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Abstract: Liver X receptors (LXRs) have been increasingly recognized as a potential therapeutic
target to treat pathological conditions ranging from vascular and metabolic diseases, neurological
degeneration, to cancers that are driven by lipid metabolism. Amidst intensifying efforts to discover
ligands that act through LXRs to achieve the sought-after pharmacological outcomes, several lead
compounds are already being tested in clinical trials for a variety of disease interventions. While more
potent and selective LXR ligands continue to emerge from screening of small molecule libraries,
rational design, and empirical medicinal chemistry approaches, challenges remain in minimizing
undesirable effects of LXR activation on lipid metabolism. This review provides a summary of
known endogenous, naturally occurring, and synthetic ligands. The review also offers considerations
from a molecular modeling perspective with which to design more specific LXRβ ligands based
on the interaction energies of ligands and the important amino acid residues in the LXRβ ligand
binding domain.

Keywords: liver X receptors; LXRα; LXRβ specific ligands; atherosclerosis; diabetes; Alzheimer’s
disease; cancer; lipid metabolism; molecular modeling; interaction energy

1. Structure and Functions of Liver X Receptors

Nuclear receptors (NRs) are one of the most abundant classes of transcriptional regulators in
animals. They regulate diverse biological functions including homeostasis, reproduction, development
and metabolism, in normal as well as in pathological settings. Nuclear receptors are also known
as hormone receptors (HRs) that are ligand-activated transcription factors, providing a direct link
between signaling molecules that control these processes and transcriptional responses [1]. In all,
NRs comprise a group of 48 ligand-activated transcription factors in humans.

The liver X receptors (LXRs) are NRs that act as oxysterol sensors, regulating genes involved in
cholesterol and lipid metabolism. Based on the coding genes LXRs are classified as LXRα (NR1H3)
and LXRβ (NR1H2) [2]. LXRα is expressed most highly in the liver and to a lesser extent in the kidney,
small intestine, spleen, and adrenal gland [3,4]. In contrast, LXRβ is ubiquitously expressed [5].

LXRα consists of 447 [4] and LXRβ contains 461 [6] amino acids. The LXR molecules can be viewed
as having four functional domains: (1) an amino-terminal ligand-independent activation function
domain (AF-1), which may stimulate transcription in the absence of ligand; (2) a DNA-binding domain
(DBD) containing two zinc fingers; (3) a hydrophobic ligand-binding domain (LBD) required for ligand
binding and receptor dimerization; and, (4) a carboxy-terminal ligand-dependent transactivation
sequence (also referred to as an activation function-2 (AF-2) domain) that stimulates transcription
in response to ligand binding [7]. The DBD and LBD regions of LXRα and LXRβ have 75.6% and
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74% sequence identity, respectively [8]. The LBD of LXRα features a three-layered α-helical sandwich
structure common to all known nuclear receptors and contains ten α-helices [9]. Both LXRα and LXRβ
function as heterodimers with the retinoid X receptor (RXR). LXR/RXR is a “permissive heterodimer”
that may be activated by either LXR agonist or 9-cis retinoic acid, a specific RXR ligand. The LXR/RXR
complex binds to an LXR responsive element (LXRE) in the promoter region of target genes
which consists of two direct repeats of hexameric nucleotides, AGGTCA, separated by four or one
nucleotide(s) (DR4 or DR1) [10]. It is through these target genes that LXR regulate various biological
processes that are implicated in normal as well as pathological functions. Numerous LXR target
genes have been identified such as ATP binding cassette (ABC) transporter isoforms A1, G1, G5, and
G8, apolipoprotein E (ApoE), cholesteryl ester transfer protein (CETP), fatty acid synthase (FAS),
cytochrome P450 isoform 7A1 (CYP7A1)—cholesterol 7α-hydroxylase, and carbohydrate regulatory
element binding protein (ChREBP) [11].

The main function of LXRs is the regulation of cholesterol metabolism. Agonists of LXRs increase
insulin sensitivity and stimulate insulin secretion. Activation of LXRs inhibits inflammation and
autoimmune reactions. Moreover, pharmacological studies and genetic manipulations indicate that
LXRs inhibit atherogenesis [12]. LXRs are also involved in the regulation of renin secretion [13],
inhibition of amyloid b formation in the central nervous system [14], regulation of gonadal function
and steroidogenesis both in gonads and in adrenals [15], proliferation and differentiation of
keratinocytes [16], and inhibition of tumor cells proliferation [17]. LXR regulation of transcription
activity can be explained by four different models- ligand independent repression, direct activation,
ligand dependent activation and trans-repression. The specific activation/repression of gene
transcription by LXRs is cell and gene dependent. In the absence of an agonist, the LXR-RXR heterodimer
inhibits transcription by the recruitment of co-repressors N-CoR (nuclear receptor corepressor) and
SMRT (silent mediator of retinoic acid receptor and thyroid receptor) [10,18]. Ligand binding initiates the
dissociation of the co-repressors resulting in a moderate activation leading to stimulation of transcription.
Ligand binding is followed by recruitment of co-activators and in this state the transcription levels
are the highest. In the trans-repression model, LXRs have the capability of negatively regulating the
expression of inflammatory genes. While the mechanism of such trans-repression is not completely
understood, the process is known to involve the inhibition of inflammatory responses to cytokines
via blockade of the activity of the signal transducer and transcription activator nuclear factor NF-κB,
and activator protein 1 that induce transcription of the proinflammatory genes COX2, MMP9, IL-6,
MCP-1, iNOS, IL-1β [19–24]. Consequently, alterations in endogenous LXR activity is evidenced in
many pathological conditions such as atherosclerosis, cancer, neurological disorders such as multiple
sclerosis, Alzheimer disease and Parkinson disease, arthritis and skin diseases (Figure 1).

1.1. LXR and Atherosclerosis

The physiological ligands of LXR are the oxysterols that are produced endogenously by
enzymatic reactions, by reactive oxygen species (ROS)-dependent oxidation of cholesterol and by the
alimentary processes. The high affinity of oxysterols to LXRs has defined their physiological role as
“cholesterol sensors”. The ligand bound LXRs increase the expression of target genes associated
with reverse cholesterol transport, cholesterol conversion to bile acid, and intestinal cholesterol
absorption. Some of these genes are the ATP-binding cassette (ABC) transporters A1 and G1,
the sterol response element-binding protein-1c (SREBP-1c), the apolipoprotein E, phospholipid
transport protein, cholesterol 7α-hydroxylase and several other genes involved in lipogenesis such as
FAS and stearoyl-CoA desaturase (SCD) [25–31]. LXRα-knockout mice on high cholesterol diet when
subjected to genetic studies showed defects in cholesterol metabolism in the liver and a corresponding
increase in plasma cholesterol levels indicating the therapeutic role of LXR agonists in atherosclerosis.
Treatment with LXR agonists resulted in attenuation of atherosclerosis in vivo with a reduction in total
cholesterol and/or elevation in high density cholesterol [28,32–37]. The upregulation of the lipogenesis
genes by LXR increased plasma and hepatic triglyceride (TG) levels in mice and lipid accumulation in
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human mature adipocytes. Studies using LXR agonists have shown that the antiatherosclerotic effects
are accompanied with either an increase in TG levels or with no effects on lipogenesis leading to the
suggestion that some of the LXR agonists may be exhibiting antiatherosclerotic effect independent
of lipogenesis through direct actions on vascular wall. Indeed, LXR agonists are negative regulators
of key inflammatory genes TNFa, IL-1b, IL-6, COX2, iNOS and NF-κB leading to modulation of the
atherosclerotic plaque/lesions and a reversal of plaque accumulation [19–22,38,39].
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1.2. LXR and Cancer

LXR ligands were initially shown to have antiproliferative effects on prostate cancer cells. Similar
effects were also evidenced in breast cancer cells, colorectal cancer cells and chronic lymphocytic
leukemia. A more subtle effect was seen on acute myeloid leukemia cells. The antiproliferative
effect of LXR ligands can be attributed to its role in lipid metabolism and inflammation/immunity.
Cholesterol has been shown to accumulate in prostate tumor cells in increasing levels with a
concomitant increase in the enzymes of the mevalonate pathway. This is attributed to the upregulation
of the HGM-CoA reductase leading to de novo cholesterol synthesis which is an essential component for
tumor growth. LXR activation mitigated cholesterol homeostasis leading to inhibition of proliferation
in LNCaP prostate cancer cells [40,41]. Treatment of cancer cells with LXR ligands increased p27 protein
(a cyclin dependent kinase inhibitor) levels and decreased S-phase kinase associated protein (SKP2),
leading to an arrest in the cell cycle [40,42]. Thus exposure of ovarian cancer cells to the LXR ligands
induced apoptosis. In breast cancer cells, the levels of p27 and p21 did not change upon LXR ligand
treatment, but the SKP2 transcript and protein levels were decreased [22,43]. Evidence was found that
LXR ligand treatment decreased the most important proliferative factor ERα transcript and protein
levels in ER+ breast cancer cells [44].

While LXR agonists induce the expression of VEGF in murine/human primary macrophages and
in murine adipose tissue, the basal expression of VEGF does not seem to involve LXRs as evidenced by
the absence of vascular problems in LXR−/− mice. However, the tumor microenvironment is affected
by the LXR ligand treatment wherein the endothelial cells showed disturbances in vascular endothelial
growth factor receptor 2 distribution/signaling as related to angiogenesis with concomitant reduction in
tubulogenesis, proliferation and cell migration [45,46]. This anti-angiogenic effect could be a result of
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LXR effect on endothilial cholesterol homeostasis that mediates an impaired VEGFR2 compartmentation
and signaling. Thus changes in endothelial cholesterol have an effect on VEGFR2 signaling due to
the interactions of LXR with the complex signaling pathways within the lipid rafts/caveolae. LXRβ
is known to upregulate the expression of ApoE that is associated with inhibition of angiogenesis and
metastatic invasion in cancer cells. Indeed, LXR ligand treatment of MCF7 breast cancer cells and
melanoma cells showed an increase in ApoE leading to tumor growth suppression [47,48].

1.3. LXR and Alzheimer’s Disease (AD)

ApoE is the main lipid transporter protein in the central nervous system (CNS) [49]. It has been
proposed that the ApoE protein associates with lipid particles and transports them both within and
out of the CNS by acting as carriers for amyloid peptide transport. LXRs are known to regulate the
expression of ApoE and ABCA1 in astrocytes thereby controlling the overall expression of ApoE and
its lipidation levels. Recently, it has been shown that treatment with LXR agonists leads to upregulation
of ApoE and ABCA1 resulting in the clearance of amyloid by promoting Aβ transport in Alzheimer’s
disease [14,50–52]. The development of an LXR ligand that can penetrate the brain will have enormous
therapeutic potential by itself or in combination with other AD therapeutics [53,54].

2. Ligands of Liver X Receptors

2.1. Endogenous Agonists

Oxysterols (Figure 2) were found to be endogenous ligands for LXRs in mammals comprising
two different ligand types that activate LXRs [55,56]. The first type which comes under oxidized
derivatives of oxysterol includes 20(S)-, 22(R)-, 24(S)-, 25- and 27-hydroxy cholesterol and 24(S),
25-epoxycholesterols. These oxysterols bind to LXRs with Kd values ranging from 0.1 to 0.4 µM.
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24(S)-hydroxycholesterol, also known as cerebrosterol because of its abundance in brain, is
synthesized by 24-hydroxylase. It was proven to be an efficient activator of LXR regulated gene
ABCA1 [57,58]. 27-hydroxycholesterol is generated from cholesterol by the P450 enzyme sterol
27-hydroxylase which is encoded by Cyp27a1. It is further oxidized to aldehyde and carboxylic acid
(cholestenoic acid) by 27-hydroxylase. Both the 27-hydroxycholesterol and cholestenoic acid are the
ligands for LXRs [59–61]. 25-hydroxycholesterol, synthesized by 25-hydroxylase, is a potent regulator
of LXR mediated pathways. It also influences the expression of LXR dependent genes LPL, ABCG5
and ABCG8 [62].

The second types of LXR activating oxysterols are the intermediates of cholesterol biosynthesis.
24(S), 25-epoxycholesterol is a unique oxysterol which is produced in a shunt of the mevalonate
pathway. The loss of 24(S),25-epoxycholesterol decreases the expression of LXR target genes
ABCA1 [63]. Other intermediates such as desmosterol and zymosterol also activates the LXR [64].

Meiosis activating sterols have been reported to stimulate the oocyte meiosis via LXR
activation [37]. Examples include the sterol 4,4-dimethyl-5ax-cholesta-8,14,24-trien-31i-ol (FF-MAS),
which is the intermediate of cholesterol synthesis generated in the ovaries and a closely related
C29-sterol (4,4-dimethyl-5a-cholesta-8,24-dien-3p-ol) (T-MAS) [65].

2.2. Endogenous Antagonists

Several endogenous LXR antagonists have also been identified (Figure 3). Arachidonic acid and
other fatty acids competitively inhibited the activation process of endogenous SREBP-1c gene by
an external ligand T0901317 in cultured rat hepatoma cells. Arachidonate was shown to block the
activation of a synthetic LXR-dependent promoter in transfected human embryonic kidney 293-cells.
In vitro, arachidonate and other unsaturated fatty acids competitively blocked activation of LXR,
which is reflected in a fluorescence polarization assay that measured ligand-dependent binding of LXR
to a peptide derived from a coactivator [66,67].
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Prostaglandin F2α (PGF2α) is one of the cyclooxygenase metabolites of arachidonic acid.
PGF2α antagonized the T0901317 induced activation of LXRα-LBD and LXRβ-LBD in a dose dependent
manner with an IC50 value of 12.6 µM and 15 µM respectively. It also antagonized the activation of
ABCA1 and ABCG1 promoter activity induced by T0901317 [68]. Small heterodimer partner interacting
leucine zipper protein (SMILE) has been identified as a nuclear corepressor of the nuclear receptor
(NRs) family. Ursodeoxycholic acid (UDCA), is a bile acid which increases the SMILE protein level
in a dose dependent manner there by inhibits the LXRα [69]. 5α,6α-Epoxycholesterol (5,6-EC) is
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a product of cholesterol auto oxidation found in the human circulation and atherosclerotic lesions.
In an LXR-cofactor interaction assay, 5,6-EC bound directly to LXR-LBD and disrupted the recruitment
of a number of cofactors to both LXRα and LXRβ. 5,6-EC also exhibits the antagonist behavior with
LXR-mediated genes [70].

2.3. Natural Products and Derivatives

2.3.1. Natural Agonists

A variety of compounds purified from plants or fungi have been shown to modulate the activity
of LXRs. These naturally occurring compounds could offer potential therapeutic efficacy while
minimizing some side effects, such as hypertriglyceridemia [71]. Phytosterols including ergosterol,
brassicasterol, campesterol, β-sitosterol, stigmasterol and fucosterol are naturally occurring sterols and
are the plant equivalent of mammalian cholesterols (Figure 4). The treatment of intestinal cells with
phytosterols increases the expression of LXR target genes [72], suggesting that phytosterols or their
metabolites act as LXR ligands and influence cholesterol metabolism [73]. Stanols and sterols increases
intestinal ABCA1 expression (sitostanol 244%, sitosterol 273%, campesterol 213%, fucosterol 166%)
and decreases cholesterol absorption, suggesting that LXR is a target for dietary regulation of intestinal
cholesterol metabolism [72,73]. However, a recent study has shown that dietary plant sterols and
stanols inhibit cholesterol absorption within the intestinal lumen, which is independent of LXR [74].
The EC50 values of selected phytosterols are listed in Table 1 as compared to GW3965A, a widely used
synthetic agonist of LXR.
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Table 1. EC50 values of selected phytosterols evaluated in a coactivator peptide recruitment assay.

Phytosterol EC50 (nM)

LXRα LXRβ

Sitosterol 42 26
Campesterol 43 28

Fucosterol 33 42
Sitostanol 136 110

Campestenol 122 124
GW3965A 197 41

Fucosterol, a sterol abundant in marine algae, has hypocholesterolemic effects and increases
plasma high-density lipoprotein (HDL) activity. Fucosterol significantly induced the transactivation of
both LXRα (+155% at 200 µM; p < 0.05) and LXRβ (+83% at 200 µM; p < 0.05) in HEK 293 cells [75].
In HepG2 cells, fucosterol (200 µM) increased ABCA1, ABCG1, ABCG5, ABCG8 and cholesteryl ester
transfer protein (CETP) mRNA expression by 2.4-, 13.2-, 1.5-, 1.3- and 0.8-fold (p < 0.05) respectively.

YT-32 ((22E)-ergost-22-ene-1α,3β-diol), derived from ergosterol or brassicasterol, directly binds
to LXRα and stimulates the interaction of LXRα with ACTR and DRIP205 at a 10 µM concentration.
It also activates the LXRβ with an EC50 value of 1.1 µM. Unlike the synthetic LXR agonist T0901317,
YT-32 inhibits intestinal cholesterol absorption without increasing plasma triglyceride levels. Thus,
YT-32 selectively modulates intestinal cholesterol metabolism [76].

Diterpenes are natural steroids that are widely distributed in plants and insects (Figure 4 and
Table 2). Acanthoic acid (AA) is a pimaradiene diterpene, isolated from the root bark of Acanthopanax
koreanum Nakai. AA activates LXRα and LXRβ and modulates CCl4-induced liver fibrosis in animals
by inhibiting NF-κB translocation. AA has also been found to inhibit growth of rat hepatic stellate
cells (HSC-T6) via activation of LXR [77].

Table 2. LXR activities of diterpenoids, steroids and triterpenoids.

Name
LXR SPA Binding

IC50 (µM)
Cofactor Association

HTRF * Assay, EC50 (µM)
Transactivation Max.

Fold Induction

LXRα LXRβ LXRα LXRβ LXRα LXRβ

Acanthoic acid 0.25 1.49 0.18 ≥50 15.9 (100 µM) 5.6 (100 µM)
Viperidone 0.10 — ≥15 —– —- —-
Polycarpol 0.12 ≥15 0.030 ≥50 —– —–

Gorgostone Derivative 0.07 0.2 0.05 —- 13 (10 µM) 2.2 (10 µM)

* HTRF assay: Homogeneous Time Resolved Fluorescence assay.

Traves et al. reported that stimulation of macrophages with acanthoic acid-related diterpenes
(DTP 1-5) induces the expression of LXR target genes and cholesterol efflux to a similar level observed
with synthetic agonists like GW3965 and T0901317 [78]. Using a scintillation proximity assay, acanthoic
acid, polycarpol, gorgostane derivatives and viperidone derivatives selectively activate LXRα in
HEK293 cells, as shown in Table 2 [79].

Several natural ligands isolated from herbal medicines (Figure 5) have also shown activities
towards LXRs (Table 2). For example, gynosaponin TR1 ((20S)-2α,3β,12β,24(S)-pentahydroxydammar-
25-ene 20-O-β-D-glucopyranoside), a dammarane saponin which is isolated from Chinese herbal
medicine Gynostemma pentaphyllum, is an LXR agonist. It also exhibits selective activity towards LXRα
over LXRβ. In HEK293 cells, gynosaponin TR1 induced a significant elevation of luciferase activity for
LXRα at 10 µM concentration. It also enhanced the expression of ABCA1 and ApoE gene in THP-1
derived macrophages at the same concentration levels, which promotes the cholesterol efflux [80].
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Podocarpic acid is a natural non-steroidal LXR agonist derived from plant resins [81]. From the
LXR scintillation proximal binding assays it was concluded that podocarpic acid derivatives such as
its dimer anhydride and imides binds to both LXRα and LXRβ at 1–2 nM concentrations. Cell based
transactivation studies on HEK-293 cells indicate that the anhydride dimer exhibited the EC50 value of
1 nM against both receptors and showed 50- and 8-fold maximal induction of α and β LXR receptors,
respectively. The more stable and potent imide increases the total plasma cholesterol levels by 28%
with concomitant increase of HDL-cholesterol by 22% and decreases the LDL by 11% in hamsters.
Similar results were also observed in mice where HDL-cholesterol levels were increased by 19% [82].

More recently, it has been shown that honokiol, extracted from the bark of Houpu
(Magnolia officinalis), induces LXR transactivity in a reporter assay. It increases ABCA1 mRNA and protein
levels in a dose-dependent manner in U251-MG cells and in THP-1 cells by 3 fold. Honokiol increases
the ABCG1 and ApoE mRNA levels in THP-1 macrophage by 2.9- and 3-fold, and their protein levels
by 4.5- and 7-fold, respectively [83]. Similarly, honokiol increases expression of the ABCA1 gene in
peritoneal macrophages [84].

Paeoniflorin (Paeonia lactiflora Pall) is one of the active ingredients of Shaoyao, an herbal medicine
with anti-hyperlipidemic, neuroprotective, and anti-hepatofibrosis effects. Reporter assays show that
paeoniflorin transactivates the GAL4 promoter with an EC50 value of 8.7 µM. It also transactivates the
PLTP promoter, ABCA1 promoter and rat CYP7A1 promoter with EC50 values of 21.6 µM, 11.9 µM,
and 66 µM, respectively [85]. These results suggest that paeoniflorin may act as an LXRα agonist.
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Iristectorigenin B, isolated from Shegan (Belamcanda chinensis), significantly induced the
transcriptional activity of both LXRα (+540%) and LXRβ (+331%) at 20 µM in a dose-dependent manner.
Iristectorigenin B increased cholesterol efflux to HDL and reduced cellular cholesterol concentration in
macrophages. It also significantly increased the mRNA expression levels of both ABCA1 and ABCG1
LXR-responsive genes by 2.0 and 1.9-fold at 10 µM concentration, respectively [86].

Ethyl 2,4,6-trihydroxybenzoate (ETB) was isolated from Celtis biondii and was shown to directly
bind to and stimulate the transcriptional activity of LXRα and LXRβ. ETB significantly induced the
transactivation of both LXRα (+64%) and LXRβ (+55%) at 100 µM with an EC50 values of 80.76 and
37.8 µM, respectively. ETB increased the cholesterol efflux to HDL and reduced cellular cholesterol
concentration in THP-1, RAW 264.7 macrophages and intestinal cells in a dose dependent manner.
At a concentration of 100 µM, ETB increased ABCA1 mRNA expression by 7.4-fold for THP-1-derived
macrophages and 2.1-fold for RAW 264.7 macrophages, respectively, without inducing lipid increase
in HepG2 cells [87].

Cyanidin, a natural flavonoid found in many fruits and vegetables, is known to regulate cellular
lipid metabolism. Cyanidin induced the transactivation of LXRα by 32% (at 50 µM), 59% (at 100 µM)
and LXRβ by 33% (at 100 µM). The KD values of cyanidin with LXRα and LXRβ were measured
at 2.16 and 73.2 µM, respectively. Cyanidin activates the LXRα with an EC50 value of 3.48 µM and
LXRβ at 125.2 µM. Cyaniding also activated LXR responsive genes including ABCA1, SREBP-1c and
ABCG5 by 2.5 fold (100 µM), 3.6-fold (100 µM) and 1.4-fold (100 µM), respectively. It also reduced
the concentrations of cellular TG by 21% and 23% in THP-1 and HepG2 cells, respectively at 100 µM
concentration [88].

Cineole, a small aroma compound present in teas and herbs, has been shown to stimulate the
transactivation of LXRs. Treatment of CHO-K1 cells with cineole induced the transactivation of LXRα
by more than 75% and LXRβ by over 100%. In RAW 264.7 macrophages, cineole was able to reduce
cellular cholesterol levels. Cineole also significantly increased the mRNA expression of the LXR
responsive genes. Surprisingly, in hepatocytes that were stimulated with cineole, LXR responsive
genes FAS, SREBP-1c and SCD-1 were markedly downregulated. These results suggest that cineole is
acting like a partial agonist which selectively activates LXRs without inducing hepatic lipogenesis [89].

Apart from the plants and herbal derivatives, some fungal derivatives such as paxillin and
ergostan-4,6,8,22-tetraen-3-one, an erostane derivative (isolated from Norwegian soil) have also been
shown to possess agonist activities towards LXRs [90].

2.3.2. Natural Antagonists

While the main focus of LXR ligand development in the past 10 years has been on therapeutically
useful agonists, several naturally occurring antagonists have emerged in recent reports that
demonstrated the ability to reduce triglycerides and improve fatty liver conditions, suggesting potential
utility of LXR antagonists as therapeutic agents.

Figure 6 shows a few naturally occurring compounds that act as LXR antagonists. Guttiferone
inhibits the activity of LXRα with an IC50 value of 3.4 µM and that of LXRβ with an IC50 value of
>15 µM, which indicates the 5-fold selectivity towards LXRα. However, guttiferone did not show any
LXR activity in coactivation assays [91]. Riccardin C (RC) and riccardin F (RF) are non-sterol natural
LXR antagonists isolated from liverwort Blasia pusilla. RC is a selective antagonist of LXRβ and can
enhance ABCA1 expression and cellular cholesterol efflux in THP-1 macrophages by 2-fold, ABCG1 by
2.6-fold, SREBP-1c by 1.6-fold at 10 µM concentration. Riccardin F is a natural dual antagonist for both
LXR isoforms [92].

Naringenin is a flavonoid that can be found in grapefruit, oranges and tomatoes. Goldwasser et al.
confirmed that naringenin displayed antagonist activities towards LXRα in the presence of LXRα
agonist T0901317. It inhibited the LXRα activity by 28.4% at 126 µM and 39.1% at 400 µM concentrations
in HEK 293 T cells which were stimulated with 4.7 nM T0901317. It also reduced the abundance of
mRNA of ABCA1, ABCG1, HMGR and FAS genes by 92%, 27%, 43%, and 41% respectively [93].
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Genistein is a soy-derived flavone found to act as an LXR modulator. Like other isoflavones,
genistein is believed to regulate LXR activity indirectly by promoting the phosphorylation.
Genistein reduced the expression of SREBP-1c and ABCA1 by suppressing the activation of LXRα.
At the same time it was shown to increase the expression of ABCG5 and ABCG8 by activating LXRβ,
thus exhibiting opposing actions on the two different LXRs [94].

Taurine (2-aminoethanesulfonic acid), which is abundant in seafood, is known to exhibit the
nutritional implications in hypercholesterolemia and atherosclerosis. Hoang et al. [95] reported that
taurine binds directly to LXRα in CHO-K1 cells, and stimulates its transcriptional activity by +90%
at 100 µM concentration. They also confirmed that, taurine reduced the cellular cholesterol and
TG levels in hepatocytes by not inducing the fatty acid synthesis genes including FAS and SCD-1.
Taurine achieved this via inhibiting the nuclear translocation of the sterol regulatory element-binding
protein 1 protein (SREBP-1c) [95].

The Chinese herbal medicine Dahuang (Rheum palmatum L.) contains an anthraquinone-like
ingredient, rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) that was discovered to exhibit
antagonistic activities toward both LXRs [96]. The luciferase activity assays showed that rhein
dose-dependently inhibited the transcriptional activity of LXRα and LXRβ stimulated by the agonist
GW-3965. This suggests that rhein inhibits the expression of SREBP-1c or its target genes in the liver [96].

Kanaya et al. reported that the fatty acid biosynthesis pathways were downregulated in
mouse livers treated with white button mushroom (WBM). The LXR luciferase activity was
significantly decreased when cells were treated with T0901317 (LXR agonist) together with WBM
extract. Furthermore, suppression of LXR signaling in HepG2 cells was also found to mediate the
downregulation of FAS and ELOVL6 expression by WBM [97].

The selective inhibition of the transactivity of LXRβ in the presence of LXRβ agonist GW3965
by Kuding tea extract revealed its antagonist property. The mRNA expression of LXRβ targets genes
including ABCA1, ABCG1, LPL and ApoE, were significantly inhibited in the liver and fat tissue in
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mice treated with the Kuding tea extracts [98]. Okra polysaccharide has also been known to reduce
the LDL-c levels in obese C57BL/6 mice by suppressing the expression of LXR target genes such as
ATP-binding cassette transporter G1, ApoE, and CYP7A1 [99].

Kim et al. reported that methanol extracts (MEH184 and MEH185) of Parthenocissua tricuspidata
(Virginia creeper) and Euscaphis japonica (Korean sweetheart tree) inhibited the transcriptional activity
of LXRα in the presence of both agonists T0901317 and 22(R)-HC. Both these extracts dramatically
reduced the expression of FAS, ADD1/SREBP-1c and LXRα mRNA, which have been established to
be LXRα target genes [100].

2.3.3. Synthetic LXR Ligands

Multiple findings proving LXR’s efficacy in various disease states have driven the development of
novel and potent LXR modulators. T0901317 (Figure 7) is a non-steroidal synthetic ligand composed of
a tertiary sulfonamide and a bistrifluoromethyl carbinol, allowing for vital hydrogen binding activity
responsible for activating LXR and recruiting its cofactors [101]. The synthetic ligand has been proven
to induce ABCA1 expression, decrease cancer cell proliferation, and downregulate amyloid-β (Aβ)
peptide production. While T0901317 appears to be a very effective LXR activator, the ligand is also an
activator of the pregnane X receptor (PXR) and the farnesoid x receptor (FXR), as well as an inhibitor
of RORα and RORγ, putting the selectivity of this particular synthetic ligand into question [102,103].
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GW3965 is another non-steroidal, tertiary benzylamide shown to more selectively activate LXRα, with
an EC50 value of 648± 179 nM for activating LXRα, according to Fradera et al. [104]. The ligand, developed
by GlaxoSmithKline, has been tested for its benefits in the prevention of atherosclerotic incidences,
ischemia-induced brain damage, and other arthritic and inflammatory incidences. While GW3965
provides these benefits with increased selectivity for the LXRα, the ligand has been associated with
hypertriglyceridemic effects in mouse subjects, hindering possible therapeutic use [29,105].
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T0901317 and GW3965 have been studied extensively in the activation of LXR, and as
such, multiple research groups and companies have developed novel ligands to compare to the
previous synthetic molecules in search for new potent chemical scaffolds to interact within the LXR
ligand-binding pocket. GlaxoSmithKline has continued to develop these LXR activators with the
synthesis of GSK3987. GSK3987 is a substituted 3-(phenylamino)-1H-pyrrole-2,5-dione, or a maleimide,
that was proven to be a potent LXRα and LXRβ dual agonist and ABCA1 inducer, with an EC50 value
of 40 nM in activating LXRβ. While the efficacy of the new ligand is nearly comparable to previously
established LXR agonists, hypertriglyceridemia remains a concern for GSK3987 [106].

Chao et al. developed new N-phenyl tertiary amines based on modifications of T0901317.
With one of the suggested ligands (3FAL) co-crystallized within LXRβ to expose possible regions
of interaction within the receptor, GSK9772 was revealed to be a LXR modulator claimed to
have anti-inflammatory activity, with a 10-fold selectivity for LXR-mediated transrepression of
proinflammatory gene expression over transactivation of lipogenic signaling pathways without the
accumulation of triglycerides that have plagued the previous synthetic ligands [107].

Fradera et al. compared the LXR binding of GW3965 to the binding of a benzisoxazole urea
(crystallized in 3IPU) and F3methylAA/L783483, a benzisoxazole derivative (crystallized in 3IPS).
This class of compounds was shown to be effective in treating inflammation and cardiovascular
diseases, and the docking studies of these ligands presented the possible mechanism of cofactor
signaling with LXR homodimers and LXR: RXR heterodimers [104]. A series of tert-butyl benzoate
analogs, particularly with two (5AVI) and three (5AVL) aromatic rings has been synthesized for
evaluation as LXR agonists. The ligand found crystallized in 5AVL was found to induce blood ABCA1
mRNA expression without affecting the plasma triglyceride levels in both mice and cynomolgus
monkeys [108].

A new class of LXRβ partial agonists with the introduction of a pyrrole group to a T0901317
analog has been reported [109]. Two crystal structures, 4DK7 and 4DK8 (Figure 8), reveal that
two separate orientations comparing these ligands appear to both seal off the ligand-binding site of LXRβ,
confirming the receptor’s activation [9]. Bernotas et al. prepared 4-(3-aryloxyaryl)quinolines with sulfone
substituents that proved to have high affinity for the LXR binding site, with a potency comparable
to T0901317. Assays using J774 mouse cells revealed an increase in ABCA1 mRNA without PPAR
activation, which was an unwanted effect in the Wyeth synthesized, quinoline-based LXR ligands [110].
Kick et al. developed selective LXRβ partial agonists containing either pyrazole or imidazole functional
groups. The most potent ligand, crystallized in 4RAK, induces ABCA1 with an EC50 of 1.2 µM ex vivo
in human blood, and no significant triglyceride elevation when tested in mice [111].
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With the utilization of the structure-based drug design platform, Contour, Zheng et al. synthesized
LXRβ agonists mainly containing a 2-(methylsulfonyl)benzyl alcohol and a piperazine core. One such
compound (514V, Figure 8) exhibited 27 fold selectivity for LXRβ over LXRα, and is currently in
clinical trials for the treatment of atopic dermatitis [112].

More recent studies have seen synthetic agonists that focus on the therapeutic potential associated
with LXR activation and Alzheimer’s disease. Stachel et al. synthesized LXRβ selective agonists
containing bispiperidine and an isopropyl trifluoromandelate group that, upon dosing in rats,
allows for penetration into the brain, elevated apolipoprotein E and ABCA1 levels in the brain,
and a noticeable decrease in Aβ peptide production, all without an effect on triglyceride levels [54].
LXR modulators synthesized by Tice et al. have also been tested to increase ABCA1 levels in the brain,
with compounds 5KYA and 5KYJ crystallized in LXRβ. These particular compounds all contain a
2,4,5,6-tetrahydropyrrolo [3,4-c]pyrazole core, acting as a novel scaffold for these modulators [113].

3. LXR Ligand Design Considerations—A Molecular Modeling Perspective

The ligand-binding domains of the two LXR isoforms are very similar, with 74% sequence identity
and have identical residues in the first layer of their binding pockets (i.e., residues that make direct
contact with most ligands) [8]. In the following discussion we will focus on the structure of LXRβ,
keeping in mind the strong structural similarity between the two forms of the protein. It should be
noted that LXRα residue numbers are offset from those of LXRβ by negative 14 (e.g., Trp457 in LXRβ
is Trp443 in LXRα).

X-ray crystallography reveals the LXR structure to be consistent with other nuclear receptors,
with 12 α-helices forming a three-layered sandwich fold (Figure 9) [101]. The volume of the binding
pocket has been reported to be between 560–1090 Å3 [8,103], with this volume depending strongly
on the size and character of the bound ligand. This wide range of reported volumes indicates the
large degree of plasticity exhibited by LXR. This plasticity, along with the unusually large size of the
LXR binding pocket—steroid receptor binding pockets generally have volumes in the range between
420–550 Å3—results in receptors that can accommodate ligands whose size and shape vary substantially.
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The mechanism of LXR activation is consistent with activation of other nuclear receptors, such as
the much-studied estrogen receptor [8,102]. Upon agonist binding, helix 12, also known as activation
function 2 (AF2), assumes a conformation that closes the binding pocket and creates a groove into
which coactivator proteins can bind [114]. There is strong structural (crystallographic) evidence that
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closing of the binding pocket is mediated by an R-H···π interaction (R = C or N) that is established
upon agonist binding between His435 (helix 11) and Trp457 (helix 12) [101].

The binding pocket is largely hydrophobic with many non-polar aliphatic and aromatic residues
located throughout, as illustrated in Figure 10. There is a hydrophilic region of the binding pocket
possessing several polar and charged amino acids which is, because of its proximity to the protein
surface, solvent accessible. This hydrophilic region is located near helices 1 and 5 and the β-sheet
region found between helices 5 and 6. It should also be noted that within the hydrophobic region, on
the side of the binding pocket directly opposite the hydrophilic region, are found the moderately polar
His435 and Trp457 amino acids (helices 11 and 12) responsible for receptor activation.
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Figure 10. The binding pocket of LXRβ based on the optimized 3KFC crystal structure.

Here we use density functional theory (DFT-D) binding energy calculations to determine the
particular ligand-residue interactions that play large roles in stabilizing complexes of LXRβ with
various agonist ligands. These calculations were carried out for seven LXRβ crystal structures obtained
from the protein data bank (PDB), each crystal structure having a distinct agonist ligand. The seven
PDB structures used in this study are 1PQC [103], 1PQ6 [103], 3KFC [110], 4DK7 [109], 4DK8 [109],
3L0E [115], and 5HJP [54] having resolutions between 2.3Å (3L0E) and 2.8Å (1PQC). Of particular note
among these are the 1PQC and 1PQ6 structures, which contain synthetic ligands known to have strong
agonist activity, T0901317 [116] and GW3965 [117] respectively. Amino acids within 4Å of the ligand in
any one of the seven crystal structures were considered for the DFT-D study, with a total of 40 amino
acids fitting this criterion.

All pairwise binding energy calculations were performed at the BLYP-D/def2-TZVP [118] level of
theory using the ORCA molecular electronic structure package [119] through the Cuby4 interface [120].
The COSMO implicit solvation method, along with a dielectric constant of 4.0, was used to mimic the
protein’s interior environment [121]. This approach has been adopted in several previously reported
studies [122,123]. Here the simplest capping scheme of adding hydrogen atoms to amino acid backbone
nitrogens and β-carbons was employed. In order to minimize the effects of steric clashes, the side
chains of all structures were optimized using the simulated annealing method with backbone atom
positions held fixed. These optimizations were carried out with the Yasara molecular modeling suite
using the Amber99 force field (http://www.yasara.org).

Figure 11 gives pairwise interaction energies of all 40 ligand-residue complexes averaged across
all seven crystal structures. Here it is seen that there are 11 particularly strong interactions, those
involving Phe329—Trp457 (in the order shown in Figure 11), exhibiting average interaction energies of
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about 3.0 kcal/mol or stronger. Among these 11 interactions, those involving Phe329 (−5.66 kcal/mol),
Arg319 (−5.11 kcal/mol), Phe271 (−4.87 kcal/mol), and His435 (−4.15 kcal/mol) are particularly
strong. Interestingly two of these interactions, those associated with Phe329 and Phe271 are completely
hydrophobic interactions while two are polar interactions, namely interactions involving the positively
charged Arg319 and the heterocyclic ring of His435. It should be noted that Arg319 and His435
are the only two polar residues among the 11 discussed here. Arg319 is one of the residues located
in the hydrophilic region of the binding pocket and is found near the protein surface. As noted
above, the establishment of a strong contact between His435 and Trp457 is believed to play a role in
ligand-mediated LXR agonism. It seems reasonable to hypothesize that direct interactions of the ligand
with these two amino acids play a strong role in stabilizing the active conformation of the receptor,
although it should be kept in mind that other ligand-residue or ligand-residue-residue interactions
may play roles in changing the protein’s conformation.

Molecules 2017, 22, 88 15 of 23 

role in ligand-mediated LXR agonism. It seems reasonable to hypothesize that direct interactions of 
the ligand with these two amino acids play a strong role in stabilizing the active conformation of the 
receptor, although it should be kept in mind that other ligand-residue or ligand-residue-residue 
interactions may play roles in changing the protein’s conformation. 

 
Figure 11. Pairwise interaction energies of 40 amino acids with ligand within the LXRβ binding pocket. 

There are 16 ligand-residue interactions, Leu345—Ala343, with moderate interaction energies, 
in the range from 1.0 kcal/mol to 2.5 kcal/mol. Most of these residues are aromatic or aliphatic amino 
acids that form dispersion-type interactions with the ligand, with the exceptions being Ser278 (neutral 
polar, −2.21 kcal/mol), Gln438 (neutral polar, −1.38 kcal/mol), Lys331 (positive, −1.26 kcal/mol), and 
Glu315 (negative, −1.07 kcal/mol). Nine residues, Val439—Asn351, form only weak interactions with 
the ligands, with interaction energies less than 1.0 kcal/mol. Four residues, Thr328, Lys337, Ser342, and 
Glu281, form mildly repulsive interactions with the ligands. The strongest repulsion occurs for Glu281, 
with an interaction energy of +0.63 kcal/mol. It should be kept in mind that all calculations are based 
on crystal structures in which only side chain (but not backbone) atoms are optimized, thus it is not 
very surprising to encounter these mildly repulsive interactions, which are most likely caused by 
steric clashes related to backbone atoms.  

Shown in Figure 12 are interaction energies for the 11 strongest ligand-residue interactions, 
with four different ligands, those found in 3KFC, 5HJP, 1PQC (T0901317), and 1PQ6 (GW3965). The 
most notable aspect of the data depicted here is that the only ligand-residue interactions that appear to 
be particularly strong for all four systems are the ones involving Phe271 (~4–5 kcal/mol) and His435 
(~3.5–6 kcal/mol). Interactions for the 1PQC structure are notably weak for several of the residues here, 
which is perhaps not surprising when it is taken into consideration that, although it is known to be a 
strong agonist, T0901317 is the smallest of the ligands considered in this study. When the 1PQC 
structure is neglected, it is seen that all ligand-residue interactions, with the only other exceptions 
being 1PQ6/Ala275 and 1PQ6/Leu274, have a binding energy of at least two kcal/mol, meaning that 
each of these interactions make significant contributions to ligand binding. 

Figure 11. Pairwise interaction energies of 40 amino acids with ligand within the LXRβ binding pocket.

There are 16 ligand-residue interactions, Leu345—Ala343, with moderate interaction energies,
in the range from 1.0 kcal/mol to 2.5 kcal/mol. Most of these residues are aromatic or aliphatic
amino acids that form dispersion-type interactions with the ligand, with the exceptions being
Ser278 (neutral polar, −2.21 kcal/mol), Gln438 (neutral polar, −1.38 kcal/mol), Lys331 (positive,
−1.26 kcal/mol), and Glu315 (negative, −1.07 kcal/mol). Nine residues, Val439—Asn351, form only
weak interactions with the ligands, with interaction energies less than 1.0 kcal/mol. Four residues,
Thr328, Lys337, Ser342, and Glu281, form mildly repulsive interactions with the ligands. The strongest
repulsion occurs for Glu281, with an interaction energy of +0.63 kcal/mol. It should be kept in mind
that all calculations are based on crystal structures in which only side chain (but not backbone) atoms
are optimized, thus it is not very surprising to encounter these mildly repulsive interactions, which are
most likely caused by steric clashes related to backbone atoms.

Shown in Figure 12 are interaction energies for the 11 strongest ligand-residue interactions, with
four different ligands, those found in 3KFC, 5HJP, 1PQC (T0901317), and 1PQ6 (GW3965). The most
notable aspect of the data depicted here is that the only ligand-residue interactions that appear to be
particularly strong for all four systems are the ones involving Phe271 (~4–5 kcal/mol) and His435
(~3.5–6 kcal/mol). Interactions for the 1PQC structure are notably weak for several of the residues
here, which is perhaps not surprising when it is taken into consideration that, although it is known to
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be a strong agonist, T0901317 is the smallest of the ligands considered in this study. When the 1PQC
structure is neglected, it is seen that all ligand-residue interactions, with the only other exceptions
being 1PQ6/Ala275 and 1PQ6/Leu274, have a binding energy of at least two kcal/mol, meaning that
each of these interactions make significant contributions to ligand binding.
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As shown in Figure 10, the optimized 3KFC crystal structure is taken as an example of a
typical interaction between LXRβ and a ligand, as this structure most consistently exhibits strong
ligand-residue interactions for the 11 amino acids considered in Figure 12. Here the hydrophobic
nature of the binding pocket can be seen, with Phe329, Phe271, Met312, and Leu330 being major points
of contact and largely dictating the (hydrophobic) nature and shape of the central region of the binding
cavity, as reflected by the (generally) strong interactions exhibited by these residues. One of the most
surprising results shown in Figure 12 is the strong attraction between ligands and Ala275, also located
in the central region of the binding pocket. Given its small size, it would generally be supposed that
this amino acid would not form strong van der Waals contacts with ligands. Here it is seen that Ala275
establishes a strong dispersion contact with the ligand bicyclic group. In the solvent-accessible region
of the binding pocket, containing Arg319 and Thr316, a strong interaction is formed between the
positive Arg319 side chain and the ligand’s electronegative sulfonyl group. It should be noted that a
sulfonyl group is commonly found in LXR ligands and generally is oriented towards this hydrophilic
region of the binding pocket.

The important interactions involving the ligand, His435, and Trp 457 are also seen in Figure 10.
Here a C-H . . . π interaction is established between the histidine imidizole ring and the heterocyclic
ring of the tryptophan indole structure. It is believed that the establishment of this interaction,
establishing contact between helix 12 (AF2) and helix 11, is responsible for LXR agonism. In terms
of interactions of the ligand with these residues, there is clearly a N-H···F hydrogen bond between
His435 and the ligand CF3 group and a π-π contact between the ligand and Trp457. It should be noted
that there is also a strong possibility for a (stronger) N-H···N type hydrogen bond to be established
between His435 and the ligand, and that this type of interaction might also exist.

Figure 13 shows interactions energies for His435-Trp457, ligand-His435, and ligand-Trp457
contacts. The most interesting aspect of the data depicted here is the fact that the His435-Trp457
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interaction energies are fairly strong (~2.0 kcal/mol or higher) for all structures except 4DK7 and 4DK8,
which both represent partial agonists (the other five structures contain full agonists), which both have
binding energies that are significantly lower. This finding supports the hypothesis that His435-Trp457
interactions mediate LXR agonism. The relationship between ligand-residue interactions and LXR
agonism is not so clear. For example, ligand-His435 interactions are strong (above 3.0 kcal/mol) for
five of the structures, but are significantly weaker for 3L0E (full agonist) and 4DK8 (partial agonist).
Ligand-Trp457 interactions are all in the range from 2.0–4.0 kcal/mol, with no particular preference for
full agonists above partial agonists.
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4. Summary

Concurrent with our increasing knowledge of the roles of LXRs in lipid homeostasis, development
of selective and potent ligands of the hormone receptors has gained significant ground toward clinical
applications of LXR modulations. As LXRs are now known as key regulators of the reverse cholesterol
transport pathway, activation of LXRs via agonist ligands represents a viable approach to controlling
cholesterol flux and thereby preventing and treating cardiovascular diseases. LXRs also play central
roles in lipogenesis and maintenance of glucose balance in systemic circulation, presenting potential
opportunities for treatment of type 2 diabetes and metabolic disorders. However, LXR activation also
promotes triglyceride synthesis in the liver and elevates triglyceride levels in plasma, presenting
a major challenge in the development of LXR agonists for cardiovascular disease intervention.
On the other hand, the dominant expression of LXRα in the liver provides a rationale to develop
LXRβ-selective ligands so as to minimize the lipogenic effects. In this light we examined the interaction
energies of ligands and the important amino acid residues in the LXRβ ligand binding domain.
We believe that such multitude of interactions should be taken into consideration in designing more
potent molecules that bind to the LXRβ receptor with greater selectivity and specificity.
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