Article

Structure, Absolute Configuration, and antiproliferative activity of abietane and icetexane diterpenoids from *Salvia ballotiflora*

Baldomero Esquivel ^{1,} *, Celia Bustos-Brito ¹, Mariano Sánchez-Castellanos ², Antonio Nieto-Camacho ¹, Teresa Ramírez-Apan ¹, Pedro Joseph-Nathan ³, and Leovigildo Quijano ^{1,*}

- ¹ Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City., 04510 México; <u>baldo@unam.mx</u> (B.E.); <u>bustosbritocelia@comunidad.unam.mx</u> (C.B.-B); <u>anieto@unam.mx</u> (A.N), <u>mtrapan@unam.mx</u> (T.R.-A). <u>guijano@unam.mx</u> (Q.L.).
- ² Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City., 04510 México; <u>msanchezcastellanos@gmail.com</u> (M. S.-C).
- ³ Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, México, Mexico City, 07000 México; pjoseph@nathan.cinvestav.mx (P.J.-N).
- * Correspondence: quijano@unam.mx; Tel.:+52-55-5622-4411

Supporting Information

Table of Contents

Figure S1. ¹H NMR (CDCl₃, 700 MHz) spectrum of 1 Figure S2. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 1 Figure S3. COSY NMR (CDCl₃, 700 MHz) spectrum of 1 Figure S4. HMBC NMR (CDCl₃, 700 MHz) spectrum of 1 Figure S5. HSQC NMR (CDCl₃, 700 MHz) spectrum of 1 Figure S6. NOESY NMR (CDCl₃, 700 MHz) spectrum of 1 Figure S7. HR-DART-MS of 1 Figure S8. 1H NMR (CDCl3, 700 MHz) spectrum of 2 Figure S9. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 2 Figure S10. COSY NMR (CDCl₃, 700 MHz) spectrum of 2 Figure S11. HMBC NMR (CDCl₃, 700 MHz) spectrum of 2 Figure S12. HSQC NMR (CDCl₃, 700 MHz) spectrum of 2 Figure S13. NOESY NMR (CDCl₃, 700 MHz) spectrum of 2 Figure S14. HR-DART-MS of 2 Figure S15. ¹H NMR (CDCl₃, 700 MHz) spectrum of 3 Figure S16. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 3 Figure S17. COSY NMR (CDCl₃, 700 MHz) spectrum of 3 Figure S18. HMBC NMR (CDCl₃, 700 MHz) spectrum of 3 Figure S19. HSQC NMR (CDCl₃, 700 MHz) spectrum of 3 Figure S20. NOESY NMR (CDCl₃, 700 MHz) spectrum of 3 Figure S21. HR-DART-MS of 3 Figure S22. ¹H NMR (CDCl₃, 700 MHz) spectrum of 4 Figure S23. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 4 Figure S24. COSY NMR (CDCl₃, 700 MHz) spectrum of 4 Figure S25. HMBC NMR (CDCl₃, 700 MHz) spectrum of 4 Figure S26. HSQC NMR (CDCl₃, 700 MHz) spectrum of 4 Figure S27. NOESY NMR (CDCl₃, 700 MHz) spectrum of 4 Figure S28. HR-DART-MS of 4 Figure S29. ¹H NMR (CDCl₃, 700 MHz) spectrum of 5 Figure S30. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 5 Figure S31. COSY NMR (CDCl₃, 700 MHz) spectrum of 5 Figure S32. HMBC NMR (CDCl₃, 700 MHz) spectrum of 5 Figure S33. HSQC NMR (CDCl₃, 700 MHz) spectrum of 5 Figure S34. NOESY NMR (CDCl₃, 700 MHz) spectrum of 5 Figure S35. HR-DART-MS of 5 Figure S36. 1H NMR (CDCl₃, 700 MHz) spectrum of 6 Figure S37. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 6 Figure S38. HSQC NMR (CDCl₃, 700 MHz) spectrum of 6 Figure S39. 1H NMR (CDCl₃, 700 MHz) spectrum of 7 Figure S40. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 7 Figure S41. HSQC NMR (CDCl₃, 700 MHz) spectrum of 7 Figure S42. 1H NMR (CDCl₃, 700 MHz) spectrum of 9

Figure S43. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 9
Figure S44. HSQC NMR (CDCl₃, 700 MHz) spectrum of 9
Figure S45. ¹H NMR (CDCl₃, 700 MHz) spectrum of 11
Figure S46. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 11
Figure S47. HSQC NMR (CDCl₃, 700 MHz) spectrum of 11
Figure S48. Primary screening of compounds 3, 4, 6 - 8, 10 on antiproliferative activity at concentration of 50.0 μM.

Figure S1. ¹H NMR (CDCl₃, 700 MHz) spectrum of 1

Figure S2. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 1

Figure S3. COSY NMR (CDCl₃, 700 MHz) spectrum of 1

Figure S4. HMBC NMR (CDCl₃, 700 MHz) spectrum of 1.

Figure S5. HSQC NMR (CDCl₃, 700 MHz) spectrum of 1

Figure S6. NOESY NMR (CDCl₃, 700 MHz) spectrum of 1

Figure S7. HR-DART-MS of 1

Figure S8. ¹H NMR (CDCl₃, 700 MHz) spectrum of 2

Figure S9. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 2

Figure S10. COSY NMR (CDCl₃, 700 MHz) spectrum of 2

Figure S11. HMBC NMR (CDCl₃, 700 MHz) spectrum of 2

Figure S12. HSQC NMR (CDCl₃, 700 MHz) spectrum of 2

Figure S13. NOESY NMR (CDCl₃, 700 MHz) spectrum of 2

Figure S14. HR-DART-MS of 2

Figure S15. 1H NMR (CDCl3, 700 MHz) spectrum of 3

Figure S16. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 3

Figure S17. COSY NMR (CDCl₃, 700 MHz) spectrum of 3

Figure S18. HMBC NMR (CDCl₃, 700 MHz) spectrum of 3

Figure S19. HSQC NMR (CDCl₃, 700 MHz) spectrum of 3

Figure S20. NOESY NMR (CDCl₃, 700 MHz) spectrum of 3

Figure S21. HR-DART-MS of 3

Figure S22. ¹H NMR (CDCl₃, 700 MHz) spectrum of 4

Figure S23. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 4

Figure S24. COSY NMR (CDCl₃, 700 MHz) spectrum of 4

Figure S25. HMBC NMR (CDCl₃, 700 MHz) spectrum of 4

Figure S26. HSQC NMR (CDCl₃, 700 MHz) spectrum of 4

Figure S27. NOESY NMR (CDCl₃, 700 MHz) spectrum of 4

Mass	Intensity	Calc. Mass	(mmu)	(ppm)	Possible Formula	Unsaturation Number
361.16436	63640.89	361.16511	-0.76	-2.09	¹² C ₂₀ 1H ₂₅ 16O ₆	8.5

Figure S28. HR-DART-MS of 4

Figure S29. ¹H NMR (CDCl₃, 700 MHz) spectrum of 5

Figure S30. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 5

Figure S31. COSY NMR (CDCl₃, 700 MHz) spectrum of 5

Figure S32. HMBC NMR (CDCl₃, 700 MHz) spectrum of 5

Figure S33. HSQC NMR (CDCl₃, 700 MHz) spectrum of 5

Figure S34. NOESY NMR (CDCl₃, 700 MHz) spectrum of 5

Mass	Intensity	Calc. Mass	Mass Difference (mmu)	Mass Difference (ppm)	Possible Formula	Unsaturation Number
375.21725	125046.05	375.21715	0.10	0.27	¹² C ₂₂ ¹ H ₃₁ ¹⁶ O ₅	7.5

Figure S35. HR-DART-MS of 5

Figure S36. ¹H NMR (CDCl₃, 700 MHz) spectrum of 6

Figure S37. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 6

Figure S38. HSQC NMR (CDCl₃, 700 MHz) spectrum of 6

Figure S39. ¹H NMR (CDCl₃, 700 MHz) spectrum of 7

Figure S40. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 7

Figure S41. HSQC NMR (CDCl₃, 700 MHz) spectrum of 7

Figure S42. ¹H NMR (CDCl₃, 700 MHz) spectrum of 9

Figure S43. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 9

Figure S44. HSQC NMR (CDCl₃, 700 MHz) spectrum of 9

Figure S45. 1H NMR (CDCl3, 700 MHz) spectrum of 11

Figure S46. ¹³C NMR (CDCl₃, 175 MHz) spectrum of 11

Figure S47. HSQC NMR (CDCl₃, 700 MHz) spectrum of 11

Compound	Antiproliferative activity (%)						
	U251	PC-3	K562	HCT-15	MCF-7	SKLU-1	FGH
3*	65.4	34.2	48.6	33.4	NC	64.5	12.4
4	100	80.3	100	76.7	99.0	96.9	87.0
6*	98.4	82.3	76.4	85.6	51.3	100	46.5
7	10.1	17.8	63.2	26.8	62.6	46.5	NC
8	35.8	39.6	83.1	29.0	71.6	52.9	NC
10	NC	NC	NC	NC	14.7	11.8	NT
Adriamicyn 0.5 µM	96.0	85.2	100	86.9	99.1	90.0	53.4

Primary screening of compounds 3, 4, 6 - 8, 10 on antiproliferative activity at concentration of 50.0 μ M.

Results are represented as the mean (n = 2); U251 = human glioblastoma; PC-3 = human prostate cancer; K562 = human chronic myelogenous leukemia; HCT-15 = human colon cancer; MCF-7 = human mammary adenocarcinoma; SKLU-1 = human lung adenocarcinoma; FGH = gingival human fibroblasts; NC = No cytotoxic. NT = No tested; *Compounds tested at 1.0 μ M.

Figure S48. Primary screening of compounds **3**, **4**, **6** - **8**, **10** on antiproliferative activity at concentration of 50.0 µM.