Supplementary Materials: Facile Synthesis for Benzo-1,4-Oxazepine Derivatives by Tandem Transformation of C-N Coupling/C-H Carbonylation

Xiaojia Zhao, Jiong Zhang, Zeqin Zheng and Runsheng Xu

1. Experimental Details

1.1. General Information

All reagents used in the experiments were obtained from commercial sources and used without further purification. Unless otherwise noted, all reactions were carried out at CO₂ atmosphere. Thin layer chromatography (TLC) employed glass 0.25-mm silica gel plates. All NMR spectra were recorded on a BrukerAvance II (400 MHz) spectrometer for ¹H-NMR (400 MHz) and ¹³C-NMR (100 MHz) in CDCl₃ using TMS as the internal reference. The ¹H-NMR spectra were reported in delta (δ) units, parts per million (ppm) downfield from the internal standard. Melting points were tested by the XT-4 apparatus without correcting the temperature or cited from the literature when applicable. The EIMS of new products were tested on the Agilent 6210 LC/MS equipped with an electrospray source.

1.2. General Procedure for Preparation of L1–L6

Dimethylformamide dimethylacetal (DMF-DMA) (10 mmol, 1.19 g) and 1-(1-hydroxy-1*H*-inden-2-yl)-ethanone (10 mmol, 1.74 g) were dissolved in *p*-xylene (5 mL). Additionally, the mixture was refluxed during a period of 5–12 h, during which time a yellow precipitate formed. The precipitate was filtered out and washed with petroleum ether three times. The solid was vacuum-dried, and 1.89 g (yield 94%) of a yellow solid wereobtained, L1 2-(2-dimethylamino-vinyl)-1*H*-inden-1-ol. ¹H-NMR (400 MHz, CDCl₃): δ 7.23 (m, 2H), 7.17–7.07 (t, *J* = 8.0 Hz, 2H), 7.01–6.90 (t, *J* = 7.8 Hz, 1H), 6.60 (s, 1H), 6.07–6.05 (d, *J* = 12 Hz, 1H), 2.47 (s, 3H), 2.42 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 146.1, 141.2, 133.8, 130.2, 127.9, 126.9, 123.2,121.2, 120.6, 104.1, 75.4, 46.1, 38.6.

2. Spectrums

Figure S1. ¹H-NMR 3a.

6

 $\stackrel{|}{\mathbf{8}}$

Figure S5. ¹H-NMR 3c.

Figure S7. ¹H-NMR 3d.

Figure S15. ¹H-NMR 3h.

Figure S17. ¹H-NMR 3i.

Figure S19. ¹H-NMR 3j.

Figure S23. ¹H-NMR 31.

Figure S25. ¹H-NMR 5a.

Figure S27. ¹H-NMR 5b.

Figure S30. ¹³C-NMR 5c.