Supplementary Materials: Three Pairs of New Isopentenyl Dibenzo[*b*,*e*]oxepinone Enantiomers from *Talaromyces flavus*, a Wetland Soil-Derived Fungus

Tian-Yu Sun, Run-Qiao Kuang, Guo-Dong Chen, Sheng-Ying Qin, Chuan-Xi Wang, Dan Hu, Bing Wu, Xing-Zhong Liu, Xin-Sheng Yao, Hao Gao

Position	δc, Type	δн (J in Hz)	¹ H- ¹ H COSY	HMBC
1	21.8, CH ₃	2.37, s		2, 3, 15
2	147.1, C			
3	116.8, CH	6.94, s		1, 5, 13, 15
4	138.5, C			
5	103.4, CH	5.64, s		3, 6, 13, O <u>C</u> H₃
6	154.5, C			
7	109.3, CH	6.58, d (8.3)	8	6, 9, 11
8	137.6, CH	7.33, d (8.3)	7	6, 10, 1'
9	124.8, C			
10	162.8, C			
11	113.6, C			
12	197.5 <i>,</i> C			
13	116.8, C			
14	162.4, C			
15	119.5, CH	6.87, s		1, 3, 13, 14
1′	27.8, CH ₂	3.34, d (7.3)	2′	8, 9, 10, 2', 3'
2′	121.8, CH	5.33, br t (7.3)	1', 4', 5'	1', 4', 5'
3'	133.2, C			
4'	25.8, CH ₃	1.77, br s	2′	2', 3', 5'
5′	17.8, CH ₃	1.73, br s	2′	2', 3', 4'
O <u>C</u> H ₃	56.9, CH₃	3.57, s		5
10-0 <u>H</u>		13.62, s		9, 10, 11
14-0 <u>H</u>		11.46, s		13, 14, 15

Table S1. 1D and 2D data of 1 (¹H for 400 MHz, ¹³C for 100 MHz in CDCl₃).

Table S2. 1D and 2D data of 2 (1 H for 600 MHz, 13 C for 150 MHz in CDCl₃).

Position	δc, Type	$\delta_{\rm H}$ (J in Hz) a	¹ H- ¹ H COSY	HMBC
1	21.9, CH₃	2.38, s		2, 3, 15
2	147.2, C			
3	116.8, CH	6.98, s		1, 5, 13, 15
4	138.8, C			
5	102.0, CH	5.74, s		3, 6, 13, 1"
6	154.8, C			
7	109.3, CH	6.55, d (8.3)	8	6, 9, 11
8	137.6, CH	7.32, d (8.3)	7	6, 10, 1'
9	124.7, C			
10	162.7, C			
11	113.7, C			
12	197.6, C			
13	116.9 <i>,</i> C			
14	162.3, C			
15	119.4, CH	6.86, s		1, 3, 13, 14
1′	27.8, CH ₂	3.35, dd (15.9, 7.4), a	1′b, 2′	8, 9, 10, 2', 3'
		3.31, dd (15.9, 7.4), b	1'a, 2'	8, 9, 10, 2', 3'
2'	121.8, CH	5.32	1′a, 1′b, 4′, 5′	1', 4', 5'
3'	133.3, C			
4'	25.8, CH ₃	1.76, br s	2′	2', 3', 5'
5'	17.8, CH ₃	1.73, br s	2′	2', 3', 4'
1‴	65.3, CH ₂	3.96, dq (9.6, 7.1), a	1‴b, 2″	5, 2″
		3.66, dq (9.6, 7.1), b	1‴a, 2″	5, 2″
2‴	14.8, CH ₃	1.26, t (7.1)	1‴a, 1‴b	1″
10-O <u>H</u>		13.63, s		9, 10, 11
14-0 <u>H</u>		11.44, s		13, 14, 15

a: Indiscernible signals owing to overlapping or having complex multiplicity are reported without designating multiplicity.

Desition	S. Trues	$S_{\rm res}(Lin \mathbf{H}_{\rm res})$		
rosition			-n-n C051	
1	21.9, CH₃	2.39, s		2, 3, 15
2	147.1, C			
3	116.6, CH	6.97, s		1, 5, 13, 15
4	138.3, C			
5	103.9, CH	5.71, s		3, 10, 13, O <u>C</u> H₃
6	163.5, C			
7	112.2, CH	6.70, d (8.5)	8	6, 9, 11
8	138.4, CH	7.35, d (8.5)	7	6, 10, 1'
9	121.8, C			
10	153.2, C			
11	113.9, C			
12	197.5, C			
13	117.0, C			
14	161.9, C			
15	119.4, CH	6.87, s		1, 3, 13, 14
1′	28.0, CH ₂	3.36, dd (15.6, 7.5), a	1′b, 2′	8, 9, 10, 2', 3'
		3.30, dd (15.6, 7.5), b	1'a, 2'	8, 9, 10, 2', 3'
2′	122.1, CH	5.25	1'a, 1'b, 4', 5'	1′, 4′, 5′
3'	133.2, C			
4'	25.7, CH₃	1.73, br s	2′	2′, 3′, 5′
5'	17.8, CH₃	1.71, br s	2′	2', 3', 4'
O <u>C</u> H₃	57.3, CH₃	3.57, s		5
6-0 <u>H</u>		13.14, s		6, 7, 11
14-0 <u>H</u>		11.22, s		13, 14, 15

Table S3. 1D and 2D data of 3 (1 H for 400 MHz, 13 C for 100 MHz in CDCl₃).

a: Indiscernible signals owing to overlapping or having complex multiplicity are reported without designating multiplicity.

Position	δc, Type	δн (<i>J</i> in Hz)	¹ H- ¹ H COSY	HMBC
1	22.0, CH ₃	2.40, s		2, 3, 15
2	147.6, C			
3	116.0, CH	7.07, s		1, 5, 13, 15
4	139.7, C			
5	97.1, CH	6.11, s		3, 10, 13
6	163.6, C			
7	112.9, CH	6.71, d (8.4)	8	9, 11
8	138.5, CH	7.34, d (8.4)	7	6, 10, 1′
9	122.4, C			
10	154.0, C			
11	114.6, C			
12	197.3, C			
13	116.5, C			
14	163.3, C			
15	119.8, CH	6.89, s		1, 3, 13
1′	28.9, CH ₂	3.36, dd (15.4, 7.2), a	1′b, 2′	8, 9, 2', 3'
		3.22, dd (15.4, 7.2), b	1'a, 2'	
2′	123.1, CH	5.24, br t (7.2)	1'a, 1'b, 4',5'	5'
3′	133.0, C			
4'	25.7, CH₃	1.76, s	2′	2′, 3′, 5′
5'	18.0, CH ₃	1.74, s	2′	2', 3', 4'
6-0 <u>H</u>		12.95, br s		6, 7, 11
14-0 <u>H</u>		11.82, br s		13, 14, 15

Table S4. 1D and 2D data of 4 (¹H for 400 MHz, ¹³C for 100 MHz in CDCl₃).

Table S5. 1D and 2D data of 5 (1 H for 400 MHz, 13 C for 100 MHz in CDCl₃).

Position	δc, Type	δн (J in Hz)	¹ H- ¹ H COSY	HMBC
1	21.9, CH ₃	2.40, s		2, 3, 15
2	147.4, C			
3	116.2, CH	7.04, s		1, 5, 13, 15
4	139.3, C			
5	96.6, CH	6.12, s		3, 6, 13
6	154.5, C			
7	109.6, CH	6.53, d (8.4)	8	6, 9, 11
8	137.7, CH	7.32, d (8.4)	7	6, 10, 1'
9	125.1, C			
10	162.9, C			
11	113.5, C			
12	197.3, C			
13	116.7, C			
14	162.7, C			
15	119.7, CH	6.89, s		1, 3, 13
1′	27.8, CH ₂	3.33, d (7.5)	2′	8, 9, 10, 2', 3'
2′	121.7, CH	5.31, br t (7.5)	1', 4', 5'	4', 5'
3′	133.4, C			
4'	25.8, CH ₃	1.76, s	2′	2', 3', 5'
5′	17.8, CH ₃	1.72, s	2′	2', 3', 4'
10-0 <u>H</u>		13.61, br s		9, 10, 11
14-0 <u>H</u>		11.54, br s		13, 14, 15

HPLC Analyses of 2 and 3

Figure S1. HPLC analysis of **2** (**a**: the analysis of 2 on routine ODS HPLC; **b**: the analysis of 2 on chiral HPLC).

Figure S2. HPLC analysis of 3 (a: the analysis of 3 on routine ODS HPLC; b: the analysis of 3 on chiral HPLC).

Quantum Chemical ECD Calculations of 1 and 3

Conformers	Contribution %
1	27.49
2	26.71
3	15.38
4	15.35
5	4.77
6	4.68
7	2.83
8	2.79

C4 (15.35%)

C5 (4.77%)

C6 (4.68%)

Figure S3. Most stable conformers of (5*S*)-1.

Table S7. Conformers distribution of (5*S*)-**3** in solvated models calculations at the APFD/6-31G(d).

Conformers	Contribution %
1	74.24
2	13.36
3	7.20
4	1.87
5	1.68
6	1.66

Figure S4. Most stable conformers of (5*S*)-3.

The 1D and 2D NMR Spectra of 1–5

Figure S6. ¹³C-NMR spectrum of compound 1 (100 MHz, in CDCl₃).

Figure S7. ¹H-¹H COSY spectrum of compound 1 (in CDCl₃).

Figure S8. HSQC spectrum of compound 1 (in CDCl₃).

Figure S11. ¹³C-NMR spectrum of compound 2 (150 MHz, in CDCl₃).

Figure S12. ¹H-¹H COSY spectrum of compound 2 (in CDCl₃).

Figure S13. HSQC spectrum of compound 2 (in CDCl₃).

Figure S14. HMBC spectrum of compound 2 (in CDCl₃).

Molecules 2016, 21, 1184; doi:10.3390/molecules21091184

S15 of S19

Figure S17. ¹H-¹H COSY spectrum of compound 3 (in CDCl₃).

Figure S18. HSQC spectrum of compound 3 (in CDCl₃).

Figure S21. ¹³C-NMR spectrum of compounds 4 and 5 (100 MHz, in CDCl₃).

Figure S22. ¹H-¹H COSY spectrum of compounds 4 and 5 (in CDCl₃).

Figure S23. HSQC spectrum of compounds 4 and 5 (in CDCl₃).

