Figure 8C,D). The 
occurrence rates of FSD-1 by REMD were similar to those obtained using 200-ns normal MD 
simulation, and were worse than those obtained by 2000-ns normal MD simulations (Figure 8E). With 
respect to HPH, frequency of secondary structures decreased at the 15th to 17th residues; however, 
predicted structures mostly formed helical structures (Figure 8F). 

 
Figure 8. Analysis of the secondary structure formation in seven short proteins by REMD. The occurrence 
rate of secondary structures of (A) chignolin; (B) CLN025; (C) 2I9M; (D) Trp-cage; (E) FSD-1; (F) HPH 
and (G) crambin in REMD. Color coding is the same as that in Figure 3. 

Similar results were also obtained by 2000-ns normal MD simulations. Compared with 
structures obtained using normal MD simulations, the predicted structure of crambin was closer to 
the experimental structure; however, it was far from the “correct answer” (Figure 8G). Because 
predicted secondary structures using REMD were not significantly close to experimental structures 
compared with predicted secondary strucures by 2000-ns normal MD simulations for all seven test 
proteins and because REMD is more time-consuming than normal MD simulations, normal MD 
simulations are sufficiently accurate for approximately 20 residue protein structure predictions. 
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2.4. Structure Prediction for Primitive Protein 

It was shown that structure prediction using MD simulation is useful for investigating the 
tendency of structure formation in short proteins. As a test of this method, the results of simulations 
for structure prediction of a randomly generated tentative primitive protein constructed of only 
glycine, alanine, aspartic acid, and valine [GADV]-proteins were determined. The protein has a 
possibility to form a different structure from all known proteins; therefore, this is a suitable sample 
for structure prediction using MD simulation. We show an example of the obtained conformation 
and the occurrence rate of secondary structure using normal MD simulation for one of the randomly 
generated [GADV]-proteins in Figure 9. The peptide sequence of this test peptide is 
AADVVAAAAVDVAVGVVVGA. The occurrence rates of helix and β structures for each residue in 
this peptide are shown (Figure 9A). The frequency of helix structure is high in both the N- and  
C-terminal regions. Furthermore, Val4–Ala8 and Asp11–Val18 of the final predicted structure (at  
100 ns) form helices (Figure 9B). These results are consistent with those obtained using REMD 
simulation mentioned previously [24]. This test peptide is the “peptide 4” of [24], and the results 
shown in Figure 9 are similar to those of “peptide 4” in that reference. This result indicates that 
normal MD simulation is expected to be a useful structure prediction method for short proteins with 
unknown and non-natural sequences or structures, as well as REMD simulations. 

 
Figure 9. The structure prediction of [GADV]-protein. (A) The occurrence rates of secondary 
structures. Color coding of lines is the same as that in Figure 3; (B) The final predicted structure 
formed at 100 ns. Purple shows helix and light blue shows loop. 

3. Methods 

The proteins used in this study are shown in Table 1. Linear structures obtained by tleap of 
AmberTools 12 (University of California, San Francisco, CA, USA) were used for initial structures to 
eliminate the influence of initial structures as much as possible. Experimental 3D structures used as 
“correct answer” were downloaded from PDB, except CLN025. The “Correct answer” structure of 
CLN025 was obtained from [40], because it is not registered in the PDB. For small protein structure 
predictions, normal MD simulations at a temperature of 300 K and REMD were performed. In normal 
MD simulations, after 200 cycles of structure optimization, MD simulations of 200-ns and 2000-ns 
were performed at time step 1 fs. In REMD, eight replicas at the temperatures of 269.5 K, 300.0 K, 
334.0 K, 371.8 K, 413.9 K, 460.7 K, 512.9 K, and 570.9 K for chignolin and CLN025; 16 replicas at the 
temperatures of 169.7 K, 284.4 K, 300.0 K, 316.4 K, 333.8 K, 352.0 K, 371.3 K, 391.7 K, 413.1 K, 435.7 K, 
459.6 K, 484.8 K, 511.3 K, 539.3 K, 568.8 K, and 600.0 K for 2I9M, Trp-cage, FSD- 1, and HPH; and 32 
replicas at the temperatures of 278.5 K, 285.5 K, 292.7 K, 300.0 K, 307.5 K, 315.2 K, 323.1 K, 331.2 K, 
339.5 K, 348.0 K, 356.8 K, 365.7 K, 374.9 K, 384.3 K, 393.9 K, 403.8 K, 413.9 K, 424.3 K, 434.9 K, 445.8 K, 
457.0 K, 468.4 K, 480.2 K, 492.2 K, 504.5 K, 517.2 K, 530.1 K, 543.4 K, 557.1 K, 571.0 K, 585.3 K, and 
600.0 K for crambin were used. After the structure optimization of 2000 cycles, MD simulation for 
equilibration at each temperature was performed and then REMD was performed. For equilibration, 
200-ps MD simulations were conducted using the 2 fs time step. For REMD, total 200-ns simulations 
were performed. The time step was 2 fs and the replica was exchanged every 1 ps in REMD. In both 
normal MD and REMD simulations, we applied SHAKE to constrain the lengths of bonds containing 
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hydrogen atoms [41] and structural restriction was adopted to avoid chiral inversions. In addition, 
simulations were performed with a salt concentration of 0.1 M in a continuous solvent using GBneck 
2 model [42] with mbondi3 atomic radius. For the classical force field, AMBER ff12SB force field was 
used [43]. No cutoff was used for non-bonding terms of classical molecular mechanical calculations. 
AMBER 12 was used for all classical MD simulations [44]. The cpptraj module of AmberTools 12 was 
used for analyses of those results. For both normal MD and REMD simulations, we calculated RMSDs 
between calculated and experimental structures and evaluated whether experimental structures were 
reproduced. The snapshots were extracted every 5 ps for normal MD trajectories, and 1 ps for REMD 
trajectories in RMSD calculations. The secondary structure was identified by the DSSP method [45] 
for the last 10 ns of the trajectories obtained by 200-ns normal MD and REMD simulations, and for 
the last 100 ns of the trajectories obtained by 2000-ns normal MD simulations. Then, the occurrence 
rates of the secondary structures were evaluated through the last 10 ns (200-ns simulations) or the 
last 100 ns (2000-ns simulations) of the simulations. For example in 200-ns MD simulations, when the 
occurrence rate of the helix structure was 0.5 for one residue, the residue was included in the helix 
structures for 5 ns of the last 10 ns of the simulation. The snapshots were extracted every 0.5 ps for 
normal MD simulations and every 1 ps for REMD. We defined parallel β sheet, antiparallel β sheet 
and turn as β structures, and α helix, π helix and 3–10 helix as helical structures. The definitions of 
these secondary structures are identical to those used in previous studies [24,25,46]. For [GADV]-
proteins, 100-ns normal MD simulation was performed under similar conditions on seven short 
proteins, and the last 10 ns trajectory was used for analyses. 

4. Conclusions 

In the present study, we predicted the 3D structures of some proteins with 10–46 residues using 
MD simulations. Our results suggest that the secondary structures of small proteins are reproduced 
using normal MD simulations. In particular, the normal MD simulation of Trp-cage showed small 
average RMSD values and also reproduced the secondary structure; therefore, it was considered that 
at least the secondary structures of approximately 20 residue protein structures can be accurately 
predicted by normal MD simulations. In chignolin and CLN025, which have 10 residues and are the 
smallest of all known proteins, occurrence rates of secondary structures were low and the 
reproduction of experimental structures was difficult. The reason for this is presumed to be that these 
proteins are too short to predict folding in MD simulations with an implicit solvent model. This result 
suggests that a certain length of amino acid sequences and a certain amount of interactions are 
necessary for protein structure prediction. On the other hand, the structural prediction of crambin 
was very difficult. For large proteins, it is considered that the folding is practically difficult to simulate 
using MD simulation with realistic computational time because of extremely large number of degrees 
of freedom. Most cellular proteins fold on timescales of milliseconds to seconds and several small 
proteins have been experimentally designed and characterized to fold on a timescale of <20 µs [47]. 
In this study, we showed the possibility of predicting secondary structures by practically short time 
simulations. For short protein structure predictions, PEP-FOLD is very effective, especially in 
producing highly accurate models for proteins of approximately 10 residues [48]. Nevertheless, the 
accuracy decreases for proteins >20 residues [12,48]. Although our approach is poor for structure 
prediction of proteins larger or smaller than 20 residues, it has shown good performance for proteins 
of approximately 20 residues. Furthermore, this can be applied to non-natural sequence proteins.  
We are working on the development of a biosensor based on coiled-coil [49], and this method may 
be applicable to the design. This method is sufficiently useful for the investigation of non-natural 
proteins, such as primitive proteins and artificial proteins for peptide based DDS. We calculated with 
the implicit solvent model; in contrast, structure prediction of chignolin using REMD simulation with 
an explicit solvent model has been reported, and the explicit solvent model may decrease  
fluctuation [50]. However, our research indicates that the tendency of structure formation can be 
predicted using normal MD simulation with implicit solvent models and can reduce computational 
costs. In addition, the results for the structural predictions of the proteins other than chignolin, and 
the predictive ability for secondary structure tendency of normal MD simulations were revealed in 
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this study. Therefore, our study indicates that normal MD simulation is useful for structure 
prediction for the development of peptides which contain various amino acids and form various 
structures. In a future study we would like to examine this method on a larger scale with multiple 
simulation replications. 
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