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Abstract: It has been a strong consumer interest to choose high quality food products with clear
information about their origin and composition. In the present study, a total of 22 Asian soy sauce
samples have been analyzed in terms of '>C-NMR spectroscopy. Spectral data were analyzed
by multivariate statistical methods in order to find out the important metabolites causing the
discrimination among typical soy sauces from different Asian regions. It was found that significantly
higher concentrations of glutamate in Chinese red cooking (CR) soy sauce may be the result of the
manual addition of monosodium glutamate (MSG) in the final soy sauce product. Whereas lower
concentrations of amino acids, like leucine, isoleucine and valine, observed in CR indicate the different
fermentation period used in production of CR soy sauce, on the other hand, the concentration of
some fermentation cycle metabolites, such as acetate and sucrose, can be divided into two groups.
The concentrations of these fermentation cycle metabolites were lower in CR and Singapore Kikkoman
(SK), whereas much higher in Japanese shoyu (JS) and Taiwan (China) light (TL), which depict the
influence of climatic conditions. Therefore, the results of our study directly indicate the influences of
traditional ways of fermentation, climatic conditions and the selection of raw materials and can be
helpful for consumers to choose their desired soy sauce products, as well as for researchers in further
authentication studies about soy sauce.
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1. Introduction

Naturally and historically, food products are land based, and food consumption habits are
generally shaped by the socio-cultural factors and the available natural resources of a specific region.
In the last few years, it has been a growing interest among consumers based both in developed and
developing countries to purchase food products that are deeply rooted in popular cultures or simply
come from a specific reputed place of manufacture. A Swiss evaluation has revealed that the origin
of food is a criterion for 82% of consumers [1]. For small and medium-sized companies, this new
trend could imply new opportunities to differentiate product in the market and secure price premiums
and/or increased sales [2,3].

Soy sauce is a traditional oriental food having a salty taste and distinct fragrance, which is used as
a condiment or seasoning sauce worldwide. Its production consists of solid-state fermentation of plant
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materials and so-called brine fermentation [4]. The use of soy sauce dates back 2000 years. However,
the use of soybean as food was introduced to the eastern half of north China in the 11th century BC [5].
In China, soy sauce is produced by the fermentation of steamed soybean and raw wheat flour with
Aspergillus oryzae (44 h of koji fermentation), which yields moromi in 20%-25% brine (4—6 months
of moromi fermentation). Ripened moromi is then pressed to yield a liquid called soy sauce [6,7].
During the course of the long fermentation period, a characteristics taste and aroma is imparted to soy
sauce. However, soy sauce products from different geographic regions possess unique sensory and
textural properties caused by the different raw materials and manufacturing processes used. Thus,
the characteristics of soy sauces differ according to their geographic region of origin and fermentation
procedures [8]. Red cooking soy sauce, a popular soy sauce in China made by the extra addition of rock
sugar rendering a deep savory flavor, is made especially for stir fried or red cooking dishes; whereas,
super light soy sauce, another popular type of naturally-brewed soy sauce common in Mainland
China, as well as Taiwan (China) and Singapore, is usually considered as an all-purpose soy sauce.
Naturally-brewed low salt light soy sauce from Taiwan (China) was selected for our study. Kikkoman,
a Japanese-based soy sauce manufacturer, has manufacturing plants in many countries and produces
a variety of soy sauces according to the varying cultural needs. Kikkoman soy sauce samples under
our study were imported from Singapore and represented low salt naturally-brewed Kikkoman soy
sauce. Shoyu, a traditional naturally-brewed soy sauce famous in Japan, is produced by following
a centuries-old fermentation procedure involving a koji (Aspergillus oryzae) converting the hard to
digest soy and wheat proteins to easily-absorbed amino acids. Various types of soy sauces available in
global market have their own specific appeal for the consumers.

With the increased number of available types of soy sauces offering a range of different flavorings,
additives and sweeteners, the curiosity of consumers about the choice and composition of the product
has also been increased nowadays. Several reports are available in the literature regarding the studies
on bioactive amines, isoflavones, amino acids, flavoring and taste compounds, phytochemicals and
toxic compounds in soy sauce [9-12]. A few reports are available for the studies of geographic
origin or differentiation among types of soy sauce. Aishima [13,14] used near infrared (NIR) spectra
and chemometrics pattern recognition for the classification of Japanese soy sauces by geographic
region. However, all of these techniques are specific to a typical class of compounds and require
a time-consuming sample preparation.

Metabolomics has presently been applied as a promising method to improve the understanding
of food materials, like composition differentiation, geographical variations and processing diversity,
that may lead to food quality control and authentications [15,16]. NMR coupled with multivariate
statistical analysis is one of the major tools used for the metabolomic studies. NMR spectroscopy being
robust, non-selective and nondestructive provides maximum information about the sample without
requiring any complex sample preparation procedures. The combination of NMR fingerprinting with
chemometric methods provides an original approach to study the profile of a food product in relation
to its geographical origin [17,18].

In the present study, 3C-NMR spectroscopy combined with advanced chemometric methods was
used to provide the consumer with easy, rapid and robust information for the differentiation among
some of the most popular Asian soy sauces based on manufacturing processes (fermentation methods,
raw materials, addition of preservatives, additives and flavorings).

2. Results and Discussion

2.1. BC-NMR Spectroscopy

Figure 1 shows the representative 1D '3C-NMR spectra of Chinese red cooking (CR), Japanese
shoyu (JS), Singapore Kikkoman (SK) and Taiwan light (TL) soy sauces. Although no clear and apparent
differences were observed in the overall pattern of the spectra, distinct differences in composition
and concentrations of specific metabolites were observed among species. No serious overlaps were
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observed in '3C-NMR spectra, which are often observed in 'H-NMR spectra due to oligosaccharide
overlaps. Therefore, the 13C-NMR spectroscopy was considered to be useful for the metabolomics of
soy sauce. It has been shown previously that '>C-NMR spectroscopy would be useful in metabolomics
by providing complementary component information, while potentially reducing the problems of
overlap that are common in 'H-NMR spectroscopy [19,20]. However, using DEPT, the spin sensitivity
of 13C is enhanced by polarization transfer via scalar coupling from 'H (I) to 13C (S). The transfer
of polarization is highly dependent on one coupling constant of bonds (!/5]), spin system (ISy, IS,,
IS3) and transfer delay (A). The sensitivity of 13¢C spin enhancement is different because of the
different nature of protons attached to the carbons, and thus, 1 Js1 values narrow down the use of
polarization transfer for quantitative studies used for metabolomics [21]. At the same time, the long T4
relaxation time reduces signal intensities, which sometimes result in challenges in the quantification.
However, for metabolomic purposes in which all samples are measured under the same conditions,
such quantification is less necessary if the T; times are maintained constant, because it reveals the
overall pattern of response that can be interpreted [18,22]. This technique relies on transferring
polarization from protons to the X-nucleus, except quaternary carbon. Since the proton magnetization
is the original signals being transferred, the relaxation time of carbon, except quaternary carbons,
is irrelevant. The repetition rate of the experiment is determined by proton T;. The signals of the
quaternary carbon are less sensitive and have much longer T; (**C) than other signals, so we only pay
attention to the signals of the other carbons and set up the experiment with a faster repetition rate,
like 2 s. In this condition, the quantification of most of the metabolites is reliable, except a few with
quaternary carbons. Therefore, the data resulting from DEPTQ 3C-NMR spectra can be utilized for the
calculation of the relative concentration (in terms of normalized peak areas) of the metabolites using the
same representative signal for each metabolite from all spectra. The assignments of the metabolites have
been carried out making use of 2D NMR (!H-'H TOCSY and 'H-!3C HSQC), the online NMR spectral
databases, like Spectral Database for Organic Compounds (SDBS), Madison Metabolomics Consortium
Database (MMCD) and Biological Magnetic Resonance Databank (BMRB), and already published
information [23]. A total of 22 metabolites’ signals were identified in the 3C-NMR spectra of all types
of soy sauce with different ranges of concentration (Table 1). The variation in metabolite concentration
might be linked to the different traditional ways of manufacturing, like the selection of raw materials,
the fermentation procedure and the addition of different types of additives (preservatives, sweeteners
and salts) and flavors.

Table 1. Metabolites and their *C chemical shifts identified by the 600-MHz NMR spectrometer.

Compound 13C-NMR Chemical Shift Group
Isoleucine 13.98,17.54 * -C6Hj3, -C5Hj3
Alanine 19.74 —C3Hj3
Valine 20.81 *, 60.38 -C4Hj3;, -C2H
Threonine 22.33 —C4H;
Acetate/ Acetic acid 2297 * 185 -CH3, -CO
Glutamate 29.67,57.53 * -C5H,, -C3H
Leucine 26.72,42.68 * -C4H, C3H,
Unknown 39.23-39.35* —
Malate 44 % C4H,
Malonate 49.10* C2H,
Betaine 56.22 N(CHj3)3
Choline 56.43 N(CH3)3
Aspartate 56.70 -C3H
Glucose 63-105 (94.99 *) —

Sucrose 63-105 (65.48 *) —

Tyrosine 131-132 * -C3H
Phenylalanine 176-177 * -C=0

Lactate 184 * -C=0

The chemical shifts were determined at pH 5 4= 0.05 and expressed as relative values to those of TSP at 0 ppm.
* Signals used for the comparison of significantly-differing metabolite concentrations among different types of
soy sauce.
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Figure 1. Representative 3C-NMR spectra of four types of Asian soy sauces viz. Chinese red cooking,
Japanese shoyu, Singapore Kikkoman and Taiwan super light. Peaks: 1: trimethylsilyl propanoic acid
(TSP); 2: isoleucine; 3: alanine; 4: valine; 5: threonine; 6: acetate; 7: leucine; 8: glutamate; 9: isoleucine;
10: leucine; ul: unknown; 11: leucine; 12: malonate; 13: betaine; 14: choline; 15: aspartate; 16: glutamate;
17: valine; 18: glucose and sucrose; 19: tyrosine; 20: phenylalanine; 21: lactate; 22: acetate.

2.2. Multivariate Statistical Analysis

In order to expose differences in the concentration of metabolites in soy sauce from different
origins, the 3C-NMR spectra of 22 samples of soy sauce were then analyzed by PCA. PCA, which
is an unsupervised classification method, requires no previous information of the dataset and yields
a screening model to reduce the dimensionality of data, while saving most of the variance within
it [24]. The PCA score scatter plot with R2X (54%) and Q2 (20%) is shown in Figure 2, which is derived
from the '3C-NMR spectra of four typical Asian soy sauces namely; CR, TL JS and SK. R2X represents
the goodness of fit, and Q2 is the predictability of the PCA model [25].

The PCA model showed a clear separation of CR soy sauce from JS, SK and TL soy sauce,
indicating the uniqueness of red cooking soy sauce (Figure 2); while no clear separation was observed
among TL, SK and JS soy sauces.

Therefore, the main differences were observed among CR and the other three types of soy sauce
from Japan, Singapore and Taiwan (China). This was observed because the CR soy sauce is a subtype
of super dark soy sauce, whereas JS, SK and TL basically belong to the super light category of soy
sauce. The fermentation procedures, addition of additives, flavorings, etc., are generally different for
light and dark types of soy sauce.

In order to exploit different metabolomic characteristics of the four types of soy sauce, pairwise
OPLS-DA models were calculated for CR soy sauce with JS, SK and TL soy sauce because the main
differences were found among CR and the other three types of soy sauce. The important variables
responsible for discrimination among different types of soy sauce were captured by OPLS-DA loading
line plots.
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Figure 2. PCA score scatter plot derived from 3C-NMR spectra of all types of Asian soy sauces

showing the separation of Chinese red cooking soy sauce (green circle) from those of Japanese shoyu
(blue circle), Singapore Kikkoman (red circle) and Taiwan super light soy sauce (yellow circle).

OPLS-DA model calculated for comparison of CR and JS is shown in Figure 3. Figure 3 shows the
separation of CR from JS soy sauce with statistical significance of R2X (Cum.) 47%, R2Y (Cum.) 99%
and Q2 (Cum.) 92%. Variables responsible for separation in the OPLS-DA scatter plot were captured
by the loading line plot shown in Figure 3. The loading line plot helps identify statistically and
potentially biochemically significant variables, on the basis of both their contribution and reliability.
The significant variables were identified according to the '>C-NMR assignment information from
Figure 1. Metabolites corresponding to the significantly discriminating variables are isoleucine,
leucine, valine, acetate, malonate, malate, glucose, lactate and phenylalanine. This suggested that
compared with CR, JS contained significantly higher levels of isoleucine, leucine, valine, acetate,
malonate and malate, whereas CR soy sauces were characterized by increased concentrations of
glucose, phenylalanine and lactate.
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Figure 3. OPLS-DA score scatter plot derived from 3C-NMR spectra of Chinese red cooking
(green circle) and Japanese shoyu (blue circle) soy sauce and the color-coded loading line plot generated
from the OPLS-DA model representing the metabolites responsible for discrimination among Chinese
red cooking and Japanese shoyu soy sauce.
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To clearly identify the underlying variables for the separation among CR and SK soy sauce,
another OPLS-DA model was constructed (Figure 4) making use of data from CR and SK soy sauce
samples. The OPLS-DA score plot (Figure 4) showed a clear separation among the two types with
statistical significance of R2X (Cum.) 47%, R2Y (Cum.) 99% and Q2 (Cum.) 91%. The metabolites
contributing significantly to this separation in the OPLS-DA score plot were captured by calculating
a corresponding OPLS-DA line loading plot shown in Figure 4. From the loading line plot, it was
evident that the concentrations of isoleucine, valine, acetate and malonate are significantly higher in
SK, whereas CR soy sauce was characterized with a significantly increased level of phenylalanine.
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Figure 4. OPLS-DA score scatter plot derived from >*C-NMR spectra of Chinese red cooking
(green circle) and Singapore Kikkoman (red circle) soy sauce and the color-coded loading line plot
generated from the OPLS-DA model representing the metabolites responsible for discrimination among
Chinese red cooking and Singapore Kikkoman soy sauce.

To observe the underlying differences among CR and TL soy sauce, a third OPLS-DA model was
calculated using the 3C-NMR data from the two types of soy sauce (Figure 5). The OPLS-DA score
plot (Figure 5) highlighted the statistically-significant differences among the CR and TL soy sauce with
R2X (Cum.) 77%, R2Y (Cum.) 100% and Q2 95%. To find out the underlying variables responsible for
this separation in the OPLS-DA score plot, a loading line plot was calculated (Figure 5). The OPLS-DA
loading plot revealed significantly increased levels of isoleucine, valine, acetate and malate in TL,
whereas significantly higher levels of glucose and phenylalanine were detected in CR soy sauce.
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Figure 5. OPLS-DA score scatter plot derived from 3C-NMR spectra of Chinese red cooking
(green circle) and Taiwan super light (yellow circle) soy sauce and the color-coded loading line plot
generated from the OPLS-DA model representing the metabolites responsible for discrimination among
Chinese red cooking and Taiwan super light soy sauce.
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To further clarify the characterization of other metabolites, except glutamate, all two-class
OPLS-DA models were conducted again by excluding all resonances from glutamate (data not shown).
The results from all of the models were consistent for the variations of the other metabolites mentioned
above, and the differences of CR from ]S, SK and TL were still feasible. This confirms that most of the
contribution towards CR is not only from the glutamate.

To confirm and discuss the importance of the discriminating metabolites captured by OPLS-DA
loading line plots, relative concentrations of the biomarkers (in terms of their relative normalized peak
areas) were plotted in standard error bar graphs (Figure 6A,B). The distinctions among different types
of Asian soy sauces can be explained on the basis of different processing techniques, like fermentation
methods (traditional or acidic hydrolysis), raw materials from different origins and the addition of
additives, preservative and taste developers.

Significantly different levels of amino acids, like leucine, isoleucine and valine, were observed in
different types of soy sauce in the present study (Figure 6A). The differences in types and concentrations
of amino acids may be linked to the difference in fermentation periods and the activity of the bacteria.
Amino acids in soy sauce are produced by the microbial activity during the course of fermentation.
The microorganisms break down the soy and wheat proteins into amino acids through proteolysis
and peptidase activity and use them as a nitrogen source for their growth. The same was observed in
significant consumption and synthesis of valine in grape wine fermentation [26]. The concentrations
of most of the amino acids, like leucine, isoleucine and valine, were found lower in CR, indicating the
shorter fermentation period, since the raw materials used in CR show not much difference with the
others. There are certain soy sauce products that are not naturally brewed. These contain processed
products produced by enzymes or other additives, such as chemicals, like acids, that break down
proteins in order to speed up fermentation. Hydrolyzed products have their own demand in terms
of taste, and because of this, the industry standards for soy sauce are recently under debate by the
international Codex Alimentarius Commission. Though CR contained the lowest concentration of
amino acids as compared to the other three types of soy sauce, however, the concentrations of the
important amino acids, like isoleucine, phenylalanine and tyrosine, were almost comparable between
CR and SK soy sauce. Similar trend was observed among JS and TL in terms of the concentrations of
leucine, valine, phenylalanine and isoleucine.
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Figure 6. (A) Relative concentrations of discriminating amino acid metabolites (in terms of normalized
peak areas) captured by OPLS-DA models derived from the 13C-NMR spectra of Chinese red cooking,
Japanese shoyu, Singapore Kikkoman and Taiwan super light soy sauce; (B) Relative concentrations
(in terms of normalized peak areas) of significantly-different metabolites (excluding amino acids)
captured by OPLS-DA models derived from the 1*C-NMR spectra of Chinese red cooking, Japanese
shoyu, Singapore Kikkoman and Taiwan super light soy sauce.

A significantly higher concentration of phenylalanine was observed in CR soy sauce (Figure 6A).
Phenylalanine is produced during fermentation and is categorized as a bitter amino acid. It imparts
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an intense umami taste along with glutamate [7]. Glutamate was also observed in significantly higher
(almost two-fold) concentration in CR soy sauce samples as compared to ]S, SK and TL soy sauce
(Figure 6B). Thus, phenylalanine along with glutamate caused an intense umami taste in CR soy sauce.
This was also confirmed by tasting the CR soy sauce samples. Glutamate is an important amino acid
present both in raw and fermented soy sauce [27] and serves as a key intermediate in lactic acid bacteria
(LAB) metabolism because of its utilization by most of the aminotransferases as the donor of amino
groups. Glutamate is also produced by glutamate dehydrogenase during the course of fermentation,
from 2-oxoglutarate, a tricarboxylic acid (TCA) metabolism intermediate.

Both the glutamic acid and glutamates are flavor enhancers and umami (savory) taste condiments
found extensively in foods. Glutamate is an essential part of many fermented foods, like soy
sauce, fermented beans, cheese, etc. Glutamate salts, such as monosodium glutamate (MSG),
are a widely-used additive in Chinese soy sauce, which impart characteristic umami taste in
combination with bitter phenylalanine; though MSG is not considered as a healthy additive if present
in concentrations higher than the permitted level. A number of in vitro studies state that glutamate
is a strong neurotoxin if present at higher concentrations and can destroy neurons by apoptosis [28].
Hence, it is important to disclose the reality of whether the MSG and glutamine-rich raw material, like
wheat gluten instead of soybean, were used or the glutamate was produced by the fermentation process.

A higher concentration of tyrosine was found to be in JS as compared to CR, SK and TL soy sauce
(Figure 6A). Though the difference was not significant, this may be important to explain the dynamics
of fermentation processes. Tyrosine is often transformed to tyramine by microbial decarboxylation in
fruits and vegetables during the fermentation process [29]. The lower levels of tyrosine in a fermented
product provide evidence of the longer aging period of the soy sauce fermentation, indicating the
conversion of tyrosine to tyramine. Tyrosine and its metabolites impact human mental health, adjusting
to stress, blood pressure, skin color, ability to stand pain and metabolic rate [30,31].

Higher concentrations of acetate were detected in JS, SK and TL soy sauce (Figure 6B).
Acetate generates during fermentation by osmotolerant LAB along with formate and causes inhibition
in the growth of halophilic yeasts, such as Saccharomyces rouxii and Torulopsis versatilis, in Japanese
soy sauce shoyu, and of Shigella [32-34]. Increased levels of acetate show the prolonged fermentation
period during the production of JS and TL soy sauce.

A significantly higher concentration (almost two-fold) of lactate was observed in CR soy sauce as
compared to JS, SK and TL soy sauce (Figure 6B). Increased levels of lactate suggest that halophilic or
osmoprotolerant lactic acid bacteria were involved in the brine fermentation of soy sauce, and this
indicates the traditional fermentation [35]. Lactate or lactic acid is the main organic acid and very
important in determining the quality of soy sauce. It is produced naturally during fermentation or
sometimes added manually by some manufacturers. Lactic acid gives a mild and balanced acidic
flavor to soy sauce with some lingering effects. It gives a refined, rounded tartness, which is thought
to be one of the important factors of a good soy sauce flavor.

CR soy sauce was characterized with higher levels of glucose, whereas, JS, TL and SK contained
increased amounts of sucrose (Figure 6B). However, this difference in the concentration of glucose
was non-significant. A lesser concentration of sugars in a fermentation product indicates the
increased consumption of carbohydrates by microorganisms during the fermentation process [26].
Previous studies suggested oligosaccharide consumption by wine yeast in grape wines and a reduction
in oligosaccharides concentration during the six months of alcoholic fermentation. Moreover,
carbohydrates in soy sauce are helpful in the synthesis of immunoglobulin A (Ig A) in vivo and
in vitro [36]. Similarly, Tetragenococcus halophilus is a halophilic lactic acid bacterium (LAB), which
is active in the fermentation processes of soy sauce and possesses immunomodulatory activity
in vitro [37,38]. In this way, soy sauce can serve as an important dietary source of improving host
defenses, as halophilic or osmophilic bacteria degrade soybean and wheat starches into polysaccharides
and oligosaccharides over a long period. A substantial amount of sugars is however required to be
reserved in soy sauce in order to impart a peculiar taste, so the fermentation process should be
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properly optimized. Elevated levels of carbohydrates in this way can support the idea that the
fermentation period of the product was shorter. However, some manufacturers add caramel to increase
the viscosity and some sweeteners to improve the taste of the final soy sauce product. In addition to
the microbial activities, the variations in glucose and sucrose concentrations among different kinds
of Asian soy sauces can also be linked to the manual additions of caramel and some sweeteners by
the manufacturers.

SK and TL soy sauce were characterized with significantly increased amounts of malonate as
compared to CR soy sauce (Figure 6B). Malate was also observed in significantly higher concentrations
inJS, SK and TL soy sauce as compared to CR soy sauce (Figure 6B). Malate is produced from fumarate
by the action of fumarase enzyme through the TCA cycle in the fermentation process. It is a reversible
reaction, and on oxidation catalyzed by malate dehydrogenase, malate converts to oxaloacetate [39].
Malonate is also produced in the TCA cycle and acts as a contender of succinate dehydrogenase without
reacting with it. Different levels of organic acids and their esters in typical Asian soy sauces indicate the
choices of different starter cultures, brining and aging strategies for fermentation. Decreased amounts
of TCA cycle intermediates like malate and malonate also support the idea of a shorter fermentation
period adopted for the production of CR soy sauce.

Except glutamate, lactate and glucose, there was a comparable trend in the change in concentration
of some important fermentation metabolites (acetate, sucrose and malonate) among CR and SK.
The same trend was observed among JS and TL. The similar trends in the change in concentration of
most of the amino acids and of the other fermentation cycle intermediates suggests that there might
be similarities in the manufacturing methods of CR and SK and similarly among those of JS and TL.
Taiwan (China) and Japan have some climatic similarities (subtropical monsoon climate). Similarly,
Singapore is located in the South China Sea. The red cooking soy sauces we bought are produced from
manufactures based in south China, which are similar in climate and cultures to Singapore. This may
be the reason for the similar trends found in the concentration of soy sauce products from these regions.

An unknown compound was also detected in higher concentration in JS, TL and SK soy sauce,
whereas a low content of the unknown compound was detected in Chinese red cooking soy sauce.
However, the differences in the concentration of the unknown compound among different types of
Asian soy sauce were not significant.

3. Experimental Section

3.1. Chemicals

All chemical reagents were of analytical grade. Deuterium oxide (D,0) (99.9%),
trimethylsilylpropanoic acid (TSP) sodium salt (99.9 atom %), NaHPO, and NaH,;PO, were purchased
from Sigma (St. Louis, MO, USA).

3.2. Sample Collection and Preparation

Popular soy sauces from Chinese mainland (red cooking soy sauce, CR =7 samples) and Taiwan
(super light, TL = 4 samples) and imported from Japan (Japanese Shoyu, JS = 6 samples) and Singapore
(Singapore Kikkoman, SK = 5 samples) were purchased from local Chinese market. The detailed
information about the samples selected is given in Table 2. The pH of all of the samples was monitored
and adjusted to 5.0 & 0.05 by mixing 60 pL soy sauce with 480 uL phosphate buffer (0.05 M sodium
phosphate, pH 5.0 £ 0.05). After that, 60 pL 2.5 mM trimethylsilylpropanoic acid (TSP) prepared
in D,O were added, where D,O provided field frequency lock, while TSP served as the internal
reference standard. The samples were then centrifuged at 13,000 rpm for 10 min. The supernatants
were transferred to 5 mm NMR tubes for further analysis.
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Table 2. Information about the samples.

Soy Sauce Type Raw Materials Fermentation Process
. . Steamed soybean and wheat, caramel color and or Prolonged fermentation of steamed
Chinese red cooking . . .
molasses, spice extracts, MSG, sodium benzoate. soybeans and wheat with A. oryzae.
Japanese Shoyu (Tamari) Less wheat and more soybean, alcohol as preservative. Stronger alcoholic fermentation with yeast.
Singapore Kikkoman Low salt, water, soybean, less wheat, rice, alcohol. Brine fermentation with yeast or Aspergillus

and lactic acid bacteria.

Taiwan (China) light Black soybeans, wheat, water, less salt, sodium benzoate. ~ Japanese-style fermentation.

3.3. 'H- and '3C-NMR Analysis

H and '3C NMR spectra were all acquired on a Bruker Avance 600MHz NMR spectrometer
(Bruker Biospin GmbH, Rheinstetten, Germany) operating at the 'H and '3C frequency of 600.1699 and
150.912 MHz, respectively, at a temperature of 298 K using a TXICryo Probe. For the 'H-NMR spectra,
the HyO signal was suppressed by the presaturation method, and the parameters for observation were
as follows: number of collected data points, 32 K; spectral width; 9000 Hz; acquisition time, 1.8 s;
repetition time, 1.00 s; number of scans, 128. To get BC-NMR signals, a QDEPT135 pulse sequence was
optimized and applied. Eight thousand transitions for each sample were collected in 32 K data points
using a spectral width of 240 ppm with a relaxation delay of 2.00 s and an acquisition time of 0.45 s.
Chemical shifts of all of the signals were calibrated to TSP (*H and '3C, ¢ 0.00). All of the 'H and '3C
spectra were apodized using the exponential window function with a line broadening factor of 0.3 and
3.0 Hz prior to Fourier transformation (FT), respectively. Signal assignment for representative samples
was facilitated by 2D 'H-'H total correlation spectroscopy (TOCSY), hetero-nuclear single quantum
correlation spectroscopy (HSQC) and online spectral databases.

3.4. NMR Data Analysis

Chemical shift migrations present among different NMR spectra are one of the most disturbing
factors keeping in view the multivariate data analysis [40]. The exploration of patterns in the spectra
is generally disturbed due to this problem [41-43]. Instrumental factors, changes of the salt or
specific ionic concentration, pH and temperature, are among the most important factors causing
this shift. However, these impacts on the chemical shifts of different resonances are not the same.
To counterfeit the alignment and phase problems, all spectra were first manually phased and baseline
corrected by Topspin software 3.2 (Bruker Biospin) and reduced into 0.2-ppm spectral buckets and
integrated. Data files were then re-aligned using an in-house-developed software package NMRSpecs
(version 1.0, Wuhan Institute of Physics and Mathematics, Wuhan, China), which can be used free of
cost for academic research purposes [44]. The regions without signals (0-10 ppm, 137-175 ppm and
190-230 ppm) were removed during the spectral alignment and bucketing. In order to compensate
for the total concentration differences, the aligned and bucketed spectra were normalized to the total
spectral area for each spectrum.

3.5. Multivariate Data Analysis

The spectral data resulting from alignment and bucketing were imported to SIMCA 14 (Umetrics,
Umea, Sweden) for conducting the multivariate statistical analysis. The par scaling was applied during
all multivariate analyses. PCA, an un-supervised pattern recognition analysis, was conducted at first
to reveal the intrinsic variations in the dataset and to diagnose any possible outliers. Following the
variations found in PCA, OPLS-DA models were then calculated to find out the discriminating
metabolites among different types of soy sauces. The statistical quality of the model was defined by
the total variance of the two components at a confidence level of 95%. The overall predictability of
the model is shown by cumulative Q2 representing the fraction of the variation of the Y that can be
predicted by the model, which was extracted according to the internal default cross-validation method
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of the SIMCA software. The method used to measure these variations is simple and robust, with
a general applicability to data mining from metabolomic and other similar kinds of datasets.

3.6. Relative Concentration of Metabolites

The normalized peak areas of selected metabolite signals were compared by using the integrals
of representative signals (the least overlapping ones) relative to that of internal reference TSP with
a known concentration.

The peak areas of each metabolite relative to the area of TSP peak were plotted in a standard
error bar graph to clearly explain the variation among different types of soy sauce in terms of relative
concentration (Figure 6A,B).

4. Conclusions

In summary, the present study demonstrated that 3C-NMR-based metabolomics is a useful and
potential tool for distinguishing different types of soy sauce manufactured through different methods
and that it highly improves sample classification when combined with chemometrics. The study
highlights that typical soy sauce types manufactured in different regions can easily and rapidly be
discriminated by evaluating the major metabolites quantitatively using metabolomic profiling. In our
findings, the significantly different concentrations of amino acids, like leucine, isoleucine and valine,
and of other fermentation cycle intermediates, like lactate, acetate, malate and malonate, among CR
and JS, SK and TL indicate different lengths or types of fermentation used for the production of CR
as compared to the other three types of Asian soy sauces. Significantly increased concentration of
glutamate in Chinese (Mainland) red cooking samples of soy sauce indicates the manual addition
of monosodium glutamate to the final soy sauce product. Comparable trends in the variation in
concentrations of fermentation cycle metabolites among CR, SK and ]S, TL indicate the influences of
traditional ways of fermentation and a climate of geographically-similar conditions. Our findings can
be helpful for the consumers to choose their desired soy sauce products, as well as for researchers in
further authentication studies about soy sauce.
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