Supplementary Materials: *ent*-Pimarane and *ent*-Kaurane Diterpenes from *Aldama discolor* (Asteraceae) and Their Antiprotozoal Activity

Mauro S. Nogueira, Fernando B. Da Costa, Reto Brun, Marcel Kaiser and Thomas J. Schmidt

1. Supporting Information

Figure S1. (**A**) LC-MS-chromatogram of the last fraction (elution with EtOAc) of the CC on silica gel of the dichloromethane extract of *A. discolor* leaves; (**B**) +ESI-MS of its major compound, budlein A. $[M + H]^+$: 375.1436 (C₂₀H₂₃O₇).

Figure S2. +ESI-QqTOF-MS chromatogram (A); UV spectrum (B); +ESI-MS (C) of compound 1, $[M + H]^+$: 305.2494 (C₂₀H₃₃O₂) and $[M + Na]^+$: 327.2322 (C₂₀H₃₂O₂Na). Internal calibrant sodium formiate: 12.6 min.

Figure S3. ¹H NMR spectrum of compound 1 (CDCl₃, 600 MHz). *-CH₃ protons from acetone.

Figure S6. 1 H/ 13 -HMBC spectrum of compound 1 (600/150 MHz, CDCl₃).

Figure S8. ¹H/¹H-NOESY spectrum of compound 1 (600 MHz, CDCl₃).

Figure S9. +ESI-QqTOF-MS chromatogram (A); UV spectrum (B); +ESI-MS (C) and +ESI-MS2 (D) spectra of compound **2**, $[M + H]^+$: 303.2346 ($C_{20}H_{31}O_2$). Internal calibrant sodium formiate: 12.6 min.

Figure S10. ¹H NMR spectrum of compound 2 (CDCl₃, 600 MHz). *-CH₃ protons from acetone.

Figure S12. 1 H/ 13 -HSQC spectrum of compound 2 (600/150 MHz, CDCl₃).

Figure S14. 1 H/ 1 H-COSY spectrum of compound 2 (600 MHz, CDCl₃).

Figure S15. ¹H/¹H-NOESY spectrum of compound **2** (600 MHz, CDCl₃). Cross-correlated peak (red circle) enabled the determination of the stereochemistry at C-13.

Figure S16. +ESI-QqTOF-MS chromatogram (**A**); UV spectrum (**B**); +ESI-MS (**C**) and +ESI-MS2 (**D**) spectra of compound **3**, $[M + H]^+$: 303.2332 (C₂₀H₃₁O₂). Internal calibrant sodium formiate: 12.6 min.

HO

CDCl₃

H₃C 18

Figure S17. ¹H NMR spectrum of compound 3 (CDCl₃, 600 MHz).

Figure S18. ¹³C NMR spectrum of compound 3 (CDCl₃, 150 MHz).

Figure S20. $^1\mathrm{H}/^{13}\text{-}\mathrm{HMBC}$ spectrum of compound 3 (600/150 MHz, CDCl_3).

Figure S21. ¹H/¹H-COSY spectrum of compound 3 (600 MHz, CDCl₃).

Figure S22. Partial ${}^{1}H/{}^{1}H$ -NOESY spectrum of compound 3 (600 MHz, CDCl₃) highlighting correlations in the downfield region.

Figure S23. Partial 1 H/ 1 H-NOESY spectrum of compound **3** (600 MHz, CDCl₃) showing correlations in the upfield region. Stereochemistry at C-13 in compound **4** is justified by the NOE effects circled in red.

Figure S24. +ESI-QqTOF-MS chromatogram (**A**); UV spectrum (**B**); +ESI-MS (**C**) and +ESI-MS2 (**D**) spectra of compound **4**, $[M + H]^+$: 303.2369 (C₂₀H₃₁O₂). Internal calibrant sodium formiate: 12.6 min.

7.0

6.0

. 6.5

5.5

5.0

3.5

. 3.0

4.5

2.5

2.0

1.5

1.0

0.5

Figure S28. ¹H/¹³C-HMBC spectrum of compound 4 (600/150 MHz, CDCl₃).

Figure S30. ¹H/¹H-NOESY spectrum of compound 4 (600 MHz, CDCl₃).