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Abstract: The behaviour of platinum(II) and palladium(0) complexes coordinated by various
hydrosoluble monodentate phosphane ligands has been investigated by 31P{1H} NMR spectroscopy
in the presence of randomly methylated β-cyclodextrin (RAME-β-CD). This molecular receptor can
have no impact on the organometallic complexes, induce the formation of phosphane low-coordinated
complexes or form coordination second sphere species. These three behaviours are under
thermodynamic control and are governed not only by the affinity of RAME-β-CD for the phosphane
but also by the phosphane stereoelectronic properties. When observed, the low-coordinated
complexes may be formed either via a preliminary decoordination of the phosphane followed
by a complexation of the free ligand by the CD or via the generation of organometallic species
complexed by CD which then lead to expulsion of ligands to decrease their internal steric hindrance.

Keywords: platinum; palladium; TPPTS; cyclodextrin; hydrosoluble organometallic complexes;
supramolecular chemistry

1. Introduction

Biphasic aqueous organometallic catalysis is one of the greenest solutions to produce organic
chemicals [1,2]. Indeed, water is not only cheap and non-toxic, but also permits one to immobilize
the catalyst in an aqueous phase by the use of water-soluble ligands, leading to ease of recycling by
simple decantation at the end of the reaction [3]. The most widespread ligand used in such systems is
TPPTS (tris(3-sulfonatophenyl)phosphane sodium salt, Table 1, entry 1) which is responsible for the
industrial success of the aqueous biphasic propene hydroformylation (Ruhrchemie-Rhône Poulenc
process, 1984) [4]. Attractive for partially water-soluble olefins, this strategy suffers from low catalytic
activity when hydrophobic substrates are used due to mass transfer limitations. The alternative
approaches to overcome this drawback have been recently reviewed [5,6]. These include the use of
cyclodextrins (CDs) which are widely recognized as outstanding water-soluble receptors in aqueous
biphasic organometallic processes [7].

These macrocycles were firstly used as phase transfer agents between the organic and the aqueous
layers by forming inclusion complexes with a hydrophobic substrate at the interface in order to
convert it thanks to a water-soluble organometallic catalyst. However, CDs are more than simple
receptors for hydrophobic substrates and can be now considered as polyfunctional entities in aqueous
biphasic organometallic catalysis [8]. In particular, CDs can modify the catalytic species involved
in the reaction. As an example, when TPPTS is combined with a rhodium precursor to catalyse the
1-decene aqueous biphasic hydroformylation reaction, a linear to branched aldehyde ratio drop is
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observed when the experiment is conducted in the presence of RAME-β-CD (=randomly methylated
β-CD) [9]. Under CO/H2 pressure and with RAME-β-CD, equilibria displacements between the
different catalytic species towards the formation of phosphane low-coordinated species are observed.
These equilibria, displaced by TPPTS inclusion into the CD cavity, are responsible for the drop in
regioselectivity (Scheme 1) [10].
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hydroformylation assisted by RAME-β-CD.

Along the same lines, when a water-soluble triphenylphosphane derivative possessing a higher
affinity towards CDs is involved in a rhodium HRhCOL3 type species (L = p-tBuPhP(m-PhSO3Na)2

phosphane), unsaturated catalytic species are also formed in the presence of CD even when the
organometallic complex was not exposed to a CO/H2 atmosphere [11].

This behaviour, not observed with TPPTS, was attributed to the more stable inclusion
complex formed between the CD and the phosphane, due to the presence of the well-recognized
p-tert-butylphenyl group. Moreover, it has been demonstrated that the combination of the same
ligand with another metal centre, e.g., palladium or platinum, led to the same behaviour, that is to say
formation of low-coordinated organometallic species [12].

However, the combination of a palladium precursor with a water-soluble triphenylphosphane
derivative possessing a p-tert-butylbiphenyl group led to the formation of a stable second-sphere
coordination adduct where the CD encapsulated the ligand directly bounded to the metal centre [13].
Such species had already been observed with a phosphane bearing adamantyl groups [14].

Table 1. Structure, abbreviation of the water-soluble phosphanes used, and value of the association
constant (K) for the inclusion complexes between the RAME-β-CD and the phosphane.

Entry Structure Name Abbreviation K (M−1) a,b

1
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In order to get a better insight into the interaction phenomena between the CD and transition
metal complexes, we want to show in this article how RAME-β-CD can interfere with different
platinum(II) or palladium(0) complexes coordinated with various hydrosoluble ligands and how
specific organometallic complexes can be obtained. These ligands include TPPTS itself but also TPPTS
modified phosphanes containing substituents (methyl or methoxy groups) in ortho or para position and
biphenyl modified phosphanes (Table 1). The interaction of the different phosphanes with RAME-β-CD
has already been studied by our group [15], except for biphenylphosphane derivatives whose synthesis
and catalytic properties have been exclusively published [16]. For each type of ligands, we have
both examined the nature of the organometallic complex formed when mixing them with the metal
precursor and the influence of the RAME-β-CD addition on these complexes.

2. Results and Discussion

2.1. Platinum Complexes

The different complexes formed by mixing the K2PtCl4 aqueous solution with 3 equiv. of
phosphane were firstly analysed by 31P{1H} NMR. In a second step, RAME-β-CD has been added to
the mixture in order to determine its influence on the coordination chemistry of the different ligands.

2.1.1. Complex Synthesis

TPPTS Ligand

As described in the literature [17], [Pt(TPPTS)3Cl]Cl platinum complex is quantitatively
synthetized by adding three equivalents of TPPTS to a K2PtCl4 aqueous solution. As only one third
of the platinum (195Pt) has a spin of 1/2, the 31P{1H} NMR spectrum of this complex is characterized
by a 1:4:1 triplet of doublets centred at δ = 24.5 ppm (1JPcis–Pt = 2491 Hz; 2JPcis–Ptrans = 19 Hz)
corresponding to the two phosphorus atoms cis to the chloride and a 1:4:1 triplet of triplets centred at
δ = 13.3 ppm (1JPtrans–Pt = 3682 Hz; 2JPcis–Ptrans = 19 Hz) corresponding to the phosphorus atom trans
to the chloride (Figure 1).

para-Substituted TPPTS Derivatives

Similarly to TPPTS, [PtL3Cl]Cl platinum complexes can be quantitatively synthetized by adding
three equivalents of the para-substituted ligands tris(p-Me)TPPTS and tris(p-OMe)TPPTS to a solution
of K2PtCl4 (Figure 2). The two phosphorus atoms cis to the chloride appear respectively for
[Pt(tris(p-Me)TPPTS)3Cl]Cl and [Pt(tris(p-OMe)TPPTS)3Cl]Cl at δ = 23.3 ppm (1JPcis–Pt = 2488 Hz;
2JPcis–Ptrans = 19 Hz) and δ = 21.8 ppm (1JPcis–Pt = 2487 Hz; 2JPcis–Ptrans = 18 Hz) in their 31P{1H} NMR
spectra. The phosphorus atom trans to the chloride appears at δ = 11.5 ppm (1JPtrans–Pt = 3693 Hz;
2JPcis–Ptrans = 19 Hz) and δ = 9.8 ppm (1JPtrans–Pt = 3754 Hz; 2JPcis–Ptrans = 18 Hz).
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Figure 2. 31P{1H} NMR spectra of (a) [Pt(tris(p-Me)TPPTS)3Cl]Cl and (b) [Pt(tris(p-OMe)TPPTS)3Cl]Cl,
[Pt] = 10 mM, 25 ◦C in D2O.

ortho-Substituted TPPTS Derivatives

However, attempts to synthetize [Pt(tris(o-Me)TPPTS)3Cl]Cl and [Pt(tris(o-OMe)TPPTS)3Cl]Cl
were unsuccessful. Indeed, addition of three equivalents of ligand (towards platinum) to a
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K2PtCl4 solution exclusively yields to formation of PtCl2L2-type complex characterized by a 1:4:1
triplet of doublets centred at δ = 20.5 ppm and 24.5 ppm, respectively, for PtCl2(tris(o-Me)TPPTS)2 and
PtCl2(tris(o-OMe)TPPTS)2. As a consequence, free ligand that represents one third of the total 31P{1H}
NMR surface area is detected (Figure 3). Moreover, in both cases, 1JP–Pt coupling constants (2750
and 2590 Hz for PtCl2(tris(o-OMe)TPPTS)2 and PtCl2(tris(o-Me)TPPTS)2 respectively) are consistent
with a trans coordination when compared with cis-PtCl2(TPPTS)2 (1JP–Pt = 3720 Hz, Figure 4) and
trans-PtCl2(TPPTS)2 (1JP–Pt = 2600 Hz) that have already been described [17]. The steric hindrance of
these ligands, which have a higher cone angle than their para-substituted counterparts, is obviously
responsible for the formation of the observed phosphane low coordinated PtCl2L2 species. The same
reason can also explain the trans geometry obtained for these species instead of the cis one [18].
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Trisulfonated Biphenylphosphane Ligands

Again, [PtL3Cl]Cl complex was obtained by adding three equivalents of the monobiphenyl ligand
P(Biph)Ph2TS to a K2PtCl4 aqueous solution. However, when P(Biph)2PhTS and P(Biph)3TS were
used, the complexes appeared as broad signals in the 31P{1H} NMR spectra. Addition of DMSO to the
previous aqueous solutions achieves finer signals (Figure 5).
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In pure DMSO, cis-PtCl2L2 is formed quantitatively (1JP–Pt = 3696 Hz when L = P(Biph)2PhTS
and 1JP–Pt = 3702 Hz when L = P(Biph)3TS). The lowest DMSO polarity compared to water is probably
responsible for the formation of these non-ionic complexes. When the water quantity of the medium is
increased, the polarity increases as well probably leading to the formation of [PtL3Cl]Cl. With these
two ligands, fast exchange between [PtL3Cl]Cl complex and water molecules would be responsible for
the signals broadening.

2.1.2. RAME-β-CD Effects on the Coordination Behaviour of the Ligands

As a reminder of our previous work, Table 1 brings together the association constants between
the different hydrosoluble ligands studied and the CDs [15].

TPPTS Ligand

When 1equiv. of RAME-β-CD toward platinum was added to a solution of the [Pt(TPPTS)3Cl]Cl
complex, a downfield chemical shift of the TPPTS oxide signal was observed and attributed to the
formation of an inclusion complex with RAME-β-CD [19]. Moreover, a typical signal of CD-included
TPPTS appeared at −8.8 ppm as well as a cis-PtCl2(TPPTS)2 signal at 15.5 ppm (Figure 6).
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Figure 6. 31P{1H} NMR spectra of (a) [Pt(TPPTS)3Cl]Cl (10 mM); (b) +3 equiv. of RAME-β-CD toward
Pt (c) +6 equiv. of RAME-β-CD and (d) +12 equiv. of RAME-β-CD at 25 ◦C in D2O.

By adding increasing amounts of CD (3 to 12 equiv.), these signals are intensified. Thus,
RAME-β-CD is able to modify the equilibrium between these two organometallic species. In particular,
the formation of phosphane low-coordinated organometallic species is favoured by the formation of
an inclusion complex between RAME-β-CD and TPPTS as depicted in Scheme 2 (equilibrium (1) is
displaced by equilibrium (2)). Note that such behaviour is similar to what is observed by high pressure
NMR when RAME-β-CD is added, under hydroformylation conditions (50 bars CO/H2 and 80 ◦C),
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on the HRh(CO)(TPPTS)3 rhodium complex. In that case, HRh(CO)2(TPPTS)2 species combined with
TPPTS included in the CD cavity were highlighted [10].
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Scheme 2. Equilibria between the different platinum species with TPPTS as ligand in the presence of
RAME-β-CD (species observed on the 31P{1H} NMR spectrum are presented on a grey background).

The conversion of [Pt(TPPTS)3Cl]Cl into cis-PtCl2(TPPTS)2 as a function of the RAME-β-CD
quantity (Figure 7) can be measured by integration of the 31P{1H} NMR spectra (see ESI). As expected,
the conversion increases with the quantity of RAME-β-CD in solution. The temperature also has
an influence on these equilibria. Indeed, the conversion increases with the temperature, therefore,
implying that the natural dissociation of TPPTS from [Pt(TPPTS)3Cl]Cl is more affected compared to
the inclusion complex stability. Moreover, the NMR spectrum carried out at room temperature after
heating gave back the signals with the same initial intensity reflecting the process reversibility and
assuming a thermodynamic control of the system.
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Figure 7. [Pt(TPPTS)3Cl]Cl conversion (%) into cis-PtCl2(TPPTS)2 as a function of RAME-β-CD quantity
and temperature, [Pt] = 10 mM, D2O.

para-Substituted TPPTS Derivatives

The behaviour of tris(p-OMe)TPPTS and tris(p-Me)TPPTS towards RAME-β-CD is different.
Indeed, unlike tris(p-OMe)TPPTS, tris(p-Me)TPPTS forms an inclusion complex with this CD
(K = 960 M−1) [15]. The highest association constant of this inclusion complex compared to the
complex RAME-β-CD/TPPTS (K = 840 M−1) is due to the deep inclusion of the tris(p-Me)TPPTS via
one of its aryl groups into the CD cavity [20].

Given that the tris(p-OMe)TPPTS does not interact with RAME-β-CD, it is not surprising to see
no modifications on the 31P{1H} NMR spectrum of the [Pt(tris(p-OMe)TPPTS)3Cl]Cl organometallic
complex when the RAME-β-CD was added (see ESI). Surprisingly, the same behaviour was observed
with the tris(p-Me)TPPTS ligand. Indeed, although the association constant between RAME-β-CD
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and tris(p-Me)TPPTS is higher than the one between RAME-β-CD and TPPTS, no conversion
of [Pt(tris(p-Me)TPPTS)3Cl]Cl to PtCl2(tris(p-Me)TPPTS)2 was highlighted after the addition of
RAME-β-CD, even at high temperature (see ESI) [21]. This result can be explained by the higher
σ-donating strength of tris(p-Me)TPPTS ligand, compared to TPPTS. Consequently, the equilibrium (1)
is shifted towards the formation of the high coordinated platinum species [Pt(tris(p-Me)TPPTS)3Cl]Cl
even in the presence of RAME-β-CD (Scheme 3).
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the presence of RAME-β-CD (species observed on the 31P{1H} NMR spectrum are presented on
a grey background).

Ortho-Substituted TPPTS Derivatives

Since the ortho-substituted ligands do not interact with RAME-β-CD [15,20], addition of CD did
not modify the 31P{1H} NMR spectra.

Trisulfonated Biphenylphosphane Ligands

Phosphanes possessing one, two or three sulfonated biphenyl groups strongly interact with the
β-CD. Indeed, complexation studies between these ligands and native β-CD showed a deep inclusion
of their biphenyl moiety in the CD cavity. In all cases, stoichiometries were determined to be equal to 1:1
and association constants were particularly high (Table 1 and Supplementary Materials). Consequently,
the influence of such association towards the platinum organometallic complexes was investigated.

In the case of P(Biph)Ph2TS, modifications on the 31P{1H} NMR spectra are observed with
RAME-β-CD addition. Complexation of the phosphane oxide by the CD is in fact detected by its
chemical shift modification. Moreover, a broadening of [PtL3Cl]Cl signals is observed concurrently
with the lack of peak corresponding to free or CD-complexed phosphane (in the region going from
0 to −10 ppm) (Figure 8). The explanation for that is the interaction between RAME-β-CD and
[Pt(P(Biph)Ph2TS)3Cl]Cl without inducing dissociation of the ligand from the metal centre. This theory
was confirmed by the 2D T-ROESY experiment of a 1:1 β-CD:[Pt(P(Biph)Ph2TS)3Cl]Cl [22] mixture
which exhibited intense cross-peaks between the phosphane aromatic protons and the internal CD
protons (H3 and H5). In that case, an organometallic complex formation where the CD plays the
role of coordination second sphere ligand is highlighted (Scheme 4). Thus, contrary to TPPTS, three
equivalents of RAME-β-CD with respect to Pt are not able to transform the [PtL3Cl]Cl complex into
PtCl2L2 complex when P(Biph)Ph2TS is used. Nevertheless, further increase in the CD quantity
(12 equivalents of RAME-β-CD relative to Pt) and temperature (85 ◦C) lead to a dissociation of the
ligand from the metal centre confirmed both by the CD-included phosphane signal observed at−3 ppm
and the formation of low-coordinated PtCl2L2 species (Figure 8c).

On the other hand, when P(Biph)2PhTS and P(Biph)3TS were used, addition of large amounts
of CD to the complexes synthetized by adding three equivalents of the previous ligands to a K2PtCl4
aqueous solution did not lead to a signal improvement (obtained spectra were comparable to those
presented in Figure 5(a)), so in these cases, it is difficult to conclude.
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A short overview of this platinum study is presented in Table 2. To sum up, low-coordinated
catalytic species PtCl2L2 are formed when ortho-substituted TPPTS derivatives are used or when
TPPTS-based complexes are combined with RAME-β-CD (trans and cis geometry respectively). In the
first case, these species are obviously formed due to the larger cone angles of these ortho-substituted
ligands. In the second case, the relative σ-donating power of the TPPTS ligand, through the presence
of the attractive meta sodium sulfonato groups, makes the ligand-metal bond weak and hence
RAME-β-CD is able to shift the equilibria between the different organometallic species towards
the formation of low-coordinated species by the formation of inclusion complex with the ligand.
However, although the association constant between tris(p-Me)TPPTS and RAME-β-CD is higher than
the one between TPPTS and RAME-β-CD, low-coordinated platinum complexes are not observed.

Table 2. Organometallic species formed by adding 3 equiv. of ligand to a K2PtCl4 aqueous solution
(10 mM) and after RAME-β-CD addition (1 to 12 equiv. toward platinum).
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Furthermore, given that tris(p-OMe)TPPTS does not interact with RAME-β-CD, its coordination
behaviour towards platinum(II) is not affected by the CD addition. Finally, formation of organometallic
species where the RAME-β-CD plays the role of coordination second sphere ligand is observed when
P(Biph)Ph2TS, which possesses a CD-recognised moiety, is used in combination with one equivalent of
RAME-β-CD towards the ligand. It is important to emphasize that further increase in the CD quantity
yields to the formation of low-coordinated species. The formation of organometallic species possessing
more than one CD in their coordination second sphere would probably yield to a steric decompression
trough the decoordination of the CD included phosphane.

2.2. Palladium Complexes

The RAME-β-CD influence on organometallic species was extended to palladium (0) complexes.
The palladium extraction from a toluene solution of Pd(TPP)4 to an aqueous phase by the hydrosoluble
ligand yields to isolation of PdLx complexes (see “materials and methods” part). In the case of TPPTS,
this study has already been published by our group [19]. It was concluded that the addition of
RAME-β-CD only yields to a chemical exchange rate decrease between free TPPTS and the Pd(TPPTS)3

complex caused by the formation of the inclusion complex RAME-β-CD/TPPTS. Furthermore, no new
palladium species were observed, even at high temperature (60 ◦C).

2.2.1. Para-Substituted TPPTS Derivatives

[Pd(0)/tris(p-Me)TPPTS] Complex

31P{1H} NMR spectra of Pd(tris(p-Me)TPPTS)3 complexes in addition to different RAME-β-CD
concentrations and at different temperatures are given in Figure 9. Without CD, two different
resonances are observed. Besides the minor phosphane oxide signal at 34 ppm, a broad signal
was detected at 19.5 ppm which corresponds to the average signal of the Pd(tris(p-Me)TPPTS)3

complex in fast equilibrium with a small amount of free residual tris(p-Me)TPPTS ligand [19,23].
Higher temperatures have no effects on this equilibrium. Adding three equivalents of RAME-β-CD
yields to an exchange rate decrease between the Pd(tris(p-Me)TPPTS)3 species, which signal becomes
sharp at 21.8 ppm, and the small excess of free ligand by its encapsulation in the CD cavity (−11.2 ppm).
Higher CD concentrations combined with higher temperatures do not lead to the formation of new
palladium species. Hence, like what was observed with the platinum(II) complexes, addition of
RAME-β-CD does not change the nature of the organometallic complex, albeit association constant
between the CD and the ligand is greater than that of the RAME-β-CD/TPPTS inclusion complex.

[Pd(0)/tris(p-OMe)TPPTS] Complex

Addition of large amount of RAME-β-CD (12 equiv. with respect to Pd) to the
Pd(tris(p-OMe)TPPTS)3 complex does not modify the 31P{1H} NMR spectrum as this ligand does
not interact with the CD. In fact, even at high temperature, a broad signal at 19 ppm is detected which
corresponds to the average signal of the equilibrium between the organometallic complex and free
tris(p-OMe)TPPTS (Figure 10).

2.2.2. ortho-Substituted Ligands

The same experiments were realized with the ortho-substituted ligands but the synthesis of the
PdL3 complex failed. Indeed, Pd extraction from the organic phase to the aqueous phase is too low.
The bulkiness of the hydrosoluble ortho-substituted are obviously responsible for the equilibrium
displacement toward the organic Pd(TPP)4 complex. Again, these results are in accordance with the
previous observations made with the platinum complexes study showing that these ligands hardly
coordinate the metal centre.
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Figure 9. 31P{1H} NMR spectra of Pd(tris(p-Me)TPPTS)3 depending on both temperature and
RAME-β-CD quantity in D2O with a ligand concentration of 66 mM.
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Figure 10. 31P{1H} NMR spectra of Pd(tris(p-OMe)TPPTS)3 at (a) 25 ◦C; (b) +12 equiv. of RAME-β-CD
at 25 ◦C (c) +12 equiv. of RAME-β-CD at 85 ◦C in D2O with a ligand concentration of 66 mM.

2.2.3. Biphenylphosphane Ligands

[Pd(0)/P(Biph)Ph2TS] Complex

In this case, comments are identical to the previous Pd(tris(p-Me)TPPTS)3 complex (see ESI).
That is to say, CD addition to a Pd(P(Biph)Ph2TS)3 aqueous solution reduces the chemical exchange rate
between free ligand and the organometallic complex. Increasing both temperature and RAME-β-CD
quantity do not yield to the formation of other palladium species. However, 2D NMR T-ROESY
experiment of a 1:1 β-CD:Pd(P(Biph)Ph2TS)3 mixture exhibited intense cross-peaks between the
phosphane aromatic protons and the internal CD protons H3 and H5 (Figure 11). The presence of
only 4% (determined by integration of the 31P{1H} NMR spectrum) of free ligand which is trapped
by the CD in the mixture could not be responsible for such intense cross peaks. Therefore, absence
of new palladium species together with strong correlation between the CD and the ligand in the 2D
T-ROESY NMR spectrum enable us to assume the formation of inclusion complex between the CD and
the ligand (coordinated to the palladium centre). As with the platinum complex, the P(Biph)Ph2TS
ligand allows the formation of organometallic palladium species where the cyclodextrin plays the role
of coordination second sphere ligand.

Furthermore, intense cross-peaks between the CD internal H3 protons and Ha of the biphenyl
moiety together with high correlations between the CD internal H5 protons and Hc/Hd of the biphenyl
moiety in the T-ROESY spectrum allow us to propose a geometry where the phosphane penetration in
the CD cavity takes place via the primary face (Scheme 5).

It should be noted however, that this geometry differs from the geometry of the inclusion complex
between the free ligand in solution and the CD which takes place via the CD secondary face (see ESI).
The spatial proximity of the palladium coordinated ligands inevitably leads to a high steric hindrance
which could be responsible for such a difference in the geometry.
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[Pd(0)/P(Biph)2PhTS] Complex

31P{1H} NMR spectra of Pd(P(Biph)2PhTS)3 complexes in addition to different RAME-β-CD
concentrations and at different temperatures are given in Figure 12.
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Figure 12. 31P{1H} NMR spectra of palladium complexes synthetized with P(Biph)2PhTS depending
on both temperature and RAME-β-CD quantity in D2O with a ligand concentration of 66 mM.

At room temperature and without CD, two different broad signals corresponding to the PdL3 and
PdL2 complexes in fast equilibrium with free ligand are observed. Neither temperature, nor addition of
3 equiv. of RAME-β-CD do not allow to observe new organometallic species. Indeed, CD addition only
leads to the apparition of the complexed free ligand at −7.5 ppm, a phosphane oxide chemical shift
trapped by the CD and a sharpening of the organometallic complexes signals which are in equilibrium.
However, addition of 12 equiv. of RAME-β-CD leads to a diminution of the PdL3 species in favour
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of the PdL2 species and free ligand trapped by the CD. On the other hand, temperature increase has
a negligible influence on the PdL3/PdL2 ratio. At high temperature, natural dissociation increase of
the PdL3 species is probably offset by the stability diminution of the inclusion complex between the
CD and the phosphane. To sum up, high CD quantity is able to shift the equilibrium between the
different palladium species towards the formation of low-coordinated species (Scheme 6).
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[Pd(0)/P(Biph)3TS] Complex

As already described [16], the ligand P(Biph)3TS forms a new palladium species at room
temperature:PdL4 which have a chemical shift of 15 ppm. Without CD, PdL3 and PdL4 species
are in slow equilibrium. Indeed, when the temperature is increased, the signals of both complexes are
broadened and merge together at 85 ◦C (Figure 13). Moreover, the NMR spectrum carried out at room
temperature after heating gave the same signals reflecting the reversibility of the process.
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By adding increasing amounts of RAME-β-CD, the PdL4 signal disappears concurrently with an
increase of both the PdL3 signal and the free ligand trapped by the CD (Figure 14).
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Figure 14. 31P{1H} NMR spectra effect of RAME-β-CD quantity on the equilibrium of the different
palladium species formed with the ligand P(Biph)3TS in D2O at 25 ◦C with a ligand concentration of
66 mM.

When the CD quantity reaches four equivalents of ligand, species PdL2 appears. Similarly to
the above-mentioned Pd(P(Biph)2PhTS)3 complex, temperature has a negligible influence on the
PdL3/PdL2 ratio when P(Biph)3TS is used (Figure 15). Again, RAME-β-CD is able to shift the
equilibria between the different palladium organometallic species when P(Biph)3TS is used as ligand.

A short overview of this palladium study is presented in Table 3. To sum up, the different ligands
used in this study can be classified in three categories:

(1) ligands forming palladium complexes not affected by the RAME-β-CD addition (TPPTS,
tris(p-Me)TPPTS and tris(p-OMe)TPPTS)

(2) ligands forming palladium complexes where the CD could play the role of coordination second
sphere ligand (P(Biph)Ph2TS)

(3) ligands forming palladium complexes which are transformed by the presence of RAME-β-CD.
Indeed, P(Biph)2PhTS and P(Biph)3TS spontaneously form respectively PdL3/PdL2 and
PdL4/PdL3 organometallic complexes which are converted in PdL2 complexes when CD is
added due to shift equilibria between the different organometallic species. However, formation
of species where the CD acts as coordination second sphere ligand could not be avoided as the
biphenyl moiety is well recognised by its cavity. In these cases, the organometallic complexes
formed would naturally evolve to low-coordinated species through steric decompression by
ligand decoordination.
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Figure 15. 31P{1H} NMR spectra of palladium complexes synthetized with P(Biph)3TS depending on
temperature in the presence of 4 equiv. of RAME-β-CD towards the phosphane in D2O with a ligand
concentration of 66 mM.

Table 3. New organometallic species observed after RAME-β-CD addition (1 to 12 equiv. toward
palladium) to a solution of the palladium complexes formed by extraction with an aqueous ligand
solution (66 mM).

Ligand Palladium Complex
Obtained without CD

New Species Obtained
after RAME-β-CD Addition

TPPTS PdL3 -

tris(p-Me)TPPTS PdL3 -

tris(p-OMe)TPPTS PdL3 -

tris(o-Me)TPPTS No palladium extraction -

tris(o-OMe)TPPTS No palladium extraction -

P(Biph)Ph2TS PdL3
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Table 4. Effects of RAME-β-CD addition on the platinum and palladium complexes obtained with the
different phosphanes (in D2O, at 25 ◦C); CD = RAME-β-CD; L@CD = Ligand included in the CD cavity.

Entry Ligand (L) Influence of CD on Pt Complexes Influence of CD on Pd Complexes

1 TPPTS [PtL3Cl]Cl + CD→ cis-PtCl2L2 + L@CD
CD = decoordination promotor PdL3 unchanged with CD

2 tris(p-Me)TPPTS
tris(p-OMe)TPPTS [PtL3Cl]Cl unchanged with CD PdL3 unchanged with CD

3 tris(o-Me)TPPTS
tris(o-OMe)TPPTS

[PtL3Cl]Cl impossible to obtain;
trans-PtCl2L2 was formed
with or without CD

Ligand unable to extract Pd
from the organic layer
with or without CD

4 P(Biph)Ph2TS [PtL3Cl]Cl + CD→ [(L@CD)PtL2Cl]Cl
CD = second sphere ligand

PdL3 + CD→ (L@CD)PdL2
CD = second sphere ligand

5 P(Biph)2PhTS n.d. (broad signals with or without CD)

PdL3 + CD→ PdL*2 + L@CD
L* = L or L@CD
CD = decoordination promotor
and second sphere ligand

6 P(Biph)3TS n.d. (broad signals with or without CD)

PdL4 + CD→ PdL*3 + L@CD
PdL*3 + CD→ PdL*2 + L@CD
L* = L or L@CD
CD = decoordination promotor
and second sphere ligand

Firstly, tris-ortho-substituted hydrosoluble phosphanes led to low coordinated platinum species
and are unable to extract palladium from a Pd(TPP)4 toluene solution (Table 4, entry 3). These two
behaviours are probably due to the steric hindrance around their phosphorous atom making them
poor ligands. Apart from this peculiar case and the results obtained with platinum for P(Biph)2PhTS
and P(Biph)3TS ligands (broad signals in 31P{1H} NMR) (entries 5 and 6), three CD behaviours towards
[PtL3Cl]Cl and PdLn complexes were noticed:

• The CD can have no influence on the organometallic species. That is what is observed with
para-substituted hydrosoluble phosphanes for both palladium and platinum complexes (entry 2)
and also with TPPTS, only in the case of palladium (entry 1). For the para-substituted hydrosoluble
phosphanes, this behaviour could be explained by the lack of interaction between the CD and the
phosphane (tris(p-OMe)TPPTS), or by a too strong metal-phosphorus bond coming from a high
σ-donor ligand (tris(p-Me)TPPTS). However, the fact that the PdL2 species is not formed after CD
addition on the PdL3 complex not only for tris(p-OMe)TPPTS and tris(p-Me)TPPTS but also for
TPPTS probably comes from the too unstable PdL2 (14e− species) in the case of TPPTS derivatives.

• The CD can act as a phosphane decoordination promotor. This property was emphasised with
TPPTS as ligand in the [PtL3Cl]Cl complex (entry 1), and with P(Biph)2PhTS and P(Biph)3TS
ligands in the case of PdLn type complexes (entries 5 and 6). The fact that TPPTS can be removed
from Pt by addition of CD, contrary to tris(p-OMe)TPPTS and tris(p-Me)TPPTS, comes not only from
its ability to be included in the CD cavity but also to its lower coordination power (less basic ligand).

• The CD can act as a second sphere ligand by including the metal-bound phosphane. This property
was undoubtedly highlighted for both platinum and palladium complexes with the P(Biph)Ph2TS
ligand whose p-sodiosulfobiphenyl group is well recognized by the CD. Because of this identical
group present in their structure, making them accessible for a cyclodextrin even when bound to
a metal, it is also important to say that P(Biph)2PhTS and P(Biph)3TS based organometallic species
form also surely supramolecular complexes with CD. This property plays probably a role in the
observed decoordination of P(Biph)2PhTS and P(Biph)3TS from palladium, the CD being able
to stabilize the low-coordinated resulting organometallic species. More concretely, this property
can explain the observation of PdL2 type species when P(Biph)3TS ligand was used, species not
formed with TPPTS ligand. Indeed, TPPTS structure doesn’t permit complexation when bound to
the metal.
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The three evoked behaviours of CD in the presence of a phosphane bound to a metal depend
on different equilibria whose evolution is assumed to be under thermodynamic control. Indeed, in
all the experiments conducted in this study, the temperature had always a reversible effect on the
system. More concretely, the modification of spectra sometimes observed by heating disappeared
systematically by recovering the room temperature.

Basically, by considering a simplified system consisting of a cyclodextrin (CD) and a phosphane
(L ligand) coordinated to a metal (Met), i.e., a “Met← L + CD” system, several evolutions are possible.
Firstly, the phosphane can naturally leave the metal by decoordination and lead to a “Met

Molecules 2017, 22, 140  21 of 25 

 

The three evoked behaviours of CD in the presence of a phosphane bound to a metal depend on 

different equilibria whose evolution is assumed to be under thermodynamic control. Indeed, in all 

the  experiments  conducted  in  this  study,  the  temperature  had  always  a  reversible  effect  on  the 

system. More concretely,  the modification of spectra sometimes observed by heating disappeared 

systematically by recovering the room temperature. 

Basically, by considering a simplified system consisting of a cyclodextrin (CD) and a phosphane 

(L ligand) coordinated to a metal (Met), i.e., a “Met ← L + CD” system, several evolutions are possible. 

Firstly, the phosphane can naturally leave the metal by decoordination and lead to a “Met  + L + CD” 

system (Scheme 7a, 1). This last system can then be transformed by inclusion of the free ligand in the 

CD cavity (Scheme 7a, 2). Starting from the same initial system (“Met ← L + CD”), another evolution 
can be the complexation of ligand bound to the metal to reach a “Met ← L@CD” system in which the 

CD acts as a second sphere  ligand (Scheme 7a, 3). In this complex, the “L@CD” part constitutes a 

supramolecular ligand which can therefore also leave the metal to lead to a “Met  + L@CD” system 

(Scheme  7a,  4).  The  fore‐mentioned  systems  are  in  equilibrium  and  their  proportions  are 

consequently driven by their free enthalpy, the more stable system being the more represented one. 

So, when the “Met ← L” starting organometallic species stays perfectly stable in the presence of 

CD, it means that the free enthalpy of the “Met ← L + CD” system is very low compared to the other 

possible systems  (Scheme 7b). Different  reasons can produce  this  situation: basicity of  the  ligand 

making the “Met ← L” bond very strong, ligand poorly recognized by the CD... 
In the same way, when CD is proved to be a decoordination promotor by being able to do an 

inclusion complex with the phosphane, it means that the “Met  + L@CD” system is relatively close to 

the “Met ← L + CD” initial system, in terms of free enthalpy (Scheme 7(c)). In this case, the “Met  + 

L@CD” system can be reached either by preliminary natural decoordination of the phosphane via the 

“Met   +  L  +  CD”  system  (Scheme  7(c)), mechanism with  the  successive  steps  1  and  2)  or  by 

preliminary complexation of  the organometallic species by  the CD  (Scheme 7(c), mechanism with 

steps 3 and 4 successively). This second mechanism  is probably  favoured when  the CD  is able  to 

include  the  ligand bound  to  the metal,  i.e., when  the  free  enthalpy of  the Met ← L@CD  is  low. 

Therefore, one can think that TPPTS decoordination from [PtL3Cl]Cl species by CD proceed via the “1, 

2 “ mechanism (Met ← L@CD species is too high in free enthalpy to be easily reached in the case of 
TPPTS) and that biphenyl phosphanes decoordination from palladium species proceed by the “3, 4” 

mechanism (Met ← L@CD is easy to form). 

Finally, the “Met ← L@CD” species can be obtained from the initial “Met ← L + CD” system via 
direct  complexation  (scheme  7(d),  step  3) or via preliminary  formation of  the  “L@CD”  inclusion 

complex in solution (Scheme 7(d), steps 1, 2 and ‐4). 

The simple rationalization of the different transformations observed in this study for platinum 

and palladium complexes in the presence of RAME‐β‐CD can be refined by taking into account the 

fact that several ligands are systematically present on the metal. In particular, for ligands allowing a 

complexation by CD when coordinated to the metal (biphenyl phosphanes, in this study), relatively 

stable  organometallic  species  possessing  two  spheres  of  coordination  (phosphane  and  CD, 

respectively) may  be  obtained. However,  in  these  species,  the  steric hindrance  generated  by  the 

complexation  by  the CD  constitutes  a  possible  reason  explaining  that  the  included  ligand  or  a 

neighbour ligand can be expulsed to reach a more stable system (Scheme 8, pathway (a)). 

Conversely, for ligands not accessible for a CD when bound to a metal (TPPTS, in this study), 

the  only way  to  explain  an  observed  decoordination  in  the  presence  of CD  is  undoubtedly  the 

preliminary decoordination of the ligand from the metal (Scheme 8, pathway (b)). 

+ L + CD”
system (Scheme 7a, 1). This last system can then be transformed by inclusion of the free ligand in the
CD cavity (Scheme 7a, 2). Starting from the same initial system (“Met← L + CD”), another evolution
can be the complexation of ligand bound to the metal to reach a “Met← L@CD” system in which
the CD acts as a second sphere ligand (Scheme 7a, 3). In this complex, the “L@CD” part constitutes
a supramolecular ligand which can therefore also leave the metal to lead to a “Met
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+ L@CD” system
(Scheme 7a, 4). The fore-mentioned systems are in equilibrium and their proportions are consequently
driven by their free enthalpy, the more stable system being the more represented one.

So, when the “Met← L” starting organometallic species stays perfectly stable in the presence
of CD, it means that the free enthalpy of the “Met← L + CD” system is very low compared to the
other possible systems (Scheme 7b). Different reasons can produce this situation: basicity of the ligand
making the “Met← L” bond very strong, ligand poorly recognized by the CD...

In the same way, when CD is proved to be a decoordination promotor by being able to do an
inclusion complex with the phosphane, it means that the “Met
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+ L@CD” system is relatively close
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“Met
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+ L@CD” system can be reached either by preliminary natural decoordination of the phosphane
via the “Met
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+ L + CD” system (Scheme 7(c)), mechanism with the successive steps 1 and 2) or by
preliminary complexation of the organometallic species by the CD (Scheme 7(c), mechanism with steps
3 and 4 successively). This second mechanism is probably favoured when the CD is able to include the
ligand bound to the metal, i.e., when the free enthalpy of the Met← L@CD is low. Therefore, one can
think that TPPTS decoordination from [PtL3Cl]Cl species by CD proceed via the “1, 2 “ mechanism
(Met ← L@CD species is too high in free enthalpy to be easily reached in the case of TPPTS) and
that biphenyl phosphanes decoordination from palladium species proceed by the “3, 4” mechanism
(Met← L@CD is easy to form).

Finally, the “Met← L@CD” species can be obtained from the initial “Met← L + CD” system
via direct complexation (scheme 7(d), step 3) or via preliminary formation of the “L@CD” inclusion
complex in solution (Scheme 7(d), steps 1, 2 and -4).

The simple rationalization of the different transformations observed in this study for platinum
and palladium complexes in the presence of RAME-β-CD can be refined by taking into account the
fact that several ligands are systematically present on the metal. In particular, for ligands allowing
a complexation by CD when coordinated to the metal (biphenyl phosphanes, in this study), relatively
stable organometallic species possessing two spheres of coordination (phosphane and CD, respectively)
may be obtained. However, in these species, the steric hindrance generated by the complexation by
the CD constitutes a possible reason explaining that the included ligand or a neighbour ligand can be
expulsed to reach a more stable system (Scheme 8, pathway (a)).

Conversely, for ligands not accessible for a CD when bound to a metal (TPPTS, in this study), the
only way to explain an observed decoordination in the presence of CD is undoubtedly the preliminary
decoordination of the ligand from the metal (Scheme 8, pathway (b)).
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3. Materials and Methods

3.1. General Remarks

The 1H and 31P{1H} NMR spectra were recorded on an Avance 300 DPX instrument (Bruker,
Karlsruhe, Germany) at 300.13 and 121.49 MHz, respectively. Organic compounds were purchased from
Fisher Scientific (Pittsburgh, PA, USA) in their highest purity and used without further purification.
Potassium tetrachloroplatinate(II) and tetrakis(triphenylphosphane)palladium(0) were purchased
from Strem Chemicals (Newburyport, MA, USA). Ultrapure water was used in all experiments
(Fresenius Kabi, Bad Homburg, Germany; γ = 72.0 mN.m−1 at 25 ◦C). Pharmaceutical grade
RAME-β-CD (Cavasol® W7 M) was purchased from Wacker Chemie GmbH (München, Germany)
and was used as received. Randomly methylated β-cyclodextrin (RAME-β-CD) is a partially
methylated cyclodextrin and its degree of substitution was equal to 1.8 (1.8 methyl groups per
glucopyranose unit). TPPTS [24], tris(o-Me)TPPTS [25], tris(o-OMe)TPPTS [25], tris(p-Me)TPPTS [15]
and tris(p-OMe)TPPTS [26], P(Biph)Ph2TS [16], P(Biph)2PhTS [16] and P(Biph)3TS [16] were prepared
as reported in the literature. The purity of these water-soluble phosphanes was controlled by 1H,
13C{1H} and 31P{1H} NMR analysis.

3.2. 31P{1H} NMR Study on Platinum and Palladium Complexes

Platinum complexes were synthetized by dissolving K2PtCl4 (8.3 mg, 0.02 mmol) in degassed
deuterated water (2 mL). Three equiv. of the corresponding ligand (0.06 mmol) were added to the
solution, which was then stirred for 15 min at room temperature under nitrogen. Studies in the presence
of RAME-β-CD were conducted as follows: the required amount of cyclodextrin was introduced into
500 µL of the above solution. After 15 min of stirring, the solution was transferred into a NMR tube
and analysed.

Palladium complexes were synthetized according to a modified literature procedure [27].
Pd(PPh3)4 (103 mg, 0.089 mmol.) was dissolved in 2 g of degassed toluene into a Schlenk tube
under nitrogen. The corresponding phosphane (1.5 equiv., 0.133 mmol) was dissolved in 2 g of D2O
and cannulated onto the palladium solution. The mixture was stirred for 30 min at room temperature.
After decantation, the organic phase was removed and a new degassed Pd(PPh3)4 solution was
added to the previous aqueous solution which underwent again a 30 min stirring period to ensure
an optimal extraction of the palladium by the hydrosoluble ligand. After decantation, the aqueous
phase was recovered. The obtained PdLn (n = 2, 3 or 4) solution was then used for the 31P{1H} NMR
study. The previous solution usually contained a small excess of free ligand. Study in the presence of
RAME-β-CD was conducted as follow: to 1 mL of the above solution was introduced under nitrogen
the required amount of RAME-β-CD. After 15 min of stirring, the solution was transferred via cannula
into a nitrogen pressurized 5 mm NMR tube.

4. Conclusions

A 31P{1H} NMR study of platinum(II) and palladium(0) complexes coordinated with two
different groups of hydrosoluble monodentate phosphane ligands (including TPPTS, meta-trisulfonated
triphenylphosphane derivatives bearing one methyl (or methoxy) group on the aromatic ring
and trisulfonated biphenylphosphanes) has been described. The effect of randomly methylated
β-cyclodextrin (RAME-β-CD) addition on these complexes has been examined.

It has been shown that the interaction of the free phosphane with RAME-β-CD is a prerequisite to
observe any effect of the CD on the organometallic species (case of tris(p-OMe)TPPTS: no interaction,
thus no effect). However, the stereoelectronic properties of the ligand are also of great importance.
On the one hand, ligands whose phosphorous atom is hindered by ortho-substituted meta-sulfophenyl
groups lead, without CD, to low coordinated organometallic species, even with an excess of ligand;
the lack of free volume in the coordination sphere of these species doesn’t permit the coordination of
another ligand (case of tris(o-Me)TPPTS and tris(o-OMe)TPPTS, with platinum). On the other hand,
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a high σ-donating ligand can be difficult to be removed from the metal by CD because of the stability
of its metal-phosphorous bond (case of tris(p-Me)TPPTS, with platinum as well as palladium).

More generally, two interesting behaviours of CD have been highlighted: the CD can act
as a second sphere ligand by including the metal-bound phosphane without denaturing the
organometallic species or as a phosphane decoordination promotor. These two behaviours are under
thermodynamic control. Depending on the used ligand structure, the decoordination observed in the
presence of CD may proceed either via a preliminary decoordination of the phosphane followed by
a complexation of the free ligand by the CD (case of TPPTS) or via the generation of organometallic
species complexed by CD which then lead to expulsion of ligands to decrease their internal steric
hindrance (cases of biphenylphosphanes).

Such modifications of organometallic complexes by a CD, i.e., inclusion of organometallic species
into the cyclodextrin cavity by one of its ligand or decoordination of a ligand from the metal, can be
efficient strategies to obtain new catalysts possessing original activities and selectivities.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/22/1/140/s1:
Figures S1–S12.
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