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Abstract: Ferulic acid is a polyphenolic compound contained in various types of fruits and wheat
bran. As a salt of the active ingredient, sodium ferulate (SF) has potent free radical scavenging activity
and can effectively scavenge ROS. In this study, we examined the effect of SF on iron-overloaded
mice in comparison to a standard antioxidant, taurine (TAU). We determined the protective role of
SF against liver injury by examining liver-to-body ratio (%), transaminase and hepatocyte apoptosis
in rats supplied with 10% dextrose intraperitoneal injection. In addition, antioxidative enzymes
activities, ROS formation, mitochondrial swelling, and mitochondrial membrane potential (MMP)
were all evaluated to clarify the mechanism of protective effect of SF associated with oxidative stress.
After 15 weeks of SF treatment, we found a significant reduction in liver-to-body weight radio and
elevation in both transaminase and hepatocyte apoptosis associated with iron-injected to levels
comparable to those achieved with TAU. Both SF and TAU significantly attenuated the impaired
liver function associated with iron-overloaded in mice, whereas neither showed any significant
effect on the iron uptake. Furthermore, treatment with either SF or TAU in iron-overloaded mice
attenuated oxidative stress, associated with elevated oxidant enzymes activities, decreased ROS
production, prevented mitochondrial swelling and dissipation of MMP and then inhibited hepatic
apoptosis. Taken together, the current study shows that, SF alleviated oxidative stress and liver
damage associated with iron-overload conditions compared to the standard ROS scavenger (TAU),
and potentially could encourage higher consumption and utilization as healthy and sustainable
ingredients by the food and drink.
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1. Introduction

Hepatic iron overload resulting from hemochromatosis or hematologic disorders such as
thallasemia can cause cirrhosis, end-stage liver disease and hepatocellular carcinoma [1,2]. A common
feature of both acute and chronic liver diseases is the excessive death of hepatocytes, leading to the loss

Molecules 2016, 21, 1219; d0i:10.3390 / molecules21091219 www.mdpi.com/journal/molecules


http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/journal/molecules

Molecules 2016, 21, 1219 20f12

of liver function and eventually liver failure [3,4]. Considerable attention has focused on the hypothesis
that iron-catalyzed oxidative stress plays a major role in hepatocyte death and liver injury [5].

Taurine (TAU) is a sulphur-containing amino acid that stabilises cell membrane and possesses
several physiological roles [6-8]. There are many reports on TAU’s protective effects against different
chemically-induced hepatotoxicity [9,10]. Furthermore, it has been reported that this amino acid could
scavenge free radicals and act as an antioxidant in iron-overloaded liver [11]. Hence, the protective
effects of TAU could be due to the antioxidant capability of this amino acid.

Likewise, ferulic acid, because of its phenolic nucleus and unsaturated side chain, can readily
form a resonance stabilized phenoxy radical, has potent free radical scavenging activity and can
effectively scavenge ROS [12,13]. Ferulic acid is one of the ubiquitous compounds in diet, especially
rich in grains, fruits, vegetables and beverage [14,15]. Sodium ferulate (SF) is the sodium salt of ferulic
acid. Ferulic acid is unstable and can’t be easily dissolved in water. Compared with ferulic acid, SF is
more stable and more easily dissolved in water. It has been shown that SF has a broad spectrum of
biological activities, such as anti-inflammatory, antioxidative, and antimutagenic effects [16-19], so in
the present study SF was used to treat iron-overloaded mice.

Although SF and ferulic acid exhibit beneficial effects in many diseases, whether SF or ferulic acid has
beneficial effects on liver damage in iron-overloaded mice is still unclear. In the present study, the potential
protective role of SF on liver damage associated with iron-overloaded conditions compared to a standard
antioxidant, TAU and also to identify the possible mechanisms underlying this effect. This will identify
a new preventive strategy for limiting liver damage under iron-overloaded conditions.

2. Results

2.1. SF Attenuates Mice Liver Damage Induced by Iron Overload

Administration of iron to mice over a 4-months time course successfully increased iron
concentration of serum and liver, and produced marked liver damage specified as the significant
increases of LW/BW and serum ALT and AST levels to that found in the control group. Oral
administration of TAU and SF (40 and 30 mg/kg/day, respectively) significantly attenuated the
developed liver damage, resulting in decreases of LW/BW and serum ALT and AST levels (both at
p < 0.01). However, neither TAU nor SF significantly affected iron concentration of serum and liver
(Table 1).

Table 1. Effect of TAU or SF on the serum and hepatic iron concentration, liver-to-body weight ratio,
serum levels of ALT and AST in iron-overloaded mice.

Group Control Iron Iron + TAU Iron + SF

Serum iron concentration 35.08 + 1.26 41526 + 14212 39518 + 15182  398.64 + 16.212

(umol/L)
Hepaticiron concentration  h5a 4 000 1102400322  1.081 £ 00298  1.076 + 0.031 2
(mg/g dry weight)
LW/BW (mg/g) 45.6 +2.2 102.6 +4.32 623 +22ab 65.1 £ 2.6 &P
ALT (U/L) 46.82 +1.35 23521 £8.622 12032 +4.612P 13506 4+ 5.252P
AST (U/L) 100.65 +3.25 40528 +£13.062 22452 +9.312P  240.61 +9.53 2P

Note: Data are expressed as the mean = the standard error of the mean (n = 12). @ p < 0.01 vs. Control group;
b p <0.01 vs. Iron group. ALT, alanine transaminase; AST, aspartate transaminase.

2.2. SF Reduces Hepatocyte Apoptosis

Ferrocene supplement in the diet significantly promoted hepatocyte apoptosis when compared
to the control group, as indicated by a significant increase in the TUNEL-positive hepatocytes.
Surprisingly, both TAU and SF treatment showed a significant decrease in the TUNEL-positive
hepatocytes when compared to the iron-overload group (both at p < 0.01) (Figure 1). Thus, both TAU
and SF prevent hepatocyte apoptosis associated with iron-overload conditions.
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Figure 1. The effect of TAU or SF on iron overload-induced hepatocyte apoptosis. TUNEL-positive cells
are identified as apoptotic, and arrowheads indicate the TUNEL-positive hepatocytes in representative
photomicrographs. Original magnification is x400. (A) control group; (B) iron overload group;
(C) TAU-treated group; (D) SF-treated group (E) Quantitative analysis of apoptotic hepatocytes
expressed as percentage of TUNEL-positive nuclei in hepatocytes. Values are mean + SE (n = 12).
a: p <0.01, vs. control group; b: p < 0.01, vs. iron overload group.

2.3. SF Elevates Enzymatic Antioxidants Activity

As seen from Figure 2, the activities of SOD, GSH-Px and catalase are lower, but MDA level is
higher in the iron-overloaded hepatic tissues relative to no-treated hepatic tissues (p < 0.01). However,
both TAU and SF exert same effects on the oxidant and antioxidant parameters in the iron-overloaded
hepatic tissues. They caused significant increases in SOD, GSH-Px and catalase activities and decreases
in MDA levels. There were no significant differences in these parameters between the two groups.
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Figure 2. The effect of TAU or SF on the activities of the antioxidant enzymes and lipid peroxidation in
iron-overloaded mice. (A) SOD; (B) GSH-Px; (C) catalase; (D) MDA. Data represents mean =+ SE of

12 independent experiments. a: p < 0.01, vs. control group; b: p < 0.01, vs. iron overload group.

2.4. SF Increases Non-Enzymatic Antioxidants

Exposure to iron-overload condition significantly decreased GSH contents (Figure 3A), the ratio of
GSH/GSSG (Figure 3B) and the total amount (GSH + GSSG) (Figure 3D) compared with control group
(p < 0.01). Surprisingly, both TAU and SF exhibited a significant increase in GSH contents (Figure 3A),
the ratio of GSH/GSSG (Figure 3C), and the total of GSH + GSSG (Figure 3D) when compared to the
iron-overload group. This suggested TAU and SF could reverse oxidative stress induced by excessive

iron by elevating non-enzymatic antioxidants.
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Figure 3. The effect of TAU or SF on hepatic GSH (A) and GSSG (B) levels, the ratio of GSH/GSSG
(C) and the total amount GSH + GSSG (D) in iron-overloaded mice. Data represents mean =+ SE of

12 independent experiments. a: p < 0.01, vs. control group; b: p < 0.01, vs. iron overload group.
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2.5. SF Reduces the ROS Production

We next investigated if oral administration of SF can inhibit the production of ROS induced by
iron overload in mice. As shown in Figure 4, ferrocene feeding for 4 months resulted in a ROS curve
shift to the right, which means iron-overload increased the level of ROS (p < 0.01) compared to the
control group. However, oral administration of TAU and SF significantly reduced the elevated ROS
levels (both at p < 0.01), and caused the curve of ROS to shift to the left.
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Figure 4. The effect of TAU or SF on hepatic intercellular ROS generation in iron-overloaded mice.
(A) Cellular ROS contents were measured by flow cytometry. The incubation methods of every group
were the same as we described in the Materials and Methods. Hepatocytes were then cultured for 20 min
in the dark. All cells harvested for DCFH-DA incubating and measured using flow cytometry system;
(B) Quantitative analysis of mean fluorescence intensity (MFI) of DCF. Data represents mean =+ SE of
12 independent experiments. a: p < 0.01, vs. control group; b: p < 0.01, vs. iron overload group.

2.6. SF Inhibits the Mitochondrial Swelling

To elucidate the molecular mechanisms by which TAU and SF maintained hepatocyte MMP and
declined oxidative stress, we measured the hepatocyte mitochondrial swelling using the method as
mentioned before. Mitochondrial swelling was obtained by the addition of 150 M Ca?*. The results
showed that iron-overload promote mitochondrial swelling, whereas, TAU and SF treatment both
completely inhibited Ca?* induced mitochondrial swelling in isolated mouse liver mitochondria
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(both at p < 0.01). This result indicated that the mechanism of protective action against MMP collapse
could be considered for SF which inhibit mitochondrial swelling (Figure 5).
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Figure 5. The effect of TAU or SF on hepatocyte mitochondrial swelling in iron-overloaded mic Data
represents mean + SE of 12 independent experiments. (A) Ca?*-induced mitochondrial swelling in
four groups with different treatment. During the onset of mitochondrial swelling, 150 pM Ca?* was
added to initiate the reaction. Iron-overload induced mitochondrial swelling, resulted in the large
decrease in the absorbance of the mitochondrial suspension at 520 nm in 2 min. However, both SF and
TAU inhibited the swelling process; (B) Quantitative analysis of mitochondrial swelling. a: p < 0.01, vs.
control group; b: p < 0.01, vs. iron overload group.

2.7. SF Inhibits the Loss of MMP (Mitochondrial Membrane Potential)

Rhodamine 123 (Rh123) is a lipophilic compound that accumulates inside mitochondria, and can
be used to analyze, at least qualitatively, the value of mitochondrial membrane potential. Then the
hepatocytes were incubated with Rh123 according to the previously described method. As show
in Figure 6, iron overload shifted the curve of MMP to the left and induced MMP depolarization
compared to the control group, whereas TAU and SF prevented MMP dissipation and shifted the curve
back to the right.
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Figure 6. The effects of TAU or SF on mitochondrial membrane potential (MMP) in iron-overloaded
mice. (A) Fluorescent indicator Rhodamine123 was used to detect the change of MMP in different
gourps. The fluorescent distribution curve shifted to the left in iron overload group, indicating
a reduction of MMP. However, the curve shifted to the right in the cells treated with ST or TAU;
(B) Quantitative analysis of mean fluorescence intensity (MFI) of Rhodaminel23. Data represents
mean =+ SE of 12 independent experiments. a: p <0.01, vs. control group; b: p <0.01, vs. iron overload group.

3. Discussion

This study presented, for the first time, the potential protective of SF against iron-overload
condition, the main active components of the ferulic acid compared to the standard antioxidant, TAU.
This is supported by the following findings: (1) SF reversed iron overload-induced hepatic damage
without reducing iron deposition, (2) Enhanced oxidant stress following iron overload in liver was
ameliorated by SF and (3) SF reduced mitochondrial swelling and membrane potential associated
with oxidant stress. Thus, it is suggested that the overall protective role of SF against iron overload is
mediated by inhibiting oxidant stress and maintaining mitochondrial membrane potential.

In our study, we considered the most reliable model of iron overload in mice by including ferrocene
(0.2% for 90 days and then 0.4% for the remaining 30 days) in diet. This was sufficient to significantly
develop iron-overload in 120 days. Also, the iron-overloaded animal group was characterized by
increasing in LW /BW, serum ALT and AST, TUNEL-positive hepatocytes, which is consistent with
previous studies [20]. Elevated LW/BW and serum ALT and AST might be correlated to impaired liver
function. Whereas, increased TUNEL-positive hepatocytes is referred to the aggravated hepatocyte
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apoptosis in the affected animals. Our results indicated that both SF and TAU significantly reduced
the aggravations in liver damage associated with iron overload. The effect of SF is explained by its
antioxidation, which is consistent with previous studies that reported that antioxidant protects against
liver damage in iron-overloaded mice models [20-22].

Iron-catalyzed oxidative damage to the liver is presumed to be the major causal factor in the
impairment of hepatic function [23,24]. Therefore, we speculated that the mechanisms by which TAU
and SF prevent iron overload-induced liver damage can be attributed to inhibition of oxidant stress.
In the present study, both TAU and SF prevented the excessive ROS generation in iron-overloaded
mice. Antioxidant compounds are capable of neutralizing ROS and counteract the harmful effects of
ROS [25-27]. In this study, antioxidant measurements were performed in all four groups. Statistically
significant differences were found for all antioxidant measurements (SOD, GSH-Px, Catalase activities
and GSH, GSSH levels in hepatic tissue, and MDA level in hepatic tissue) between the four groups.
In the iron-overload group, SOD, GSH-Px, Catalase and GSH values were lower than in the control
group. Moreover, except for MDA, antioxidant measurement values were higher than in the
iron-overload group. MDA was a typical biomarker used in the evaluation of injury due to lipid
peroxidation, which represented the most frequent injury resulting from the activation of ROS [28,29].
Therefore, TAU and SF significant prevented the MDA increase associated with iron overload.

In view of the importance of mitochondria in control of cell fate [30,31], we also highlighted the
direct effects of SF on isolated mouse liver mitochondria. In iron-overload animal group, we observed
an aggravated mitochondrial swelling and dissipated MMP. On the other hand, animals treated
with TAU and SF prevented the aggravation of mitochondrial swelling and elimination of MMP,
which are consistent with inhibiting excessive ROS generation and enhancing antioxidant activities.
These findings suggested that SF might prevent the iron overload-induced liver damage by suppressing
oxidative stress and stabilizing MMP, as the standard antioxidant TAU.

In conclusion, SF, with its antioxidant properties, could increase antioxidant enzymes and lead
to a decrease in oxidative stress associated with iron overload. Because SF is an herbal product, and
the adverse reactions were limited, so it might be used as a nutritional supplement in people with
iron-overload condition, such as hemochromatosis or hematologic disorders. These products could be
considered as products that will enhance the quality of life.

4. Materials and Methods

4.1. Animals

Forty-eight male Kunming mice weighing 15.1 g & 0.5 g from Nanchang University (Nanchang,
China) were maintained in clear polypropylene cages in stable environmental conditions and equal
light-dark cycles. Mice had free access to a commercially available rodent-pellet diet and purified
water. Animal care in this study conformed to the National Institutes of Health (NIH) Guide for Care
and Use of Laboratory Animals (NIH publication 86-23, revised 1986). Experimental protocol was
approved by the Nanchang University Ethical Committee for Animal Handling.

4.2. Study Protocol

Animals were randomly divided into four experimental groups (12 mice/group) as follows:
control, iron-overload, TAU-treated and SF-treated. Iron-overload mice were fed for 4 months on
a pellet diet (AIN-93G) supplemented with iron in the form of ferrocene. The proportion of iron in the
diet was maintained at 0.2% (w/w) for 90 days and then to 0.4% (w/w) for the remaining 30 days [32].
Then, TAU and SF (20 and 15 mg/kg/day, respectively) were administered daily by oral gavage prior
to iron-overload administration 6 weeks and throughout the course of the experiments. Control mice
were fed the AIN-93G diet without iron, TAU and SE. After experiment, mice were euthanized by
cervical dislocation, and blood was collected by cardiac puncture. The liver was immediately excised,
weighed and divided for analysis as following methods.
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4.3. Measurement of Biochemical Parameters and Indices of Liver Injury

Serum iron concentrations were determined using the assay based on the generation of
an iron-ferrozine complex, as described previously [33]. Iron concentrations were expressed as
micrograms of iron per gram of dry weight of liver and measured spectrophotometrically at 535 nm,
following reaction with 2 mM bathophenanthroline disulfonic acid [34]. LW/BW (liver weight/body
weight) was calculated according to the formula: LW/BW =100 x (liver weight (g)/Body weight
(g)). Serum AST and ALT activities were measured using an autoanalyser (Cobas Integra 400, Roche,
Holliston, MA, USA) and an ALT/AST reagent kit from Roche Diagnostics (Indianapolis, IN, USA).

4.4. Determination of Antioxidant Enzymes Activities and Lipid Peroxidation

The protein content of the liver was measured according to the methods of Lowry et al. [35] using
bovine serum albumin as a standard. Malondialdehyde (MDA, pmol/mg) level, CAT (U/mg), SOD
(U/mg), and GSH-Px (mU/mg) enzyme activities were measured, respectively [36-38]. MDA levels
were measured by the thiobarbituric acid reactive substances method [39]. SOD activity was measured
on the basis of the inhibition of nitroblue tetrazolium (NBT) reduction by O, generated by the
xanthine/xanthine oxidase system [36]. One unit for SOD activity was expressed as the enzyme protein
amount causing 50% inhibition in the NBT reduction rate. CAT activity was determined by measuring
the absorbance decrease of HyO, at 240 nm [37]. GSH-Px activity was measured by following changes
in nicotinamide adenine dinucleotide phosphate (NADPH) absorbance at 340 nm [38].

4.5. Estimation of Non-Enzymatic Antioxidants (GSH and GSSH)

To evaluate if SF can maintain hepatic GSH homeostasis and elevate GSH level, hepatic
concentrations of reduced GSH and GSSG were measured by GSH and GSSG assay kit purchased from
Beyotime Institute of Biotechnology (Haimen, Jiangsu, China). Briefly, after treatment, 0.1 g of liver
was homogenized with a pellet pestles-Cordless motor (Sigma-Aldrich, St. Louis, MO, USA) and the
supernatants were collected by centrifugation at 10,000x g for 10 min at 4 °C, and the concentrations
of GSH and GSSG were measured according to the instructions of the assay kit. All biochemical

determinations were normalized to the protein content using bicinchoninic acid method (Pierce,
Rockford, IL, USA).

4.6. Hepatocyte Preparation

Hepatocytes were isolated using a two-step collagenase perfusion method as previously described.
Following mechanical disruption of the liver capsule, liver cells were collected in Williams” Medium E
and serially filtered (30-, 50- and 80-mesh) through an 85-mL Cellector (Bellco Biotechnology, Vineland,
NJ, USA) tissue sieve. Between 10 x 106 and 25 x 106 cells were obtained from a single mouse liver.

4.7. Measurement of Intracellular ROS

A fluorescent probe (Beyotime, Shanghai, China) was used to detect intracellular ROS level.
Hepatocytes were washed twice with cold phosphate-buffered saline (PBS) and incubated in Dulbecco's
Modified Eagle’s Medium containing 10 mmol/L 2’,7’-dichlorofluorescein diacetate (DCFH-DA) for
20 min at 37 °C. DCFH-DA is cell permeable and can be rapidly oxidized into highly fluorescent
2/,7'-dichlorofluorescein (DCF) by ROS. The fluorescence intensity of each group was determined
using flow cytometric analysis (Becton-Dickinson, Franklin Lakes, NJ, USA) at excitation and emission
(ex/em) wavelengths of 485/528 nm, respectively.

4.8. Determination of Mitochondrial Membrane Potential (MMP)

Loss of the mitochondrial membrane potential (MMP) was assessed with flow cytometry using
the fluorescent indicator Rhodamine123 (Rho123; Sigma-Aldrich, St. Louis, MO, USA). In Brief,
the hepatocytes were transferred to 1.5 mL Eppendorf tubes and kept no ice. After washed twice with
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ice-cold PBS, the pellet was gently resuspended and adjusted to a concentration of 1 x 10° cells/mL.
The suspensions were incubated with rhodominel23 (10 M) for 30 min in the darkness at 4 °C.
Then the cells were washed twice with ice-cold PBS and kept on ice in the dark until analyzed with
flow cytometer at 37 °C, and were immediately submitted for flow analysis. At least 10,000 events
were acquired per sample.

4.9. Isolation of Mitochondria from Mouse Liver

Mitochondria were isolated from mouse liver by differential centrifugation [40]. In brief, mouse liver
was homogenized using a Potter-Elvehjem glass homogenizer (Tiandz, Beijing, China). Homogenates
were then centrifuged for 5 min at 600 x ¢ and the resulting supernatant further centrifuged for 10 min
at 11,000x g. The pellet was resuspended and the same centrifugation process was repeated. Pellets
were then suspended and centrifuged for 15 min at 3400x g. The final mitochondrial pellet was
suspended in storage buffer consisting of 250 mM sucrose and 10 mM HEPES-KOH (4 °C, pH 7.4) and
used within 3 h.

4.10. Evaluation of Mitochondrial Swelling

The swelling experiments were performed as a previously described methed [41] using a standard
medium containing 125 mM sucrose, 10 mM HEPES buffer (pH 7.2), 2.5 mM succinate and 4.0 mM
rotenone at 25 °C. The final volume used was 1.0 mL, and the protein concentration was ~0.5 mg/mL.
Then, swelling was initiated by adding 150 uM CaCl,. Swelling was estimated from the decrease in
absorbance at 520 nm with a spectrometer (Hitachi U 2000, Hitachi, Tokyo, Japan).

4.11. TUNEL Assay

The terminal deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay was
performed to detect hepatocyte apoptosis. The hepatocytes were plated on glass Lab-Tek Chamber
slides (Sigma) and washed with PBS, then fixed in 1% paraformaldehyde for 10 min. These were then
postfixed in pre-cooled ethanol-acetic acid (2:1) for a further 5 min at —20 °C. Following washing with
PBS, the cells were incubated with a TUNEL reaction buffer at 37 °C for 1 h in a humidified chamber.
As a positive control, cells were treated with DNase I (1.0 mg/mL, Sigma) for 10 min, to introduce
nicks into the genomic DNA. Brown colored cells represent apoptotic cells in each glass-slide under
the high magnification (x400) microscope (OLYMPUS, Tokyo, Japan). The percentage of hepatocyte
apoptosis with DNA nick-end labeling was determined by counting the number of cells exhibiting
brown nuclei among 1000 cells in duplicate plates.

4.12. Statistical Analysis

All statistical analysis was performed with Statistical Product and Service Solutions 13.0 software
(SPSS 13.0, SPSS, Chicago, IL, USA). Data was represented as means =+ SE. Statistical analysis was
performed by Student-Newman-Keuls post-test for comparison between two groups, and one-way
ANOVA for multiple groups. p < 0.05 was considered as statistically significant.
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