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Abstract: Skeletal muscle is a major insulin-target tissue and plays an important role in glucose
homeostasis. Impaired insulin action in muscles leads to insulin resistance and type 2 diabetes
mellitus. 5′ AMP-activated kinase (AMPK) is an energy sensor, its activation increases glucose uptake
in skeletal muscle and AMPK activators have been viewed as a targeted approach in combating
insulin resistance. We previously reported AMPK activation and increased muscle glucose uptake by
rosemary extract (RE). In the present study, we examined the effects and the mechanism of action of
rosmarinic acid (RA), a major RE constituent, in L6 rat muscle cells. RA (5.0 µM) increased glucose
uptake (186 ± 4.17% of control, p < 0.001) to levels comparable to maximum insulin (204 ± 10.73% of
control, p < 0.001) and metformin (202 ± 14.37% of control, p < 0.001). Akt phosphorylation was not
affected by RA, while AMPK phosphorylation was increased. The RA-stimulated glucose uptake was
inhibited by the AMPK inhibitor compound C and was not affected by wortmannin, an inhibitor of
phosphoinositide 3-kinase (PI3K). The current study shows an effect of RA to increase muscle glucose
uptake and AMPK phosphorylation. RA deserves further study as it shows potential to be used as
an agent to regulate glucose homeostasis.
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1. Introduction

Skeletal muscle is a primary target tissue of insulin and plays a critical role in the maintenance of
glucose homeostasis [1]. After binding to its receptor, insulin increases the receptor tyrosine kinase activity
which leads to GLUT4 glucose transporter translocation to the plasma membrane via activation of
the lipid kinase phosphoinositide 3-kinase (PI3K) and the serine/threonine kinase Akt/PKB [2,3].
Impairment of the PI3K–Akt cascade leads to insulin resistance and type 2 diabetes mellitus
(T2DM) [4–6], a disease expected to affect 412 million people globally by 2040 [7].

AMP-activated protein kinase (AMPK) is a serine/threonine kinase that has a potential to
regulate blood glucose levels. As an energy sensor, AMPK is activated by increased AMP/ATP ratio
and/or via activation of its upstream kinases, liver kinase B1 (LKB1) and calmodulin dependent
protein kinases (CaMKKs) [8,9]. Muscle AMPK is activated through muscle contraction/exercise [8].
Several compounds including metformin [10], thiazolidineones [11] and polyphenols such as
resveratrol [12] and naringenin [13] are also known to activate AMPK and increase muscle glucose
uptake. In recent years, AMPK activators have been recognized as a promising pharmacological
intervention for the prevention and treatment of T2DM [8,9,14–18].
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Rosemary (Rosmarinus officinalis L.) is an aromatic evergreen plant endemic to the Mediterranean
region and South America that is reported to exhibit antioxidant, anticancer and antimicrobial
effects [19,20]. In addition, beneficial effects have been reported in regards to lipid metabolism and
plasma glucose levels [21–26]. Previous studies by our group examined the effects of rosemary extract
(RE) [27] on skeletal muscle cells and found a significant increase in glucose uptake and AMPK
activation. In vivo studies demonstrated that administration of RE decreased plasma glucose levels in
streptozotocin-induced diabetic mice [21], rats [23,25,26], alloxan-induced diabetic rabbits [22], and in
genetic [24] and dietary [26,28,29] animal models of obesity and insulin resistance. RE is composed
of various polyphenols with carnosic acid (CA) and rosmarinic acid (RA) being the most abundant
in regards to concentration [30]. It is therefore possible that the beneficial effects observed with RE
administration may be due to the action of a specific polyphenol. We recently found a significant
increase in muscle cell glucose uptake and activation of AMPK by CA [31].

In the present study, we focused on RA and examined its direct effect on muscle cell glucose
uptake, and investigated the signaling molecules that may be involved.

2. Results

2.1. Rosmarinic Acid (RA) Stimulates Muscle Cell Glucose Uptake

We reported previously that glucose uptake was significantly increased in L6 muscle cells by
5 µg/mL of RE [27]. Additionally, previous studies have indicated that RA is one of the major
constituents found in RE [30], and therefore we examined the levels of RA present in the RE that was
extracted in our lab and utilized previously [27]. To this end, we performed high-performance liquid
chromatography (HPLC) and a representative chromatograph is shown in Figure 1A. The retention time
of the peak which corresponds to RA from the standard was utilized to determine the presence of RA in
the extract. The area under the peak corresponding to the RA present in the extract was used to quantify
the relative amount of RA. Our data demonstrate that RE contained 13.39 ± 0.23% RA. Based on these
values and the molecular weight of RA (MW: 360.13 g/mol), we calculated the concentration of RA
in media containing 5 µg/mL of RE, a concentration that elicited maximal stimulation of glucose
uptake in our previous study [27], and found that the corresponding concentration of RA is 2.0 µM.
We then went on to investigate whether RA at a concentration of 2.0 µM would have any effect on the
glucose uptake. However, we wished to obtain a dose-response curve and for this reason we used
additional concentrations.

L6 muscle cells were differentiated in α-Minimal Essential Medium (α-MEM) containing 2% (v/v)
Fetal bovine serum (FBS), as previously described [12,13,27]. Myotubes were incubated with 0.1, 0.5, 2,
5 or 10 µM RA for 4 h (Figure 1B). RA at 0.1 and 0.5 µM did not increase glucose uptake (105 ± 4.80%
of control and 114 ± 3.96% of control respectively, both p > 0.05). However, higher concentration of RA
resulted in a dose-dependent increase in glucose uptake. Significant stimulation of glucose uptake
was seen at 2 µM RA (127 ± 4.04% of control, p < 0.01), and maximum stimulation was seen at 5 µM
RA (186 ± 7.31% of control, p < 0.001) (Figure 1). It should be noted that higher concentration of RA
(10 µM) also stimulated glucose uptake (181 ± 7.88% of control, p < 0.001) without any changes in cell
morphology or cell toxicity assessed by microscopic examination.

We further investigated if the effect of RA on glucose uptake is time-dependent. Fully differentiated
myotubes were incubated with 5 µM RA for 0.25, 0.5, 1, 2, 4, 6, 12 or 24 h (Figure 2). Significant
stimulation was seen after 2 h of RA exposure (126.6 ± 3.32% of control, p < 0.01) while maximum
stimulation was observed after 4 h of exposure (186 ± 7.38% of control, p < 0.001) (Figure 2).
Longer exposure time of 12 and 24 h to RA also significantly stimulated glucose uptake (166 ± 4.00%
of control and 167 ± 2.00% of control, respectively, both p < 0.001) (Figure 2).
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Figure 1. (A) Levels of rosmarinic acid (RA) present in rosemary extract (RE). High-performance 
liquid chromatography (HPLC) chromatograph representing RE (upper panel) and RA standard 
(lower panel). (B) Effects of rosmarinic acid (RA) on glucose uptake (dose response). Serum-deprived 
L6 myotubes were incubated without or with 0.1, 0.5, 2, 5 or 10 µM RA for 4 h. 2-deoxy-D-glucose 
uptake was measured according to the methods. Data are expressed as percentage of control. Results 
are the mean ± SE of 3–4 independent experiments. ** p < 0.01, *** p < 0.001, vs control. 

 
Figure 2. Effects of rosmarinic acid (RA) on glucose uptake (Time-course). Serum-deprived L6 
myotubes were incubated without or with 5 µM RA for the indicated time. Data are expressed as 
percentage of control. Results are the mean ± SE of 3–5 independent experiments. ** p < 0.01, *** p < 
0.001, vs control. 

We compared the effect of RA with that of insulin and metformin, the most widely 
used/prescribed medication for T2DM. It is important to note that the maximum stimulation of 
glucose uptake seen with RA treatment (186 ± 7.31% of control, p < 0.001) was comparable to the 
response seen with maximum insulin (100 nM, 0.5 h, 204 ± 10.73% of control, p < 0.001) and metformin 
(2 mM, 2 h, 202 ± 14.37% of control, p < 0.001) stimulation (Figure 3A). Exposure of myotubes to 5 
µg/mL of rosemary extract (RE) also significantly increased glucose uptake (197 ± 3.60% of control, p 
< 0.001) in agreement with our previous studies [27,31]. 

2.2. Effect of Rosmarinic Acid (RA) on Insulin-Stimulated Glucose Uptake 

We further investigated the effects of RA on insulin-stimulated glucose uptake. Myotubes were 
exposed to 5.0 µM RA (4 h) followed by treatment with 3 nM (sub-maximal) or 100 nM (maximal) 
insulin. Insulin at submaximal 3 nM concentration increased glucose uptake (I 3 nM: 160 ± 8.34% of 
control); and this response was significantly enhanced by RA treatment (RA + I 3 nM: 214 ± 11.49% 

Figure 1. (A) Levels of rosmarinic acid (RA) present in rosemary extract (RE). High-performance liquid
chromatography (HPLC) chromatograph representing RE (upper panel) and RA standard (lower panel).
(B) Effects of rosmarinic acid (RA) on glucose uptake (dose response). Serum-deprived L6 myotubes
were incubated without or with 0.1, 0.5, 2, 5 or 10 µM RA for 4 h. 2-deoxy-D-glucose uptake was
measured according to the methods. Data are expressed as percentage of control. Results are the
mean ± SE of 3–4 independent experiments. ** p < 0.01, *** p < 0.001, vs. control.
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Figure 2. Effects of rosmarinic acid (RA) on glucose uptake (Time-course). Serum-deprived L6
myotubes were incubated without or with 5 µM RA for the indicated time. Data are expressed
as percentage of control. Results are the mean ± SE of 3–5 independent experiments. ** p < 0.01,
*** p < 0.001, vs control.

We compared the effect of RA with that of insulin and metformin, the most widely
used/prescribed medication for T2DM. It is important to note that the maximum stimulation of
glucose uptake seen with RA treatment (186 ± 7.31% of control, p < 0.001) was comparable to the
response seen with maximum insulin (100 nM, 0.5 h, 204 ± 10.73% of control, p < 0.001) and metformin
(2 mM, 2 h, 202 ± 14.37% of control, p < 0.001) stimulation (Figure 3A). Exposure of myotubes to
5 µg/mL of rosemary extract (RE) also significantly increased glucose uptake (197 ± 3.60% of control,
p < 0.001) in agreement with our previous studies [27,31].

2.2. Effect of Rosmarinic Acid (RA) on Insulin-Stimulated Glucose Uptake

We further investigated the effects of RA on insulin-stimulated glucose uptake. Myotubes were
exposed to 5.0 µM RA (4 h) followed by treatment with 3 nM (sub-maximal) or 100 nM (maximal)
insulin. Insulin at submaximal 3 nM concentration increased glucose uptake (I 3 nM: 160 ± 8.34% of
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control); and this response was significantly enhanced by RA treatment (RA + I 3 nM: 214 ± 11.49%
of control) (Figure 3B). However, RA did not affect the maximum insulin-stimulated glucose uptake
(I 100 nM: 205 ± 10.34% of control, RA + I 100 nM: 203 ± 10.17% of control) (Figure 3B).
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Figure 3. (A) Effects of rosmarinic acid (RA), rosemary extract (RE), insulin (I) and metformin (MET)
on glucose uptake. Serum-deprived L6 myotubes were incubated without (control, C) or with 5 µM
RA (4 h), 5 µg/mL RE (4 h), 100 nM I (0.5 h) or 2 mM MET (2 h) followed by 2-deoxy-D-glucose uptake
measurements. Results are the mean ± SE of 5 independent experiments. *** p < 0.001, vs control.
(B) Effect of rosmarinic acid (RA) on insulin-stimulated glucose uptake. Serum-deprived L6 myotubes
were incubated without or with 5 µM RA (4 h) followed by stimulation with 3 nM or 100 nM insulin for
0.5 h and glucose uptake measurements. Results are the mean ± SE of 3–4 independent experiments.
*** p < 0.001, vs. control, # p < 0.05 vs. insulin alone.

2.3. Effects of Rosmarinic Acid (RA) on AMPK Signaling

In our previous studies we found significant increase in AMPK phosphorylation by RE [27] and
carnosic acid [31], and therefore we hypothesize that RA may also increase AMPK phosphorylation.
Treatment of L6 myotubes with RA resulted in a robust increase in AMPK phosphorylation on
threonine 172 [32], an indicator of activation (Figure 4A). Importantly, the activation of AMPK
seen with RA treatment was at the same level as with 2mM metformin treatment (Figure 4A).
Treatment with RE also increased AMPK phosphorylation (Figure 4A) in agreement with our previous
studies [27,31]. To examine the involvement of AMPK in glucose uptake, we used the AMPK inhibitor,
compound C (CC). RA-stimulated glucose uptake was significantly inhibited by CC (RA: 186 ± 4.17%
of control, CC + RA: 163 ± 8.23% of control) (Figure 4B). RE-stimulated glucose uptake was also
inhibited by CC (RE: 197 ± 3.60% of control, CC + RE: 135 ± 4.01% of control) (Figure 4B), while the
metformin-stimulated glucose uptake was abolished in the presence of CC (MET: 202 ± 14.37%
of control, CC + MET: 103 ± 7.23% of control) (Figure 4B). We also investigated the effect of
CC on RA-stimulated phosphorylation of AMPK (Figure 4C). CC blocked the RA-induced AMPK
phosphorylation, indicating that the use of a CC inhibitor in our study was effective in blocking AMPK
(Figure 4C). Additionally, we examined the phosphorylation of the downstream physiological target
of AMPK, acetyl-CoA carboxylase (ACC). Treatment with RA resulted in significant increase in ACC
phosphorylation that was completely blocked in the presence of CC (Figure 4D), further indicating
AMPK activation by RA treatment and effective blocking by CC.
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Figure 5. (A) Effect of STO-609 on rosmarinic acid (RA)-induced glucose transport. L6 myotubes were 
incubated in the absence (control, C) or presence of 27 µM STO-609 (STO) for 1 hour followed by the 
addition of 5.0 µM RA (4 h) and glucose uptake measurements. Results are the mean ± SE of 3 
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Figure 4. (A) Effect of RA on AMPK. L6 myotubes were treated without (control, C) or with 5.0 µM RA
(2 h), 5 µg/mL of RE (2 h), 2 mM metformin (MET) (2 h). Whole-cell lysates were prepared, resolved
by SDS-PAGE and immunoblotted with specific antibodies that recognize phospho-AMPK (Thr 172)
(P-AMPK) or total AMPK (T-AMPK). (B) Effect of compound C (CC) on rosmarinic acid (RA)-induced
glucose uptake. Cells were incubated in the absence or presence of 25 µM compound C (CC) for
30 min followed by the addition of 5.0 µM RA, 5 µg/mL of RE or 2 mM MET and glucose uptake
measurements. Results are the mean ± SE of 6–7 independent experiments. *** p < 0.001 vs control.
### p < 0.001 vs treatment in the absence of CC. (C) Effect of compound C (CC) on RA-induced AMPK
and (D) ACC phosphorylation. Whole-cell lysates were immunoblotted for phospho-AMPK (Thr 172)
(P-AMPK), total AMPK (T-AMPK) (C) or for phospho-ACC (Ser 79) (P-ACC) or total ACC (T-ACC) (D).

To examine the involvement of Ca2+/calmodulin-dependent kinase kinase (CaMKK)—an upstream
regulator of AMPK—in RA-stimulated glucose uptake, we used the CaMKK-selective inhibitor
STO-609 [33]. Exposure of L6 myotubes to STO-609 (27 µM) did not affect the basal glucose
uptake (106 ± 2.6% of control) (Figure 5A). Furthermore, the RA-stimulated glucose uptake was
not affected by STO-609 (RA: 190 ± 4.6% of control, STO + RA: 191 ± 4.7% of control) (Figure 5A).
Additionally, we investigated the effect of STO-609 on RA-induced phosphorylation of AMPK and its
downstream effector ACC (Figure 5B,C). Treatment with STO-609 alone did not affect AMPK or ACC
phosphorylation. Furthermore, the RA-induced phosphorylation of AMPK and ACC was not affected
by STO-609 treatment, indicating that CaMKK is not involved in the RA-induced phosphorylation of
AMPK and ACC (Figure 5B,C).
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Figure 5. (A) Effect of STO-609 on rosmarinic acid (RA)-induced glucose transport. L6 myotubes were
incubated in the absence (control, C) or presence of 27 µM STO-609 (STO) for 1 hour followed by
the addition of 5.0 µM RA (4 h) and glucose uptake measurements. Results are the mean ± SE of 3
independent experiments. *** p < 0.001 vs. control. (B) Effect of STO-609 (STO) on AMPK and (C) ACC
phosphorylation. Whole-cell lysates were immunoblotted for phospho (Thr 172) (P-AMPK) or total
AMPK (T-AMPK) (B) or for phospho (Ser 79) (P-ACC) or total ACC (T-ACC) (C).

2.4. Effect of Rosmarinic Acid (RA) on PI3K–Akt Signaling Cascade

The effects of RA on the PI3K-Akt signaling cascade, the key players involved in insulin-stimulated
glucose uptake, were also examined. For that purpose, we used the PI3K inhibitor wortmannin.
Wortmannin did not have an effect on RA-stimulated glucose uptake (RA: 186 ± 4.17% of control,
W + RA: 182± 6.32% of control) or RE-stimulated glucose uptake (RE: 202± 10.60% of control, W + RE:
192 ± 10.42% of control), indicating that the PI3K signaling is not involved (Figure 6A). On the other
hand, wortmannin completely blocked insulin-stimulated glucose uptake (I: 204 ± 9.10% of control,
W + I: 123 ± 8.91% of control), indicating effective blocking of PI3K by wortmannin. We further
examined the effect of RA on Akt. Our data indicated that RA does not have an effect on Akt
phosphorylation or expression, contrary to the significant phosphorylation of Akt observed with insulin
stimulation (Figure 6B). Metformin also did not affect the levels of Akt phosphorylation/expression
(Figure 6B). In addition, the phosphorylation of the downstream physiological target of Akt, p70 S6K,
was investigated. Treatment with RA and metformin did not affect the phosphorylation/expression
of p70 S6K. In contrast, treatment with insulin lead to a robust increase in p70 S6K phosphorylation
(Figure 6C). Altogether, these data show no effect of RA on the PI3K-Akt signaling cascade.
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control. ### p < 0.001 vs treatment in the absence of CC. (C) Effect of compound C (CC) on RA-induced 
AMPK and (D) ACC phosphorylation. Whole-cell lysates were immunoblotted for phospho-AMPK 
(Thr 172) (P-AMPK), total AMPK (T-AMPK) (C) or for phospho-ACC (Ser 79) (P-ACC) or total ACC 
(T-ACC) (D). 
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Figure 5. (A) Effect of STO-609 on rosmarinic acid (RA)-induced glucose transport. L6 myotubes were 
incubated in the absence (control, C) or presence of 27 µM STO-609 (STO) for 1 hour followed by the 
addition of 5.0 µM RA (4 h) and glucose uptake measurements. Results are the mean ± SE of 3 
independent experiments. *** p < 0.001 vs control. ### p < 0.001 vs treatment in the absence of STO-609. 
(B) Effect of STO-609 (STO) on AMPK and (C) ACC phosphorylation. Whole-cell lysates were 

Figure 6. (A) Effect of wortmannin (W) on rosmarinic acid (RA)-induced glucose uptake. L6 myotubes
were incubated in the absence (control, C) or presence of 100 nM wortmannin (W) for 15 min followed
by the addition of 5.0 µM RA (4 h), 5 µg/mL of RE (4 h) or 100 nM insulin (30 min) and glucose uptake
measurements. Results are the mean SE of 6–7 independent experiments. *** p < 0.001 vs. control.
### p < 0.001 vs. treatment in the absence of wortmannin. (B) and (C) Effect of rosmarinic acid (RA) on
Akt and P70 S6K phosphorylation. L6 myotubes were treated without (control, C) or with 5.0 µM RA
(2 h), I 100 nM (30 min) or 2 mM metformin (MET) (2 h). Whole-cell lysates were prepared, resolved by
SDS-PAGE and immunoblotted with specific antibodies that recognize phosphorylated Akt (P-Akt) or
total Akt (T-Akt) (B) or phosphorylated p70 S6K (P-p70S6K) or total p70 S6K (T-p70S6K) (C).

2.5. Effect of PKC Inhibition on RA-Stimulated Glucose Uptake

Previous evidence indicates that activation of protein kinase C (PKC) leads to an increase in
glucose uptake in muscle cells in response to different stimuli [34–37]. Based on this evidence and
our data showing partial and not complete inhibition of RA-stimulated glucose uptake with AMPK
inhibition (Figure 4B), we hypothesized that PKCs may play a role in RA-stimulated glucose uptake.
To address this hypothesis, we used bisindolylmaleimide I (BMD), a selective inhibitor of PKCα-,
βI-, βII-, γ-, δ- and ε- isozymes, used extensively in other studies [38–40]. BMD did not have any
effect on the basal glucose uptake (103 ± 3.4% of control) (Figure 7A). Furthermore, RA-stimulated
glucose uptake was not affected by BMD (RA: 190 ± 4.6% of control, BMD + RA: 188 ± 7.3% of control)
(Figure 7A). Additionally, we investigated the effect of RA on PKC phosphorylation, which is correlated
with an increase in PKC activity [41], using a specific antibody phospho-PKC (pan) that recognizes
conventional (α, βI, βII) and novel (δ, ε, η and θ) PKCs (Figure 7B). Treatment of the cells with RA did
not have any effect on PKC phosphorylation/activation (Figure 7B). On the other hand, treatment
with 12-O-tetradecanoylphorbol-13-acetate (TPA) significantly increased PKC phosphorylation.
Furthermore, in the presence of BMD, the TPA-induced PKC phosphorylation/activation was
completely abolished, indicating that in our experiments, BMD acts as an effective inhibitor of PKCs.
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Figure 7. (A) Effect of bisindolylmaleimide I (BMD) on rosmarinic acid (RA)-induced glucose transport.
L6 myotubes were incubated in the absence (control, C) or presence of 1 µM bisindolylmaleimide
I (BMD) for 1 h followed by the addition of 5.0 µM RA (4 h) and glucose uptake measurements.
Results are the mean ± SE of 3 independent experiments. *** p < 0.001 vs. control. (B) Effect of
RA on PKC phosphorylation. Cells were incubated in the absence or presence of 1 µM BMD for 1 h
followed by addition of 5.0 µM RA (2 h) or 200 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) (20
min). Whole-cell lysates were prepared, resolved by SDS-PAGE and immunoblotted with specific
antibodies that recognize phosphorylated/activated PKC.

2.6. Effect of RA on Glucose Transporters

To elucidate the mechanism by which RA increased glucose uptake, we measured plasma
membrane GLUT4 and GLUT1 levels in GLUT4myc- and GLUT1myc-overexpressing cells, respectively.
RA did not cause a significant increase in plasma membrane GLUT4myc levels (117 ± 2.70% of control,
p > 0.05) (Figure 8A). On the other hand, maximal insulin (10−7 M, 20 min) and metformin (1 mM
for 2 h) treatment stimulated GLUT4myc translocation (207 ± 7.86% of control and 175 ± 12.47%
of control, respectively, both p < 0.001) (Figure 8A). RE did not have any effect on GLUT4myc
translocation (106 ± 3.20% of control, p > 0.05). Similarly, RA and RE did not cause a significant increase
in plasma membrane GLUT1myc levels (116 ± 2.51% of control and 113 ± 5.52% of control, respectively,
both p > 0.05) (Figure 8B). Insulin (10−7 M, 20 min) and metformin (1 mM, 2 h) significantly increased
plasma membrane GLUT1 levels (139 ± 1.44% of control and 135 ± 2.14% of control, respectively,
both p < 0.001) (Figure 8B). It should be noted that RA increased glucose uptake in GLUT4myc
(178 ± 8.62% of control, p < 0.01) and GLUT1myc (198 ± 3.84% of control, p < 0.001) overexpressing
cells (Figure 8C,D).
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measurements (A,B) or glucose uptake measurements (C,D). Results are mean ± SE of 5–7 
independent experiments. *** p < 0.001vs control. 
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Figure 8. Effect of RA on plasma membrane GLUT levels and glucose uptake in GLUT-overexpressing
cells. L6 GLUT4myc (A,C) or GLUT1myc (B,D) overexpressing cells were treated with 5 µM rosmarinic
acid (RA) (4 h), 5 µg/mL rosemary extract (RE) (4 h), insulin (I) (100 nM, 0.5 h), or 2 mM metformin
(MET) (4 h), followed by GLUT4 or GLUT1 plasma membrane transporter level measurements (A,B)
or glucose uptake measurements (C,D). Results are mean ± SE of 5–7 independent experiments.
*** p < 0.001 vs. control.

3. Discussion

We previously found that treatment of L6 muscle cells with 5 µg/mL of rosemary extract
increased glucose uptake to a level comparable to maximum stimulation observed with insulin
and metformin [27], and we hypothesized that specific polyphenols present in the RE may contribute
to the increase in glucose uptake. We measured the direct effect of carnosic acid on muscle cells and
found a significant increase in glucose uptake and activation of AMPK [31]. In the current study,
we continued our investigation and focused on the rosemary polyphenol rosmarinic acid (RA).

To this end, we conducted high-performance liquid chromatography (HPLC) to measure the levels
of RA present in our RE, and it was found to be 13.39%. This concentration of RA was comparable to
previous concentrations reported to be found in RE [42]. Based on the values obtained from the HPLC
and the molecular weight of RA (MW: 360.32 g/mol), we calculated that in media containing 5 µg/mL
of our rosemary extract, the corresponding concentration of RA is 2 µM. We wished to examine if this
micromolar concentration of RA affects muscle glucose uptake. This study is the first to demonstrate
that RA concentration as low as 2 µM stimulated glucose uptake in L6 muscle cells to significant levels.
Importantly, a stimulation comparable to maximal insulin and metformin was observed at 5 µM RA,
indicating a potential for RA to be used similar to metformin as a pharmacological intervention in the
treatment of insulin resistance.

RA did not affect the maximal (100 nM) but significantly enhanced the submaximal (3 nM) insulin
response. These data suggest that when the insulin response is reduced (is at submaximal levels),
as in the case of insulin resistance, treatment with RA has the potential to restore glucose uptake
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and therefore may be beneficial. Future studies should examine the effects of RA on insulin-resistant
muscle cells.

In the present study, it was found that the effect of RA on glucose uptake is PI3K-independent,
since wortmannin, an irreversible inhibitor of PI3K, did not affect the RA-stimulated glucose uptake.
Wortmannin completely blocked the insulin-stimulated glucose uptake, and therefore, we are confident
that wortmannin effectively blocked PI3K activation in our studies. Additionally, Akt phosphorylation
and phosphorylation of its downstream target, p70 S6K, was not affected by RA, while a robust
activation was seen with insulin treatment. These data clearly indicate activation of the PI3K–Akt
cascade by insulin without any effect on this cascade by RA.

Importantly, treatment with RA significantly increased AMPK phosphorylation at its Thr 172
residue, which correlates highly with kinase activity and is used as a marker of its activation [8,9,14,32].
Moreover, treatment with RA significantly increased the phosphorylation of ACC, a downstream
effector of AMPK, used as an index of AMPK activity in numerous studies [8,9,14,32]. Compound
C, an ATP-competitive inhibitor of AMPK, significantly decreased the RA-mediated glucose uptake,
indicating AMPK involvement in the action of RA. Compound C abolished the RA-stimulated
phosphorylation of AMPK and ACC, indicating effective inhibition of AMPK in our study.

Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), an upstream regulator of AMPK,
phosphorylates Thr172 and increases AMPK activity [9,14,43]. CaMKK may be mediating the
increase of muscle AMPK activity by a variety of stimuli including contraction [44] and oxytocin [45].
We hypothesized that CaMKK may be involved in RA-stimulated glucose uptake, and to address
our hypothesis we used STO-609, an established inhibitor of CaMKK [33]. Our study showed that
inhibition of CaMKK by STO-609 did not affect the RA-stimulated glucose uptake or the RA-induced
AMPK phosphorylation, indicating that this kinase is not involved in the mechanism of action of RA.
According to Hawley et al., there is a possibility that STO-609 may directly inhibit AMPK activity
without affecting the phosphorylation of AMPK [46]. Therefore, we examined phosphorylation of
ACC, the downstream target of AMPK, established as a proxy of AMPK activity. STO-609 did not have
any effect on the RA-induced phosphorylation of ACC, further indicating that CaMKK is not involved
in the RA-stimulated glucose uptake.

It is important to note that the RA-stimulated glucose uptake, although significantly reduced
by compound C, was not completely abolished. This partial inhibition of RA-stimulated glucose
uptake under conditions of AMPK inhibition suggests that signaling molecules other than AMPK
may be involved in the action of RA. Different studies indicate that conventional/novel PKCs may be
involved in the increase of muscle glucose uptake by different stimuli [34,47,48]. A significant part of
metformin-stimulated muscle glucose uptake was found to be independent of AMPK and dependent
on novel /conventional PKCs [34]. We therefore hypothesized that PKCs may be involved in the
RA-stimulated glucose uptake, and to address our hypothesis, we used bisindolylmaleimide I (BMD),
a selective inhibitor of conventional/novel PKCs widely used in other studies [37,49], and found
that the RA-stimulated glucose uptake was not affected by BMD. We further performed western blot
experiments examining phosphorylation/activation of PKCs. We used an antibody that recognizes
endogenous levels of conventional (α, βI, βII) and novel (δ, ε, η and θ) PKCs phosphorylated at the
carboxy-terminal residue homologous to Ser 660 of PKCβII (P-PKC). It should be noted that PKC
phosphorylation at this specific site recognized by the antibody used correlates with increased PKC
activity [41]. We are confident that PKCs are expressed and can be activated in L6 myotubes, as we
found a robust phosphorylation/activation of PKC with 12-O-tetradecanoylphorbol-13-acetate (TPA)
treatment. Importantly, the TPA-induced PKC phosphorylation/activation was completely abolished
by BMD, indicating that in our studies, BMD was an effective inhibitor of PKCs. Taken together,
our data indicate that the RA-stimulated glucose uptake is independent of conventional and novel
PKCs. It is possible that atypical PKCs may be involved in the RA-induced glucose uptake and this
could be further examined in the future.
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L6 muscle cells express GLUT1, GLUT3 and GLUT4 glucose transporters [50]. We measured
plasma membrane GLUT1 and GLUT4 levels in L6 cells overexpressing GLUT1 or GLUT4, respectively.
Our data showed that there was no significant increase in plasma membrane levels of GLUT1 or
GLUT4 by RA, although there was a significant increase in glucose uptake. RE treatment also did not
significantly increase plasma membrane levels of GLUT1 or GLUT4, in agreement with our previous
studies [27,31]. On the contrary, both insulin and metformin increased GLUT1 and GLUT4 plasma
membrane levels in agreement with previous studies [27,31,51]. It is possible that the increase in
glucose uptake by RA in the present study may be due to either GLUT3 translocation (since GLUT3
is also expressed in L6 cells [50]) or increased intrinsic activity of the plasma membrane-localized
GLUTs. A recent study has shown that acute (30 min) treatment with triiodothyronine (T3) increased
glucose uptake in GLUT4myc-overexpressing L6 muscle cells without increasing GLUT4 translocation
to the cell membrane [52], suggesting that T3 enhanced the activity of the GLUTs present on the cell
membrane. The effect of RA is similar to the effect observed with RE [27] and CA [31] treatment in
our previous studies, and similar to the effect of T3 [52], suggesting that these stimuli/treatments may
increase the activity of plasma membrane-localized GLUTs.

A limited number of studies performed in cardiomyocytes [53,54] and C2C12 muscle cells [55]
indicate that RA reduces cellular reactive oxygen species (ROS) levels and has antioxidant properties.
Antioxidants such as astaxanthin, α-tocopherol and α-lipoic acid [56] have been shown to increase
glucose uptake in L6 muscle cells, and therefore, it is possible that the increase in glucose uptake seen by
RA in our study is due to its antioxidant properties. In a recent study, treatment of L6 muscle cells with
20 µM RA prevented the palmitate-induced decline of the mitochondria biogenesis markers PGC-1a,
SIRT-1 and TFAM, an effect that was similar to metformin treatment [57]. In addition, RA prevented
the palmitate-induced IRS-1 (ser307) phosphorylation and the decline in plasma membrane GLUT4
levels [57].

A limited number of studies have also examined the antidiabetic effects of RA in vivo.
Administration of RA (120–200 mg/kg, 7 days) dose-dependently ameliorated hyperglycemia and
insulin resistance and prevented reduction in GLUT4 expression in streptozotocin (STZ)-induced diabetic
rats [26]. Furthermore, RA (100 mg/kg bw/day) increased AMPK and modulated the expression of
mitochondrial biogenesis markers SIRT-1, PGC-1a and TFAM in high-fat-diet STZ-diabetic rats in
addition to restoring GLUT4 levels to the plasma membrane [57].

It is important to note that for the first time, the tolerability and safety of RA was recently assessed
in humans [58]. Healthy volunteers were given Melissa officinalis (lemon balm) extract containing
500 mg of RA. The total serum concentration of RA reached maximum (162.20 nM) in 1 h after the
administration in fasting state [58], clearly indicating that RA is readily absorbed. More importantly,
administration of the extract containing RA had no effect on the blood, kidney or liver function
parameters, and no side-effects were reported [58]. Although this study indicates RA is well-tolerated
and safe in humans [58], more studies are required to examine safety and potential toxicity of chronic
RA administration.

4. Conclusions

In conclusion, the present study shows a direct effect of rosmarinic acid (RA) to significantly
increase glucose uptake in L6 muscle cells to levels comparable to insulin and metformin. The glucose
uptake was partially but significantly inhibited in the presence of compound C, an inhibitor of
AMPK, but was not affected by wortmannin, an inhibitor of PI3K, indicating a mechanism that is
partially dependent on AMPK and independent of PI3K. Overall, more studies should be performed
to investigate further the potential of rosmarinic acid to be used to prevent and/or manage insulin
resistance and T2DM.
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5. Materials and Methods

5.1. Materials

Fetal bovine serum (FBS), rosmarinic acid, dimethyl sulfoxide (DMSO), o-phenylenediamine
dihydrochloride (OPD), cytochalasin B and STO-609 inhibitor were purchased from Sigma Life Sciences
(St. Louis, MO, USA). Materials for cell culture were purchased from GIBCO Life Technologies
(Burlington, ON, Canada). Several antibodies were used in our study, including phospho- and
total-AMPK (CAT 2531 and 2532, respectively, New England BioLabs (NEB) (Missisauga, ON, Canada),
rabbit, 1:1000 dilution), Akt (CAT 9271 and 9272, New England BioLabs (NEB) (Missisauga, ON), rabbit,
1:1000 dilution), ACC (CAT 3661 and 3676, New England BioLabs (NEB) (Missisauga, ON), rabbit,
1:1000 dilution), p70 S6K (CAT 9205 and 2708, New England BioLabs (NEB) (Missisauga, ON), rabbit,
1:1000 dilution), phospho-PKC (pan) (βII Ser660) (CAT 9371, New England BioLabs (NEB) (Missisauga,
ON), rabbit, 1:1000 dilution), 12-O-tetradecanoylphorbol-13-acetate (TPA) (CAT 4174, New England
BioLabs (NEB) (Missisauga, ON)) and HRP-conjugated anti-rabbit antibodies (CAT 7074, New England
BioLabs (NEB) (Missisauga, ON), 1:2000 dilution). In addition, anti-c-myc antibodies (CAT 3956, Sigma
Life Sciences, 1:500 dilution) and peroxidase-conjugated goat anti-rabbit IgG were purchased from
Sigma Life Sciences and Jackson ImmunoResearch Labs (West Grove, PA, USA (CAT: 111-035-144,
1:1000 dilution), respectively. Insulin (Humulin R) was from Eli Lilly (Indianapolis, IN, USA).
Compound C, wortmannin and bisindolylmaleimide I were purchased from Calbiochem (Gibbstown,
NJ, USA). Luminol Enhancer reagents, polyvinylidene difluoride (PVDF) membrane, and reagents
for electrophoresis and Bradford protein assay were purchased from BioRad (Hercules, CA, USA).
[3H]-2-deoxy-D-glucose was purchased from PerkinElmer (Boston, MA, USA).

5.2. Measurement of Rosmarinic Acid Levels in Rosemary Extract

The preparation of RE was conducted as previously described. As a standard we used RE and
RA which were dissolved at a concentration of 2 mg/mL in sterile DMSO. 2.5 µL of previously
prepared aliquots were injected into a reversed-phase Agilent 1100 series high-performance liquid
chromatography (HPLC) instrument which was equipped with an autosampler. Quantification and
separation were conducted at 25 ◦C via mobile phase consisting of solvent A and solvent B. Solvent A
consisted of 0.1% formic acid and solvent B consisted of acetonitrile. Over 30 min, a linear gradient of
95% solvent A and 5% solvent B was attained. The detection was set at 254 nm and the flow rate at
0.4 mL/min. Identification of RA was achieved by comparison of the actual retention time to those of
authentic reference standard of RA. Furthermore, quantification of RA was done by calculating the
peak areas after completion of HPLC separation. Mean total content was expressed in % (g/100 g dry
weight extract).

5.3. Cell Culture, Treatment and Glucose Uptake Assay

L6 rat muscle (parental, overexpressing GLUT4myc and GLUT1myc) cells were grown in α-MEM
media containing 2% v/v fetal bovine serum (FBS) until fully differentiated. Myotube stage was reached
at approximately 6 to 7 days after seeding. Prior to the experiments, the cells were serum-deprived
for 3 h followed by treatment as described in the figures. After treatment, the cells were washed
with HEPES-buffered saline (HBS) solution and exposed to 10 µM [3H]-2-deoxy-D-glucose in HBS
for 10 min to measure glucose uptake. Exposure to 10 µM cytochalasin B was used to determine the
non-specific glucose uptake. At the end of the 10 min uptake time, the cells were rinsed with 0.9%
NaCl solution followed by 0.05 M NaOH lysis buffer. Liquid scintillation counter (PerkinElmer) was
used to measure radioactivity. Bio-Rad protein assay was used to quantify protein levels.

5.4. Immunoblotting

After treatment, whole lysates were obtained by washing the cells with ice-cold HBS solution and
lysing with ice-cold lysis buffer. Lysates were kept at −20 ◦C. Protein samples (15 µg) were separated
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using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to
PVDF membrane followed by exposure to blocking buffer containing 5% w/v dry milk powder
in Tris-buffered saline and overnight incubation with the primary antibody at 4 ◦C followed by
exposure to HRP-conjugated anti-rabbit antibody for 1 h and Luminol Enhancer reagents (BioRad).
The corresponding bands were visualized using FluroChem software (ThermoFisher, Waltham,
MA, USA).

5.5. GLUT4myc and GLUT1myc Translocation Assay

After treatment, fully differentiated GLUT4myc- or GLUT1myc-overexpressing myotubes were
fixed using 3% paraformaldehyde for 10 min at 4 ◦C and additional 20 min at room temperature
followed by exposure to 1% glycine in PBS, and blocked with 10% goat serum in PBS for 15 min at 4 ◦C.
The cells were then incubated with an anti-myc antibody for 60 min at 4 ◦C followed by exposure to
peroxidase-conjugated goat anti-rabbit IgG at room temperature for 30 min. The cells were rinsed and
incubated with o-phenylenediamine dihydrochloride (OPD) reagent for 30 min at room temperature
and the reaction was stopped by adding 3 M HCl. The absorbance of the supernatant was measured at
492 nM.

5.6. Statistical Analysis

GraphPad Prism v7.0 (GraphPad Software, Inc. La Jolla, CA, USA) was used to calculate the
significance of the differences between groups using ANOVA followed by Tukey’s post-hoc analysis.
Statistical significance was assumed at p < 0.05.
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