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Abstract: A water-soluble PdCl2(NH3)2/cationic 2,2′-bipyridyl system was found to be a highly
efficient catalyst for Stille coupling of aryl iodides and bromides with organostannanes. The coupling
reaction was conducted at 110 ◦C in water, under aerobic conditions, in the presence of NaHCO3

as a base to afford corresponding Stille coupling products in good to high yields. When
aryltributylstannanes were employed, the reactions proceeded smoothly under a very low catalyst
loading (as little as 0.0001 mol %). After simple extraction, the residual aqueous phase could be
reused in subsequent runs, making this Stille coupling economical. In the case of tetramethylstannane,
however, a greater catalyst loading (1 mol %) and the use of tetraethylammonium iodide as a
phase-transfer agent were required in order to obtain satisfactory yields.
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1. Introduction

The palladium-catalyzed cross-coupling of aryl halides or pseudo-halides with organo-stannanes,
known as the Stille coupling, is one of the most powerful methods for the straightforward
construction of carbon–carbon bonds in synthetic chemistry [1–3]. The main advantages of the
Stille coupling reaction include the stability and functional group tolerance of stannanes, the broad
reaction scope of aryl halides and pseudo-halides, and its chemoselectivity; therefore, this reaction
has been widely applied in natural product synthesis [4–10], biological research [11], and for
pharmaceutical purposes [12]. Stille coupling reactions are generally carried out in organic solvents
under homogeneous catalysis, and, hence, it is difficult to separate the catalyst from the reaction
mixture and then recycle it at the end of the reaction, leading to wastage of precious metals. Therefore,
the development of a recyclable and reusable catalytic system is highly attractive and valuable from
the viewpoints of green chemistry and practical application. To circumvent this problem, several new
strategies involving heterogenized homogeneous catalysts have been developed for recycling and
reusing catalysts, including the use of Pd complexes supported by silica gel [13,14], polymers [15,16],
nanoparticles [17,18], porous metal−organic frameworks [19], bulky proazaphosphatrane ligands [20],
mesoporous silica [21–26], and metal nanoparticles [27–42]. Alternatively, combinations of palladium
complexes with several green solvents, such as ionic liquids [43–45], polyethylene glycol [46–50],
H2O [51–54], or H2O in the presence of surfactants [55–57], have also been applied as reusable
catalytic systems.
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We recently reported that cationic 2,2′-bipyridyl is an excellent ligand to bring PdCl2(NH3)2 into
the aqueous phase, in order to efficiently perform several carbon–carbon bond-formation reactions,
and the residual aqueous solution can be reused for the next run [58–63]. As part of our continuing
efforts in the development of water-soluble and reusable catalytic systems for carbon–carbon
bond-forming reactions, we report, herein, on a reusable PdCl2(NH3)2/cationic 2,2′-bipyridyl catalytic
system, which can be applied for Stille coupling of aryl halides with organostannanes in water under
aerobic conditions, in the presence of NaHCO3 as a base. The loading amount of the catalyst in a single
batch reaction could be reduced to as little as 0.0001 mol % (1 ppm), still affording products in high
yields (Scheme 1).
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2. Results and Discussion

2.1. Optimization of Stille Coupling Conditions

Water-soluble cationic 2,2′-bipyridyl ligand L was synthesized according to our previously-
published method [58,59]. The catalytic system was prepared by mixing equimolar amounts of
PdCl2(NH3)2 and L in water, and then it was stored under air. Stock solutions of this catalytic system
were prepared at different concentrations to obtain various catalyst loadings. In order to discover the
optimal conditions, the coupling of 4′-iodoacetophenone (1a, 1 mmol) and PhSnBu3 (2a, 1.2 mmol) in
the presence of PdCl2(NH3)2/L (1 mol %) in water (3 mL), at 110 ◦C for 0.5 h, was first investigated,
and the results are summarized in Table 1.

Table 1. Optimization studies for the Pd(NH3)2Cl2/L-catalyzed Stille coupling of 4′-iodoacetophenone
(1a) and PhSnBu3 (2a) in water a.

Entry Base Yield (%) b

1 KOH 70
2 K3PO4 75
3 K2CO3 85
4 KF 60
5 KOAc 74
6 NaHCO3 95

7 c NaHCO3 32
8 d NaHCO3 35
9 e NaHCO3 0
10 f NaHCO3 90
11 g NaHCO3 95

a Reaction conditions: 1a (1 mmol), 2a (1.2 mmol), base (2 mmol), PdCl2(NH3)2/L (1 mol %), H2O (3 mL)
at 110 ◦C for 0.5 h; b Isolated yields; c In the absence of L; d 2,2′-Bipyridyl was used as the ligand;
e 2,2′-Bipyridine-4,4′-dicarboxylic acid was used as the ligand; f PhSnCl3 (1.2 mmol) was used; g PhSnMe3
(1.2 mmol) was used.

Initially, several commonly-used bases were screened, and it was found that the use of NaHCO3

provided the Stille coupling product in a 95% yield, which was higher than the yields obtained using
other inorganic bases (Entries 1–6). Then, two additional experiments were performed to demonstrate
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the necessity of water-soluble ligand L. Under the same conditions as Entry 6, only a 32% yield of
the cross-coupling product was obtained in the absence of the ligand (Entry 7), and a 35% yield was
obtained when L was replaced with neutral 2,2′-bipydryl (Entry 8). These results clearly revealed
that use of the water-soluble ligand was crucial in this Stille coupling reaction. When basic aqueous
soluble 2,2′-bipyridine-4,4′-dicarboxylic acid was employed as ligand, however, Stille coupling did not
occur, hence, 1a and 2a remained intact (Entry 9). Other phenylstannane sources, such as PhSnCl3 and
PhSnMe3, were also examined. Although these two reagents furnished 3aa in 90% and 95% yields,
respectively (Entries 10 and 11), PhSnBu3 can be synthesized from the much cheaper ClSnBu3; hence,
aryltributylstannanes were applied for the reactions.

2.2. Reuse Studies of the Residual Aqueous Solution

We then studied the reusability of the aqueous catalytic system for Stille coupling, which is
important from the viewpoints of practical utilization and economics. Coupling of 1a and 2a under
the conditions of Entry 6, in Table 1, was performed in order to test the feasibility of this approach
(Scheme 2). After completion of the first run, the organic portion was easily separated from the
aqueous phase by simple extraction with hexane (3 mL × 3), and 3aa was isolated in a 95% yield
using a typical work-up procedure. The residual aqueous solution was then subjected to the next
reaction run, charged with the same reactants, 1a and 2a, and NaHCO3. It was found that this residual
aqueous solution could be reused at least four times, and a 78% isolated yield was reached in the
fourth reuse run. In order to know the partitioning of the catalyst in the organic phase, the first run
was performed again. After extracting the reaction mixture with hexane, the organic phase was then
used for ICP-MASS analysis. It was found that there was no leaching of Pd into the organic phase.
Thus, the slight decrease in activity was presumably due to a gradual decay of the catalytic activity.
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2.3. Scope of Substrates and Loading Amounts of Catalyst

Encouraged by the excellent results of the reuse studies of the residual aqueous solution, we then
examined the scope of substrates, and attempted to reduce the catalyst loading required (Table 2).
Aryl iodides 1a and 1b with electron-withdrawing groups at the para-position coupled with various
aryltributylstannanes 2a–2c under 0.01 mol % catalyst loading, giving the corresponding Stille coupling
products at yields between 90% and 98%, in 3 h (Entries 1, 3 and 4, 6, and 8 and 9). Further reduction
of the catalyst loading to 0.0001 mol % (1 ppm), and increase of the reaction scale to 10 mmol, resulted
in the corresponding Stille coupling products being obtained at yields between 72% and 82%, in 48 h
(Entries 2, 5, and 7), and the highest turnover number (TON) achieved was up to 820,000 (Entry 2).
Iodobenzene (1c) showed only a slightly lower rate compared with electron-withdrawing 1a and 1b,
but still resulted in excellent yields by prolonging the reaction time to 6 h (Entries 10–12). For aryl
iodides bearing an electron-donating group at the para-position, 1d and 1e, high yields were isolated
in 6 h, with a catalyst loading of 0.01 mol % (Entries 13, 15–17, and 19 and 20). Similarly, in the cases
of entries 14 and 18, 59% and 66% yields were obtained, respectively, in 48 h, under 1 ppm catalyst
loading, using a reaction scale of 10 mmol (Entries 14 and 18).
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Table 2. Pd-catalyzed Stille coupling of aryl iodides (1) and aryltributylstannane (2) in water a.

Entry Aryl Iodide ArSnBu3 [Pd] (mol %) Duration (h) Yield (%) b

1 4-IC6H4COMe 1a C6H5SnBu3 2a 0.01 3 3aa (98)
2 c 1a 2a 0.0001 48 3aa (82)
3 1a 4-FC6H5SnBu3 2b 0.01 3 3ab (97)
4 1a 4-MeOC6H5SnBu3 2c 0.01 3 3ac (93)

5 c 1a 2c 0.0001 48 3ac (72)
6 4-IC6H4CN 1b 2a 0.01 3 3ba (91)

7 c 1b 2a 0.0001 48 3ba (75)
8 1b 2b 0.01 3 3bb (93)
9 1b 2c 0.01 3 3bc (90)

10 C6H5I 1c 2a 0.01 6 3ca (95)
11 1c 2b 0.01 6 3cb (95)
12 1c 2c 0.01 6 3cc (90)
13 4-IC6H4Me 1d 2a 0.01 6 3da (89)

14 c 1d 2a 0.0001 48 3da (59)
15 1d 2b 0.01 6 3db (82)
16 1d 2c 0.01 6 3dc (88)
17 4-IC6H4OMe 1e 2a 0.01 6 3cc (94)

18 c 1e 2a 0.0001 48 3cc (66)
19 1e 2b 0.01 6 3eb (84)
20 1e 2c 0.01 6 3ec (80)

a Reaction conditions: 1 (1 mmol), 2 (1.2 mmol), NaHCO3 (2 mmol), H2O (3 mL) at 110 ◦C; b Isolated yields;
c 1 (10 mmol), 2 (12 mmol), NaHCO3 (20 mmol), H2O (30 mL) at 110 ◦C.

Analogous reactions of cheaper aryl bromides were also investigated (Table 3). Activated aryl
bromides 4a and 4b, were efficiently coupled with 2a–c under conditions identical to those used for
aryl iodides; however, a longer reaction time was required (Entries 1–9).

Table 3. Pd-catalyzed Stille coupling of aryl bromides (4) and aryltributylstannane (2) in water a.

Entry Aryl Bromide ArSnBu3 [Pd] (mol %) Duration (h) Yield (%) b

1 4-BrC6H4COMe 4a C6H5SnBu3 2a 0.01 6 3aa (96)
2 c 4a 2a 0.0001 48 3aa (70)
3 4a 4-FC6H5SnBu3 2b 0.01 6 3ab (96)
4 4a 2b 0.001 12 3ab (91)
5 4a 4-MeOC6H5SnBu3 2c 0.01 6 3ac (92)
6 4a 2c 0.001 12 3ac (95)
7 4-BrC6H4CN 4b 2a 0.01 6 3ba (93)
8 4b 2b 0.01 8 3bb (90)
9 4b 2c 0.01 8 3bc (88)

10 C6H5Br 4c 2a 1 24 3ca (92)
11 4c 2b 1 36 3cb (96)
12 4c 2c 1 36 3cc (94)
13 4-BrC6H4OMe 4e 2a 1 24 3cc (84)
14 4e 2b 1 24 3eb (83)
15 4e 2c 1 36 3ec (97)

16 d 4-BrC6H4OH 4f 2a 1 3 3fa (90)
17 d 4f 2a 0.01 12 3fa (96)

18 c,d 4f 2a 0.0001 48 3fa (56)
19 d 4f 2b 0.01 12 3fb (94)
20 d 4f 2c 0.01 12 3fc (88)

a Reaction conditions: 4 (1 mmol), 2 (1.2 mmol), NaHCO3 (2 mmol), H2O (3 mL) at 110 ◦C; b Isolated yields;
c 4 (10 mmol), 2 (12 mmol), NaHCO3 (20 mmol), H2O (30 mL) at 110 ◦C; d 3 equiv. of NaHCO3 was applied.

A very low catalyst loading could also be applied when employing electron-withdrawing aryl
bromides. For example, the coupling of 4a and 2a furnished 3aa in a 70% yield with a 1 ppm catalyst
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loading in 48 h (Entry 2). In the cases of 4c and electron-donating 4e, the reactions were much slower
than those of the iodide analogs. Hence, conduction of the reaction using a 1 mol % catalyst loading and
prolongation of the reaction time were necessary in order to obtain satisfactory yields (Entries 10–15).
These results indicated that the oxidative addition of a carbon–bromine bond to palladium may be the
rate-determining-step in this catalytic cycle. Surprisingly, the reaction rate was dramatically enhanced
when deactivated 4-bromophenol (4f) was employed (Entries 16–20). Compound 4f was soluble in
basic aqueous solution, producing 4-bromophenoxide. This aryl bromide then underwent oxidative
addition to palladium under homogeneous conditions, making this step much faster than for other
water-insoluble aryl bromides. Taking advantage of this water-soluble property, 4f coupled with 2a
very smoothly, providing a 56% yield (TON = 560,000) of 3fa under a catalyst loading of only 1 ppm at
110 ◦C for 48 h (Entry 18).

The utility of this reaction protocol for the formation of Csp2–Csp3 carbon–carbon bonds was
also evaluated. As illustrated in Table 4, the coupling of 1a and SnMe4, 5, using 1 mol % catalyst
loading at 110 ◦C for 24 h, gave 6a in only a 51% yield (Entry 1). The use of two equivalents of 5 in
the reaction was owing to its low boiling point (74–75 ◦C). In order to improve upon this outcome,
a phase-transfer agent was added into the reaction [55–57]. The use of tetrabutylammonium bromide
(TBAB) and tetrabutylammonium hydroxide (TBAOH) led to the formation of 6a in yields of 63%
and 70%, respectively (Entries 2 and 3). It is worth noting that a 91% isolated yield of 6a could be
achieved when tetraethylammonium iodide (TEAI) was applied in the reaction system (Entry 4). Thus,
1b coupled with 5 under such conditions afforded 6b in a 78% yield (Entry 5). However, a low product
yield was obtained when electron-rich 1e was utilized (Entry 6). Activated aryl bromides 4a and 4b
were also coupled with 5, furnishing 6a and 6b in 40% and 31% yields, respectively (Entries 7 and 8).

Table 4. Pd-catalyzed Stille coupling of aryl halides (1 or 4) and tetramethylstannane (5) in water a.

Entry Aryl Halide Duration (h) Yield (%) b

1 c 4-IC6H4COMe 1a 24 6a (51)
2 d 1a 24 6a (63)
3 e 1a 24 6a (70)
4 1a 24 6a (91)
5 4-IC6H4CN 1b 24 6b (78)
6 4-IC6H4OMe 1e 36 6e (42)
7 4-BrC6H4COMe 4a 48 6a (40)
8 4-BrC6H4CN 4b 48 6b (31)

a Reaction conditions: 1 or 4 (1 mmol), 5 (2 mmol), PdCl2(NH3)2/L (1 mol %), tetraethylammonium iodide
(TEAI, 1 mmol), NaHCO3 (2 mmol), H2O (3 mL) at 110 ◦C; b Isolated yields; c In the absence of TEAI;
d Tetrabutylammonium bromide (TBAB, 1 mmol) was used. e Tetrabutylammonium hydroxyl (TBAOH,
1 mmol) was used.

3. Experimental Section

3.1. General Information

Chemicals were purchased from commercial suppliers and were used without further
purification. Cationic 2,2′-bipyridyl ligand was prepared according to published procedures [58,59].
Aryltributylstannanes were prepared according to known procedures [64]. All 1H- and 13C-NMR
spectra were recorded in CDCl3 or DMSO-d6 at 25 ◦C on a Bruker Biospin AG 300 NMR spectrometer
(Bruker Co., Faellanden, Switzerland), in which chemical shifts (δ in ppm) were determined with
respect to the non-deuterated solvent as a reference (1H-NMR: CHCl3 at 7.24, non-deuterated DMSO
at 2.49 ppm; 13C-NMR: CDCl3 at 77.0, DMSO-d6 at 39.5 ppm). Melting points were recorded using a
melting point apparatus, and were uncorrected.
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3.2. Typical Stille Coupling Procedure

A sealable tube, equipped with a magnetic stirring bar, was charged with aryl halide (1 mmol),
organotin (1.2 mmol), NaHCO3 (2 mmol), and H2O (2 mL). In the case of tetramethyltin, the addition
of tetraethylammonium iodide (TEAI, 1 mmol) was required. After the addition of PdCl2(NH3)2/L
aqueous solution (1 mL H2O; different concentrations were required for various substrate/catalyst
ratios), the tube was sealed under air using a Teflon-coated screw cap. The reaction vessel was then
placed in an oil bath at 110 ◦C for the indicated reaction duration (see Tables 2–4). After cooling of
the reaction mixture to room temperature, the aqueous solution was extracted with hexane or ethyl
acetate; the organic phase was dried over MgSO4, and the solvent was then removed under vacuum.
Column chromatography on silica gel afforded the desired product (see Supplementary Materials for
the copies of NMR spectra).

4-Phenylacetophenone (3aa, Table 2, Entries 1 and 2, and Table 3, Entries 1 and 2). CAS: 92-91-1; white
solid (m.p. = 119–121 ◦C, lit. [59] 119–121 ◦C). 1H-NMR (CDCl3): δ 2.62 (s, 3H), 7.39–7.41 (m, 1H),
7.44–7.48 (m, 2H), 7.60–7.63 (m, 2H), 7.66–7.68 (m, 2H), 8.01–8.03 (m, 2H); 13C-NMR (CDCl3): δ 26.6,
127.1(2C), 127.2 (2C), 128.2, 128.8 (2C), 128.9 (2C), 135.7, 139.8, 145.7, 197.7.

4-Acetyl-4′-fluorobiphenyl (3ab, Table 2, Entry 3, and Table 3, Entries 3 and 4). CAS: 720-74-1; white
solid (m.p. = 103–104 ◦C, lit. [59] 103–104 ◦C). 1H-NMR (CDCl3): δ 2.62 (s, 3H), 7.14 (t, J = 9.0 Hz,
2H), 7.55–7.63 (m, 4H), 7.99–8.02 (m, 2H); 13C-NMR (CDCl3): δ 26.6, 115.9 (d, JC-F = 22.5 Hz,
2C), 127.0 (2C), 128.8 (d, JC-F = 7.5 Hz, 2C), 128.9 (2C), 135.8, 136.0 (d, JC-F = 3.0 Hz), 144.7, 163.0
(d, JC-F = 247.5 Hz), 197.7.

4-Acetyl-4′-methoxybiphenyl (3ac, Table 2, Entries 4 and 5, and Table 3, Entries 5 and 6). CAS: 13021-18-6;
pale yellow solid (m.p. = 153–155 ◦C, lit. [59] 153–155 ◦C). 1H-NMR (CDCl3): δ 2.60 (s, 3H), 3.84 (s, 3H),
6.98 (d, J = 9.0 Hz, 2H), 7.56 (d, J = 9.0 Hz, 2H), 7.62 (d, J = 9.0 Hz, 2H), 7.99 (d, J = 9.0 Hz, 2H); 13C-NMR
(CDCl3): δ 26.6, 55.3, 114.3 (2C), 126.5 (2C), 128.3 (2C), 128.9 (2C), 132.1, 135.2, 145.3, 159.8, 197.7.

4-Phenylbenzonitrile (3ba, Table 2, Entries 6 and 7, and Table 3, Entry 7). CAS: 2920-38-9; white
solid (m.p. = 89–91 ◦C, lit. [65] 89–90 ◦C). 1H-NMR (CDCl3): δ 7.38–7.50 (m, 3H), 7.55–7.59 (m, 2H),
7.65–7.73 (m, 4H); 13C-NMR (CDCl3): δ 110.8, 118.9, 127.2 (2C), 127.7 (2C), 128.6, 129.1 (2C), 132.6 (2C),
139.1, 145.6.

4-(4-Fluorophenyl)benzonitrile (3bb, Table 2, Entry 8 and Table 3, Entry 8). CAS: 10540-31-5; white solid
(m.p. = 115–117 ◦C, lit. [66] 116–118 ◦C). 1H-NMR (CDCl3): δ 7.15 (t, J = 9.0 Hz, 2H), 7.52–7.56 (m, 2H),
7.60–7.63 (m, 2H), 7.68–7.61 (m, 2H); 13C-NMR (CDCl3): δ 110.9, 115.9 (d, JC-F = 21.8 Hz, 2C), 118.8,
127.5 (2C), 128.9 (d, JC-F = 8.3 Hz, 2C), 132.6 (2C), 135.2 (d, JC-F =3.0 Hz), 144.6, 163.1 (d, JC-F = 246.8 Hz).

4′-Methoxybiphenyl-4-carbonitrile (3bc, Table 2, Entry 9 and Table 3, Entry 9). CAS: 58743-77-4; pale
yellow solid (m.p. = 104–106 ◦C, lit. [67] 104–105 ◦C). 1H-NMR (CDCl3): δ 3.84 (s, 3H), 6.99
(d, J = 9.0 Hz, 2H), 7.52 (d, J = 9.0 Hz, 2H), 7.60–7.69 (m, 4H); 13C-NMR (CDCl3): δ 55.4, 100.4 114.5
(2C), 119.1, 127.1 (2C), 128.3 (2C), 131.4, 132.5 (2C), 145.2, 160.2.

Biphenyl (3ca, Table 2, Entry 10 and Table 3, Entry 10). CAS: 92-52-4; white solid (m.p. = 71–72 ◦C,
lit [68] 71–72 ◦C). 1H-NMR (CDCl3): δ 7.34–7.40 (m, 2H), 7.44–7.49 (m, 4H), 7.61–7.64 (m, 4H); 13C-NMR
(CDCl3): δ 127.1 (4C), 127.2(2C), 128.7 (4C), 141.2 (2C).

4-Fluorobiphenyl (3cb, Table 2, Entry 11 and Table 3, Entry 11). CAS: 324-74-3; white solid
(m.p. = 72–73 ◦C, lit. [69] 72–73 ◦C). 1H-NMR (CDCl3): δ 7.10–7.15 (m, 2H), 7.34–7.37 (m,1H), 7.41–7.46
(m, 2H), 7.52–7.61 (m, 4H); 13C-NMR (CDCl3): δ 115.6 (d, JC-F = 21.0 Hz, 2C), 127.0 (2C), 127.2, 128.7
(d, JC-F = 8.3 Hz, 2C), 128.8 (2C), 137.3 (d, JC-F = 3.0 Hz), 140.2, 162.4 (d, JC-F = 245.3 Hz).
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4-Methoxybiphenyl (3cc, Table 2, Entries 12, 17 and 18, and Table 3, Entries 12 and 13). CAS: 613-37-6;
white solid (m.p. = 85–87 ◦C, lit. [59] 85–87 ◦C). 1H-NMR (CDCl3): δ 3.85 (s, 3H), 6.99 (d, J = 9.0 Hz,
2H), 7.31–7.34 (m, 1H), 7.40–7.45 (m, 2H), 7.52–7.58 (m, 4H); 13C-NMR (CDCl3): δ 55.3, 114.2 (2C), 126.6,
126.7 (2C), 128.1 (2C), 128.7 (2C), 133.7, 140.8, 159.1.

4-Methylbiphenyl (3da, Table 2, Entries 13 and 14). CAS: 644-08-6; white solid (m.p. = 43–45 ◦C, lit. [59]
43–45 ◦C). 1H-NMR (CDCl3): δ 2.41 (s, 3H), 7.24–7.28 (m, 2H), 7.34–7.36 (m, 1H), 7.42–7.47 (m, 2H),
7.50–7.53 (m, 2H), 7.58–7.61 (m, 2H); 13C-NMR (CDCl3): δ 21.1, 126.8, 126.9 (4C), 128.7 (2C), 129.5 (2C),
137.0, 138.3, 141.1.

4-Fluoro-4′-methylbiphenyl (3db, Table 2, Entry 15). CAS: 72093-43-7; white solid (m.p. = 79–81 ◦C,
lit. [70] 78–79 ◦C). 1H-NMR (CDCl3): δ 2.39 (s, 3H), 7.11 (t, J = 9.0 Hz, 2H), 7.23–7.25 (m, 2H), 7.42–7.45
(m, 2H), 7.50–7.54 (m, 2H); 13C-NMR (CDCl3): δ 21.1, 115.6 (d, JC-F = 21.8 Hz, 2C), 126.8 (2C), 128.5
(d, JC-F = 8.3 Hz, 2C), 129.5 (2C), 137.0, 137.2 (d, JC-F = 3.0 Hz), 137.4, 162.3 (d, JC-F = 247.5 Hz).

4-Methoxy-4′-methylbiphenyl (3dc, Table 2, Entry 16). CAS: 53040-92-9; white solid (m.p. = 113–114
◦C, lit. [59] 113–114 ◦C). 1H-NMR (CDCl3): δ 2.42 (s, 3H), 3.87 (s, 3H), 7.01 (d, J = 9.0 Hz, 2H), 7.27
(d, J = 9.0 Hz, 2H), 7.50 (d, J = 9.0 Hz, 2H), 7.56 (d, J = 9.0 Hz, 2H); 13C-NMR (CDCl3): δ 21.0, 55.2, 114.1
(2C), 126.5 (2C), 127.9 (2C), 129.4 (2C), 133.6, 136.3, 137.9, 158.9.

4-Fluoro-4′-methoxybiphenyl (3eb, Table 2, Entry 19 and Table 3, Entry 14). CAS: 450-39-5; white solid
(m.p. = 88–90 ◦C, lit. [59] 88–90 ◦C). 1H-NMR (CDCl3): δ 3.84 (s, 3H), 6.94–6.99 (m, 2H), 7.07–7.13
(m, 2H), 7.44–7.51 (m, 4H); 13C-NMR (CDCl3): δ 55.3, 114.2 (2C), 115.5 (d, JC-F = 21.8 Hz, 2C), 128.0
(2C), 128.2 (d, JC-F = 7.5 Hz, 2C), 132.8, 136.9 (d, JC-F = 3.0 Hz), 159.1, 162.0 (d, JC-F = 243.8 Hz).

4,4′-Dimethoxybiphenyl (3ec, Table 2, Entry 20 and Table 3, Entry 15). CAS: 2132-80-1; pale yellow solid
(m.p. = 178–180 ◦C, lit. [68] 178–180 ◦C). 1H-NMR (CDCl3): δ 3.84 (s, 6H), 6.93–6.97 (m, 4H), 7.45–7.49
(m, 4H); 13C-NMR (CDCl3): δ 55.3 (2C), 114.1 (4C), 127.7 (4C), 133.4 (2C), 158.6 (2C).

4-Phenylphenol (3fa, Table 3, Entries 16–18). CAS: 92-69-3; white solid (m.p. = 148–150 ◦C, lit. [59]
148–150 ◦C). 1H-NMR (DMSO–d6): δ 6.86 (d, J = 9.0 Hz, 2H), 7.25–7.28 (m, 1H), 7.36–7.57 (m, 6H), 9.57
(br, 1H); 13C-NMR (DMSO–d6): δ 115.7 (2C), 126.0 (2C), 126.4, 127.8 (2C), 128.8 (2C), 130.9, 140.2, 157.2.

4-Hydroxy-4-fluorobiphenyl (3fb, Table 3, Entry 19). CAS: 324-94-7; white solid (m.p. = 168–170 ◦C,
lit. [71] 167–170 ◦C). 1H-NMR (DMSO–d6): δ 6.84 (d, J = 9.0 Hz, 2H), 7.21 (t, J = 9.0 Hz, 2H), 7.44
(d, J = 9.0 Hz, 2H), 7.55–7.60 (m, 2H), 9.56 (br, 1H); 13C-NMR (DMSO–d6): δ 115.5 (d, JC-F = 21.0 Hz,
2C), 115.7 (2C), 127.7 (2C), 127.8 (d, JC-F = 9.0 Hz, 2C), 130.0, 136.7 (d, JC-F = 3.0 Hz), 157.1, 161.2
(d, JC-F = 240.8 Hz).

4-Hydroxy-4-methoxybiphenyl (3fc, Table 3, Entry 20). CAS: 16881-71-3; white solid (m.p. = 173–175 ◦C,
lit. [72] 171–173 ◦C). 1H-NMR (DMSO–d6): δ 3.75 (s, 3H), 6.82 (d, J = 9.0 Hz, 2H), 6.95 (d, J =9.0 Hz,
2H), 7.40 (d, J = 9.0 Hz, 2H), 7.48 (d, J = 9.0 Hz, 2H), 9.46 (br, 1H); 13C-NMR (DMSO–d6): δ 55.1, 114.2
(2C), 115.7 (2C), 127.0 (2C), 127.2 (2C), 130.7, 132.8, 156.5, 158.1.

4′-Methylacetophenone (6a [73], Table 4, Entries 1–4 and 7). CAS: 122-00-9; colorless liquid. 1H-NMR
(CDCl3): δ 2.38 (s, 3H), 2.55 (s, 3H), 7.23 (d, J = 9.0 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H); 13C-NMR (CDCl3):
δ 21.6, 26.5, 128.4 (2C), 129.2 (2C), 134.6, 143.8, 197.8.

p-Tolunitrile (6b [74], Table 4, Entries 5 and 8). CAS: 104-85-8; colorless liquid. 1H-NMR (CDCl3): δ 2.39
(s, 3H), 7.24 (d, J = 9.0 Hz, 2H), 7.51 (d, J = 9.0 Hz, 2H); 13C-NMR (CDCl3): δ 21.8, 109.2, 119.1, 129.8
(2C), 131.9 (2C), 143.6.
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4-Methylanisole (6e [26], Table 4, Entry 6). CAS: 104-93-8; colorless liquid. 1H-NMR (CDCl3): δ 2.30
(s, 3H), 3.79 (s, 3H), 6.82 (d, J = 9.0 Hz, 2H), 7.10 (d, J = 9.0 Hz, 2H); 13C-NMR (CDCl3): δ 20.4, 55.2,
113.6 (2C), 129.7, 129.8 (2C), 157.4.

3.3. Procedure for Reuse of the Catalytic Aqueous Solution

The reaction was conducted following the procedure described in Section 3.2., and under the
reaction conditions shown in Table 1, Entry 6. After the initial reaction, the aqueous reaction mixture
was extracted with hexane (3 mL × 3) under vigorous stirring. The organic layer was separated from
the aqueous phase by syringe, and the organic product was isolated from the combined organic phase
according to a previously-described in Section 3.2. The residual aqueous solution was then charged
with 1a, 2a, and NaHCO3 for the next reaction.

4. Conclusions

In conclusion, we have proved that the PdCl2(NH3)2/cationic 2,2′-bipyridyl system is highly
efficient and provides a reusable catalyst for Stille couplings. This catalytic system exhibits
a high efficiency for the coupling of aryl iodides and activated aryl bromides with various
aryltributylstannanes under a very low catalyst loading (1 ppm). This water-compatible catalytic
system enables the reaction to be conducted by a very simple procedure, allowing easy separation
of the catalytic aqueous solution from the organic products, rendering it very suitable for
practical applications.

Supplementary Materials: The following are available online at: http://www.mdpi.com/1420-3049/21/9/1025/
s1: copies of 1H- and 13C-NMR spectra of all Stille coupling products.
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