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Abstract: Reactions of glycidyl methacrylate with the crown and chair conformers of
tetra(4-hydroxyphenyl)calix[4]resorcinarene were studied. The reactions were done over epoxide
groups present in the ester, which can easily undergo an opening reaction with hydroxyl groups
in the macrocyclic system. Initially, epoxidation reactions were carried out with pure conformers,
and it was observed that the reaction between tetra(4-hydroxyphenyl)calix[4]resorcinarene fixed
in the chair conformation does not occur, while for the molecule fixed in the crown conformation
only one tetraalkylated derivative was obtained. The obtained product was characterized using
IR, 1H-NMR, 13C-NMR, COSY, HMQC and HMBC techniques. An exhaustive NMR study showed
that the reaction is selective at the hydroxyl groups in the lower rim, without affecting the hydroxyl
groups in the upper rim. In addition, the RP–HPLC analysis of the epoxidation reaction mixture,
using both crown and chair conformers, showed that only the crown conformer reacted under tested
conditions. Finally, a comparative study of the reactivity of tetranonylcalix[4]resorcinarene with
glycidyl methacrylate showed that the reaction does not take place. Instead, the formation of the
tetranonylcalix[4]resorcinarene tetrasodium salt was observed, which confirms that the hydroxyl
groups in the upper rim are unreactive under these conditions.
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1. Introduction

Investigation of resorcinarene derivatives provides a significant contribution to the development
of new applications, including separation techniques and heterogeneous catalysts, among others.
Resorcinarenes represent a class of macrocyclic phenolic compounds obtained from the condensation
reaction of resorcinol with several aromatic and aliphatic aldehydes in acidic solutions [1,2], and they
can be modified with various substituents on the upper and lower rim in order to provide specific
functionality and selectivity. The many possible structural variations lead to potential applications,
such as voltammetric sensors [3], dendrimer synthesis [4,5], dyeing of fibers [6,7], NMR solvating
agents [8,9], chemical receptors for molecules and ions [10–12], and absorption of heavy metal
ions [13,14]. Furthermore, resorcinarene derivatives can be absorbed or covalently bound to multiple
surface types. In this way, resorcinarenes are used in HPLC for stationary-phase modification.
The process involves the resorcinarene lower rim derivate with polar carbonate groups covalently
bonded to a silica substrate [15]. In another example, Tan et al. synthesized and used two
new stationary phases, (3-(C-methylcalix[4]resorcinarene)-2- hydroxypropoxy)-propylsilyl-appended
silica particles (MCR–HPS) and bromoacetate-substituted MCR-HPS particles (BAMCR–HPS),
where resorcinarenes are covalently linked by their upper rim to silica particles [16].

Molecules 2017, 22, 1660; doi:10.3390/molecules22101660 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://dx.doi.org/10.3390/molecules22101660
http://www.mdpi.com/journal/molecules


Molecules 2017, 22, 1660 2 of 11

Resorcinarene systems present conformations and conformational interconversions, and it has
been established that the general stability of the four conformations, in descending order of stability, is
cone, partial cone, 1,2-alternate and 1,3-alternate. Of these isomers, the cone conformer (rccc) is the
most thermodynamically stable compound [17].

Functionalizing of calix[4]resorcinarenes can be done from the starting materials. Varying the
nature of the aldehyde substituent group facilitates the modification at the macrocyclic lower-rim
system. At the upper rim, the obvious positions for chemical modification are the resorcinol hydroxyl
group and the ortho position [18–20], the hydroxyl groups of the upper rim being the most common,
which can be bridged to form extended cavities or substituted by functional groups for specific
applications [21]. An interesting reagent for resorcinarene modification at the upper rim is glycidyl
methacrylate (GMA), which can easily undergo a ring-opening reaction with nucleophilic reagents
that contain hydroxyl, carboxyl, trysil or amine groups [18,22,23]. The presence of an epoxide ring
in GMA favors further chemical modifications for various applications. In recent years, studies
have been carried out on the attachment of a hydroxyl group to a heterocyclic ring of GMA under
alkaline-catalyzed conditions [24].

In our previous reports about resorcinarene reactivity [19,25], we found that upper-rim
modification proceeds efficiently, and they are independent of the resorcinarene starting material
conformation. This result is in agreement with reports of other authors [26]. In this paper, we report
the reaction of the two conformers of tetra(4-hydroxyphenyl)calix[4]resorcinarene (the chair and crown
conformations) with the glycidyl methacrylate epoxide group. Our results showed that this reaction
can be strictly dependent on the conformer used for the process. Furthermore, the reaction proceeds
selectively at the hydroxyl group in the lower rim, without affecting the hydroxyl groups in the
upper rim.

2. Results and Discussion

Initially, we chose as model substrates the resorcinarenes tetra(4-hydroxyphenyl)calix[4]
resorcinarene (crown) (1a), tetra(4-hydroxyphenyl)calix[4]resorcinarene (chair) (1b) and
tetranonylcalix[4]resorcinarene (2), in order to explore the reactivity, selectivity and effects of
reaction conditions in the epoxidation using GMA. The synthesis of resorcinarene 2 was done through
the acid-catalyzed cyclocondensation of resorcinol with decanaldehyde in a 1:1 mixture of ethyl
alcohol and water at 75 ◦C, in a manner similar to that described in the literature [27]. The product was
purified by means of recrystallization. This derivative was characterized using spectral techniques,
including FT–IR and 1H-NMR (see the Experimental Section). This compound has been previously
synthesized by other authors, and our spectroscopic data agree with those reported by them [27–29].
The reaction of resorcinol with 4-hydroxybenzaldehyde (Scheme 1) was carried out under the same
conditions. RP–HPLC analysis of the reaction mixture showed two products corresponding to the
conformational mixture: crown (1a) and chair (1b) (Figure 1A). These isomers have already been
synthesized [30–33] and possess well-resolved signals in the aromatic region of their 1H-NMR spectra,
allowing easy assignment of the two conformers and inclusion of their molar ratios in the crude
product (1.2/1.0 crown/chair). Finally, the two products (1a and 1b) were separated by means of silica
column chromatography using AcOEt:benzene (8:2 v/v) as mobile phase. The 1H-NMR spectrum
of the first fraction showed two single peaks at 8.83 and 8.43 ppm, corresponding to two classes of
hydroxyl groups, the first signal corresponding to a hydroxyl group in the lower rim and the second
signal for the hydroxyl group in the upper rim. Additionally, all the patterns were consistent with the
structure of the expected crown conformer 1a. On the other hand, the spectrum of the second fraction
displayed three different hydroxyl moieties at 8.64 ppm, assigned to hydroxyl groups in the lower
rim, and two signals at 8.34 and 8.36 ppm, corresponding to two classes of hydroxyl groups attached
to resorcinol residues in the macrocyclic system. Careful analysis of all the patterns confirmed the
structure of chair conformer 1b.
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Figure 1. (A) Chromatogram of conformational isomers: crown conformation (1a), tR = 3.3 min, chair
conformation (1b), tR = 3.8 min. (B) Chromatogram of reaction mixture. (C) Chromatogram of pure
product 3, tR = 5.8 min.

As mentioned above, the presence of an epoxide ring in GMA favors further chemical
modifications for various applications, and the ring-opening reactions of the epoxide require an
alkaline medium. In this way, the reactions of resorcinarenes 1a, 1b and 2 were done by direct reaction
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with the glycidyl group through the alkaline-catalyzed ring opening of the epoxy substituent with
NaOH, using acetonitrile as a solvent at 57 ◦C in a manner similar to that described in the literature [24]
(Scheme 2). Under these conditions, the reaction of tetra(4-hydroxyphenyl)calix[4]resorcinarene
(crown) (1a) with a GMA solution in acetonitrile at 80 ◦C for 7 h afforded a solid product, which was
filtered and washed. This solid product was purified by means of recrystallization and was obtained
as a pale-orange solid. This derivative was characterized using spectral techniques, including FT–IR,
1H-NMR, 13C-NMR and 2D-NMR experiments (see the Experimental Section). The FT–IR spectrum
of 3 showed carbonyl group (1693 cm−1), aromatic ring (1611 cm−1), alkyl chain (2929 cm−1) and
hydroxyl group (3394 cm−1) absorptions.
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Scheme 2. Reaction of glycidyl methacrylate with calix[4]resorcinarenes 1a, 1b and 2.

In the 1H-NMR spectrum of 3, individual assignments of the protons were made based on
their positions, multiplicities, integral values and comparison of spectral data with reported values
of similar compounds [18,24,34]. The 1H-NMR spectrum of 3 displayed characteristic signals of
the glycidyl methacrylate substituent, specifically at 1.91 ppm (methyl groups, H1), 3.88, 4.09 and
4.23 ppm (H2-H4, protons in the open-ring glycidyl fragment) and vinyl protons at 5.69 and 6.11 ppm.
In the aromatic region, normally, the ortho and meta protons of the resorcinarene moiety attached to
the hydroxyl group give separate signals, as ortho protons are shielded by hydroxyl groups, while
meta protons are deshielded and resonate in the upfield region. Given this, the hydrogens of the
tetrasubstituted resorcinol units appear at 6.27 (H9) and 6.43 ppm (H12). The signals at 6.31 (H10) and
6.42 (H11) ppm were attributed to the hydrogens in the aromatic ring of the hydroxyphenyl residues.
Finally, the signal at 8.40 ppm was assigned to hydroxyl groups in the molecule. In order to confirm
the above assignments, the 1H–1H COSY spectrum was recorded. The correlations for 3 are given in
Table 1 and Figure 2; the observed 1H–1H COSY correlations confirm the assignments made.

The carbon signals in 13C-NMR spectrum were unambiguously assigned through 1D- and
2D-NMR experiments, including the HMQC and HMBC spectra. The observed correlations are
given in Table 2. The 13C-NMR spectrum shows a weak signal at 167.4 ppm with no correlation in the
HMQC spectrum. In the HMBC spectrum, this signal shows a correlation with the methyl protons,
and hence, this signal must be due to a carbonyl carbon. There are five weak signals at 120.9, 134.4,
135.8, 152.3 and 154.2 ppm. These signals have no correlations in the HMQC spectrum.
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Table 1. Principal correlations for compound 3 in the COSY spectrum.

Proton δ (ppm) Correlation

1 1.91 6 (5.69)
1 1.91 8 (6.11)
2 3.88 3 (4.09)
2 3.88 4 (4.23)
6 5.69 8 (6.11)
10 6.31 11 (6.42)

Molecules 2017, 22, 1660  5 of 11 

 

Table 1. Principal correlations for compound 3 in the COSY spectrum.  

Proton δ (ppm) Correlation 

1 1.91 6 (5.69) 

1 1.91 8 (6.11) 

2 3.88 3 (4.09) 

2 3.88 4 (4.23) 

6 5.69 8 (6.11) 

10 6.31 11 (6.42) 

 
Figure 2. Compound 3 carbon and hydrogen assignments. 

In the HMBC spectrum, the signal at 135.8 ppm shows a correlation with the methyl group 

protons (1.91 ppm). Hence, this signal should be at C-13. The signal at 134.4 ppm has a correlation 

with H-5, H-10 and H-11 (5.42, 6.31 and 6.42 ppm, respectively). Hence, the signal should be due to 

the aromatic carbon in the resorcinarene ring (C-12) attached to the bridged methylene. The signal at 

152.3 ppm has a correlation with the signals at 5.42 and 6.27 ppm (H-5 and H-9, respectively). Hence, 

the signals should be due to an aromatic carbon in the resorcinarene ring attached to the hydroxyl 

group. For the other aromatic residues in the molecule, the HMBC spectrum shows that the signal at 

120.9 ppm has correlations with signals at 5.42 and 6.27 ppm (H-5 and H-9, respectively). Therefore, 

this signal can be assigned to the aromatic carbon attached to the bridged methylene. Finally, the 

signal at 154.2 ppm shows correlations with the signals at 6.31 and 6.42 ppm (H-10 and H-11, 

respectively). Therefore, this signal can be assigned to the aromatic carbon substituted by the ether 

group. The epoxidation of the chair conformer (1b) was carried out under the same conditions, but 

the reaction does not afford the expected tetra-substituted ether; instead, conformer 1b was 

quantitatively recovered. 

To confirm this behavior, the reaction was carried out with a mixture of the conformers and 

GMA under the same conditions used with the pure conformers, and the reaction mixture was 

analyzed by means of RP–HPLC. The chromatographic method was carried out over a monolithic 

column using a gradient with a mobile phase of acetonitrile and water (containing trifluoroacetic acid 

0.05%) applied at a flow rate of 2 mL/min with detection wavelength at 210 nm. Under the mobile 

phase conditions, elution of the samples was completed in less than 10 min. The chromatogram for 

the conformational mixture showed that the retention times for 1a (crown) and 1b (chair) were 3.3 

and 3.8 min, respectively (Figure 1A), although, the conformers have a concentration ratio close to 

1:1, and in the chromatographic profile the peaks do not have the same area, indicating that the two 

conformers do not have the same molar absorptivity coefficient. The chromatographic analysis of the 

reaction mixture showed the same peaks for conformers 1a and 1b (Figure 1B). However, the peak at 

3.3 min was noticeably diminished, while the peak at 3.8 min remained unchanged. Additionally, the 

peak at 5.8 min, corresponding to the retention time of 3, allowed us to unequivocally establish that 

O-alkylation occurred by direct attack of hydroxyl groups in the lower rim of the crown conformer 

Figure 2. Compound 3 carbon and hydrogen assignments.

Table 2. Correlations for compound 3 in the HMQC and HMBC spectra.

Carbon δ (ppm) Correlation HMQC Correlation HMBC

1 18.0 1 (1.91) 6 (5.69), 8 (6.11)
2 41.2 5 (5.42) 11 (6.42), 12 (6.43)
3 66.3 3 (4.09) 2 (3.88)
4 68.8 2 (3.88) 4 (4.23)
5 71.4 4 (4.23) 3 (4.09)
6 101.6 9 (6.27) 13 (8.40)
7 113.8 10 (6.31) 11 (6.42)
8 120.9 - 5 (5.42), 9 (6.27), 13 (8.40)
9 125.9 6 (5.69), 8 (6.11) 1 (1.91)
10 129.7 11 (6.42) 5 (5.42), 10 (6.31)
11 129.8 12 (6.43) 5 (5.42)

12 134.4 - 5 (5.42), 10 (6.31), 11
(6.42)

13 135.8 - 1 (1.91)
14 152.3 - 5 (5.42), 9 (6.27), 13 (8.40)
15 154.2 - 10 (6.31), 11 (6.42)

16 167.4 - 1 (1.91), 3 (4.09), 6 (5.69),
8 (6.11)

In the HMBC spectrum, the signal at 135.8 ppm shows a correlation with the methyl group protons
(1.91 ppm). Hence, this signal should be at C-13. The signal at 134.4 ppm has a correlation with H-5,
H-10 and H-11 (5.42, 6.31 and 6.42 ppm, respectively). Hence, the signal should be due to the aromatic
carbon in the resorcinarene ring (C-12) attached to the bridged methylene. The signal at 152.3 ppm
has a correlation with the signals at 5.42 and 6.27 ppm (H-5 and H-9, respectively). Hence, the signals
should be due to an aromatic carbon in the resorcinarene ring attached to the hydroxyl group. For the
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other aromatic residues in the molecule, the HMBC spectrum shows that the signal at 120.9 ppm has
correlations with signals at 5.42 and 6.27 ppm (H-5 and H-9, respectively). Therefore, this signal can be
assigned to the aromatic carbon attached to the bridged methylene. Finally, the signal at 154.2 ppm
shows correlations with the signals at 6.31 and 6.42 ppm (H-10 and H-11, respectively). Therefore, this
signal can be assigned to the aromatic carbon substituted by the ether group. The epoxidation of the
chair conformer (1b) was carried out under the same conditions, but the reaction does not afford the
expected tetra-substituted ether; instead, conformer 1b was quantitatively recovered.

To confirm this behavior, the reaction was carried out with a mixture of the conformers and GMA
under the same conditions used with the pure conformers, and the reaction mixture was analyzed by
means of RP–HPLC. The chromatographic method was carried out over a monolithic column using a
gradient with a mobile phase of acetonitrile and water (containing trifluoroacetic acid 0.05%) applied
at a flow rate of 2 mL/min with detection wavelength at 210 nm. Under the mobile phase conditions,
elution of the samples was completed in less than 10 min. The chromatogram for the conformational
mixture showed that the retention times for 1a (crown) and 1b (chair) were 3.3 and 3.8 min, respectively
(Figure 1A), although, the conformers have a concentration ratio close to 1:1, and in the chromatographic
profile the peaks do not have the same area, indicating that the two conformers do not have the same
molar absorptivity coefficient. The chromatographic analysis of the reaction mixture showed the same
peaks for conformers 1a and 1b (Figure 1B). However, the peak at 3.3 min was noticeably diminished,
while the peak at 3.8 min remained unchanged. Additionally, the peak at 5.8 min, corresponding to the
retention time of 3, allowed us to unequivocally establish that O-alkylation occurred by direct attack of
hydroxyl groups in the lower rim of the crown conformer on the epoxide ring of GMA, and that this
process occurred selectively even in the presence of conformer 1b.

Finally, as expected, when the reaction was performed with 2, the ring-opening reaction of
GMA epoxidation did not proceed, and the only product that could be identified was tetrasodium
tetranonylcalix[4]resorcinarene (4), which precipitated from the reaction mixture (Scheme 2). The FT–IR
spectrum of 4 showed absorptions for C–O stretching (1159 cm−1), an aromatic ring (1614 cm−1),
an alkyl chain (2868, 2930 and 2953 cm−1) and a hydroxyl group (3318 cm−1). The 1H-NMR spectrum
displayed characteristic signals of nonyl chains (0.85, 1.21, 2.00 ppm), a methylene bridge fragment
between the aromatic rings (4.14 ppm), and the aromatic hydrogens of the tetrasubstituted resorcinol
unit (6.06 and 7.02 ppm). For hydroxyl protons, the signal at 9.67 ppm integrates for four protons.
The other protons were replaced by sodium ions. The 13C-NMR spectrum in DMSO-d6 showed
fourteen signals, which agreed with the structure of compound 4, that is, it displayed nine signals
for nonyl chains as shown in the experimental section. In this way, the signal at 34.0 ppm confirmed
the presence of the methylene bridge fragment between the aromatic rings, and the aromatic carbons
appeared at 103.6, 123.8 and 152.9 ppm. RP–HPLC analysis of the reaction mixture allowed us to
establish that GMA did not react, as it was recovered quantitatively.

Although the epoxide group present in GMA can easily undergo an opening reaction with
nucleophilic reagents that contain hydroxyl groups, such as resorcinarenes, NMR analysis of 3 and 4
showed that the reactions do not proceed at the hydroxyl groups in the upper rim of resorcinarenes 1a
or 2, and the reaction with 1b does not proceed. When the ring-opening reaction of GMA was
conducted in the presence of 1a, 90% of the GMA was consumed after 7 h, and a product of
O-alkylation of the hydroxyl groups in the lower rim was obtained, with 22% yield. The results
observed between GMA and the studied resorcinarenes make it possible to establish that the
reaction, under the described conditions, is regioselective and stereoselective, exhibiting a great
dependence on the starting conformation of the resorcinarene. Firstly, the observed regioselectivity
with conformer 1a can be explained by the different reactivity of hydroxyl groups. In 1a, two classes
of hydroxyl groups are observed: eight hydroxyl groups from resorcinol residues in the upper rim
of the resorcinarene system, which are stabilized by OH···O hydrogen bonds, forming a strong
interaction and making them less reactive than the four hydroxyl groups from the pendant substituent
(lower rim) under the reaction conditions. This tendency is confirmed by the results observed in the
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reaction of 2 with glycidyl methacrylate, which also does not generate the product of O-alkylation of
hydroxyl groups and which supports our finding that the regioselectivity in the crown conformer of
tetra(4-hydroxyphenyl)calix[4]resorcinarene is due to the strong hydrogen bonding in the upper rim
between hydroxyl groups [2,27,35,36].

Secondly, the reaction is stereoselective. The results of the epoxidation of
tetra(4-hydroxyphenyl)calix[4]resorcinarene immobilized in the crown (1a) and in the chair
(1b) conformations revealed a different reactivity, as has been observed in other similar cases [37–39].
While 1a produces the ether derivative 3, the epoxidation of 1b does not proceed, and this tendency is
confirmed by the results observed in the reaction of glycidyl methacrylate with the conformational
mixture. A possible explanation of this behavior can be proposed: the strong interaction between
the lower- and upper-rim hydroxyl groups in the chair conformation of 1b [35], which also did not
generate the product of O-alkylation of hydroxyl groups, because the conformation was maintained in
a circular hydrogen array [40,41].

3. Materials and Methods

3.1. General Experimental Information

IR spectra were recorded on a Thermo Fisher Scientific Nicolet iS10 FT–IR spectrometer with
a Monolithic Diamond ATR accessory and absorption in cm−1. 1H- and 13C-NMR spectra were
recorded at 400 MHz on a Bruker Avance 400 instrument. Molar mass was determined on a
MALDI–TOF spectrometer (Bruker Daltonics, Bremen, Germany) using 4-nitroaniline as a matrix for
the desorption/ionization process. RP–HPLC analyses were performed over a Chomolith® C18 column
(Merck, Kenilworth, NJ, USA, 50 mm) using an Agilent 1200 Liquid Chromatograph (Agilent, Omaha,
NE, USA). Chemical shifts are reported in ppm, using the solvent residual signal. The elemental
analysis for carbon and hydrogen was carried out using a Thermo Flash 2000 Elemental Analyzer.
The synthesis of these macrocycles was performed by means of the reaction between resorcinol
and different aldehydes under acidic conditions [42,43]. Used aldehydes were n-decanaldehyde
and 4-hydroxybenzaldehyde.

3.2. Synthesis of Calix[4]resorcinarenes

A resorcinol solution (10 mmol) and aldehyde (10 mmol) in ethanol:water (1:1) (20 mL) was
added drop by drop to hydrochloric acid (2 mL) and was reacted at reflux with constant stirring for
1–6 h. The reaction mixture was cooled in an ice bath, and the solid material that was formed was
filtered and washed with water to remove traces of acid. The filtrate was dried under vacuum and was
characterized by means of IR and 1H-NMR.

Tetra(4-hydroxyphenyl)calix[4]resorcinarene (crown) (1a) was obtained as pink solid at a yield of 54%
(determined by NMR). Mp > 250 ◦C decomposition. IR (KBr/cm−1): 3384 (O-H), 1249 (C-O); 1H-NMR,
DMSO-d6, δ (ppm): 5.53 (s, 4H, ArCH), 6.08 (s, 4H, ArH, ortho to OH), 6.47 (d, 8H, J = 8 Hz, ArH), 6.50
(s, 4H, ArH, meta to OH), 6.63 (d, 8H, J = 8 Hz, ArH), 8.43 (s, 8OH, ArOH), 8.83 (4OH, ArOH); 13C-NMR,
δ (ppm): 40.6 (ArCH), 102.9 (resorcinol C-2), 114.0 (resorcinol C-5), 121.0 (hydroxyphenyl C-3), 129.6
(hydroxyphenyl C-2), 136.0 (hydroxyphenyl C-4), 152.2 (resorcinol C-4), 152.3 (hydroxyphenyl C-1),
154.5 (resorcinol C-1).

Tetra(4-hydroxyphenyl)calix[4]resorcinarene (chair) (1b) was obtained as a pink clear solid at a yield of
46% (determined by NMR). Mp > 250 ◦C decomposition. IR (KBr/cm−1): 3384 (O-H), 1249 (C-O);
1H-NMR, DMSO-d6, δ (ppm): 5.42 (s, 4H, ArCH), 5.92 (s, 2H, ArH, ortho to OH), 6.09 (s, 2H, ArH,
ortho to OH), 6.27 (s, 2H, ArH, meta to OH), 6.30 (s, 2H, ArH, meta to OH), 6.31 (d, 8 H, J = 8 Hz, ArH),
6,42(d, 8H, J = 8 Hz, ArH), 8.32 (s, 4OH, ArOH), 8.34 (s, 4OH, ArOH), 8.64 (s, 4 OH, ArOH); 13C-NMR,
δ (ppm): 41.2 (ArCH), 113.9 (resorcinol C-2), 120.8 (hydroxyphenyl C-3), 121.9 (hydroxyphenyl C-2),
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129.9 (resorcinol C-5), 134.6 (hydroxyphenyl C-4), 152.4 (resorcinol C-4), 152.7 (hydroxyphenyl C-1),
154.4 (resorcinol C-1).

Tetranonylcalix[4]resorcinarene (2) was obtained as a yellow solid at a yield of 88%. Mp > 250 ◦C
decomposition. IR (KBr/cm−1): 3258 (O-H), 1171 (C-O); 1H-NMR, CDCl3, δ (ppm): 0.88 (t, 12H,
J = 8 Hz, CH3), 1.27 (m, 64H, (CH2)8), 4.30 (t, 4H, CH), 6.11 (s, 4H ortho to OH), 7.21 (s, 4H meta to
OH), 9.32 (s, 4H, OH), 9.60 (s, 4H, OH); 13C-NMR, δ (ppm): 14.3 (CH3), 22.9 (CH2), 28.2 (CH2), 29.5
(CH2), 29.7 (CH2), 29.8 (CH2), 29.9 (CH2), 30.0 (CH2), 32.1 (CH2), 33.4 (CH), 124.0, 125.0, 150.5 and
150.8 (resorcinol ring).

3.3. Reaction of calix[4]resorcinarenes 1a, 1b and 2 with GMA

Reactions were carried out following the method outlined in the literature [24]. In brief,
calix[4]resorcinarene (1 mmol) was reacted with glycidyl methacrylate (GMA) (8–12 mmol) under
catalysis of solid NaOH (4 mmol) in MeCN (45 mL) in a 250 mL two-neck round-bottom flask at
80 ◦C for 7 h with constant stirring and reflux under a nitrogen atmosphere. The reaction mixture was
cooled in an ice bath, and the solid material formed was filtered and washed with MeCN to remove
traces of NaOH. The filtrate was dried under vacuum and was characterized by means of IR, 1H-NMR,
13C-NMR, COSY, HMQC and HMBC.

2,8,14,20-Tetra(4-{2-hydroxy-3-[(2-methylacriloyl)oxy]propoxy}phenyl)calix[4]resorcinarene (3) was obtained
as a pale orange powder at a yield of 22%. Mp > 250 ◦C decomposition. IR (KBr/cm−1): 3394 (O-H),
1693 (C=O), 1238 (C-O); 1H-NMR, DMSO-d6, δ (ppm): 1.91 (12H, CH3), 3.88 (4H, OCH), 4.09 (8H,
COCH2), 4.23 (8H, ArOCH2), 5.42 (4H, ArCH), 5.69 (4H, Csp2H), 5.91 (4H, COH), 6.11 (4H, Csp2H), 6.27
(4H, resorcinol HC-2), 6.31 (8H, J = 8 Hz, oxyphenyl HC-2), 6.42 (8H, J = 8 Hz, oxyphenyl HC-3), 6.43
(4H, resorcinol HC-5), 8.40 (8H, resorcinol ArOH); 13C-NMR, δ (ppm): 18.0 (CH3), 41.2 (ArCH), 66.3
(COCH2), 68.8 (COH), 71.4 (ArOCH2), 101.6 (resorcinol C-2), 113.8 (oxyphenyl C-2), 120.9, (resorcinol
C-4), 125.9 (H2Csp2), 129.7 (oxyphenyl C-3), 129.8 (resorcinol C-5), 134.4 (oxyphenyl C-4), 135.8 (Csp2),
152.3 (resorcinol C-1), 154.2 (oxyphenyl C-1), 167.4 (C=O). MALDI–TOF MS (4-nitroaniline) analysis
shows a signal at m/z = 1448.57 corresponding to [M + Na]+ (calc. mass for M (C80H80O24): 1425.47).
Anal. calcd. for (molecular formula, C80H80O24): C = 67.41, H = 5.66; found: C = 66.96, and H = 5.73.

Tetrasodium 2,8,14,20-tetranonylpentacyclo[19.3.1.13,7.19,13.115,19]octacosa-1(25),3,5,7(28),9,11,13(27),
15,17,19(26),21,23-dodecaeno-4,10,16,22-tetraol-6,12,18,24-tetrakis(olate) (4) was obtained as a
cream-colored powder at a yield of 42%. Mp < 250◦C decomposition. IR (KBr/cm−1): 3319
(O-H), 1210 (C-O); 1H-NMR, DMSO-d6, δ (ppm): 0.85 (t, 12H, CH3), 1.21 (m, 56H, CH2), 2.00 (q, 8H,
CH2), 4.14 (t, 4H, CH), 6.06 (s, 4H, ortho to OH), 7.02 (s, 4H, meta to OH), 9.57 (s, 4H, OH); 13C-NMR,
δ (ppm): 14.4 (CH3), 19.2 (CH2), 22.7 (CH2), 28.5 (CH2), 29.4 (CH2), 29.8 (CH2), 30.0 (CH2), 32.0 (CH2),
33.9 (CH2), 34.0 (CH), 103.6, 123.8 and 152.9 (resorcinol ring). Anal. calcd. for (molecular formula,
C64H92O8Na4): C = 71.08, H = 8.58; found: C = 70.92, and H = 8.62.

3.4. Reversed-Phase HPLC Analysis

The RP–HPLC analysis was performed on a Merck Chromolith® C18 (50 × 4.6 mm) column using
an Agilent 1200 liquid chromatograph (Agilent, Omaha, NE, USA) with UV-vis detector (210 nm).
For the analysis of products (10 µL, 1 mg/mL), a linear gradient was applied from 5% to 70% Solvent
B (0.05% TFA in MeCN) in Solvent A (0.05% TFA in water) in 11.5 min at a flow rate of 2.0 mL/min at
room temperature.

4. Conclusions

Epoxidation reactions of conformers of tetra(4-hydroxyphenyl)calix[4]resorcinarene (crown and
chair) were carried out using GMA as the epoxidating agent under alkaline-catalyzed conditions.
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The upper rim of unsubstituted tetra(4-hydroxyphenyl)calix[4]resorcinarene immobilized in the crown
conformation could be regioselectivity alkylated to give a tetraalkyl ether, which was analyzed by
means of 1H-NMR, 13C-NMR and 2D-NMR. Although the formation of polyalkylated products is
theoretically possible, it was found that the corresponding alkylated ether is not formed with the
chair conformer. RP–HPLC analysis of the epoxidation reaction with a conformational mixture
(crown and chair) confirmed this behavior under the same reaction conditions. Finally, a comparative
study of the reactivity of tetranonylcalix[4]resorcinarene with glycidyl methacrylate confirmed that
the hydroxyl groups in the upper rim are unreactive under these conditions. The results observed
between the GMA and the studied resorcinarenes make it possible to establish that under the described
conditions the reaction is regioselective and stereoselective, exhibiting a great dependence on the
starting conformation of the resorcinarene.

Supplementary Materials: The Supplementary Materials are available online.
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