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Abstract: Recent studies have shown that blueberries may have cardiovascular and cognitive health
benefits. In this work, we investigated the profile of plasma and urine (poly)phenol metabolites after
acute and daily consumption of wild blueberries for 30 days in 18 healthy men. The inter-individual
variability in plasma and urinary polyphenol levels was also investigated. Blood samples were
collected at baseline and 2 h post-consumption on day 1 and day 30. Twenty-four-hour urine was
also collected on both days. A total of 61 phenolic metabolites were quantified in plasma at baseline,
of which 43 increased after acute or chronic consumption of blueberries over one month. Benzoic
and catechol derivatives represented more than 80% of the changes in phenolic profile after 2 h
consumption on day 1, whereas hippuric and benzoic derivatives were the major compounds that
increased at 0 and 2 h on day 30, respectively. The total (poly)phenol urinary excretion remained
unchanged after 30 days of wild blueberry intake. The inter-individual variability ranged between
40%–48% in plasma and 47%–54% in urine. Taken together, our results illustrate that blueberry
(poly)phenols are absorbed and extensively metabolized by phase II enzymes and by the gut
microbiota, leading to a whole array of metabolites that may be responsible for the beneficial effects
observed after blueberry consumption.
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1. Introduction

Evidence on the health benefits of polyphenol-rich foods has been accumulating for the
last decade [1,2]. Blueberries, in particular, are getting increasing attention due to their potential
cardiovascular and cognitive health benefits [3–10]. However, the mechanisms of action (MOA) and
the bioactive molecules have not been identified. As a starting point to understand the biological
health effects of (poly)phenols, it is necessary to understand which metabolites circulate in plasma
at the time of the observed biological effects. In most of the published clinical studies investigating
health benefits of blueberries, the (poly)phenol metabolites present in the plasma or urine are not
reported. Besides implications for MOA, understanding the metabolome of blueberry (poly)phenols is
important in terms of compliance and safety in clinical trials. Furthermore, previous work investigating
the absorption, metabolism, and excretion of berry (poly)phenols in humans focused exclusively on
the analysis of structurally related anthocyanin metabolites. The fact that the latter were found in
plasma at low nanomolar or picomolar levels [11–13] led to the conclusion that anthocyanins were
poorly absorbed and had very low bioavailability. However, more recent evidence suggest that
phenolic acid metabolites derived from the breakdown or metabolism of anthocyanins are the major
compounds circulating in blood and urine after anthocyanin consumption, with concentrations up
to 100 times higher than the anthocyanin parent compounds [8,11,14–16]. Besides being rich sources
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of anthocyanins, blueberries are also rich in other phenolic compounds such as proanthocyanidins,
chlorogenic acids, and flavonols [17–19]. Consequently, these compounds will greatly contribute to the
pool of phenolic metabolites present in plasma and urine after blueberry consumption.

We have previously reported the bioavailability of blueberry (poly)phenols in plasma after
acute intake using enzymatic treatment [7,8,20]. Twenty-three plasma metabolites were found
including flavonols, benzoic, hippuric, cinnamic, phenylacetic, and phenylproprionic acids. However,
information about the levels of circulating (poly)phenols arising from phase II metabolism is lost
when using this approach. To our knowledge, a comprehensive investigation on the metabolism
and excretion of blueberry (poly)phenols has not been conducted so far. It is also unknown whether
chronic intake of blueberry has an impact on the profile and concentration of phenolic metabolites.
Thus, the aim of this work is to identify and quantify plasma and urine (poly)phenol metabolites
after acute and chronic intake of blueberry using authentic standards including phase II metabolites
in healthy men. The inter-individual variability in plasma and urinary phenolic metabolites was
also investigated.

2. Results

2.1. Characteristics Study Population

The clinical characteristics of the subjects participating in the study are detailed in Table 1.
All values are within the normal range for healthy individuals.

Table 1. Characteristics study population (n = 18).

Mean ± SD

Age (years) 33 ± 18
BMI (kg/m2) 24 ± 3

Systolic blood pressure (mm·Hg) 125 ± 10
Diastolic blood pressure (mm·Hg) 73 ± 9

Heart rate (bpm) 65 ± 9
Total cholesterol (mg/dL) 175 ± 33

Triglycerides (mg/dL) 90 ± 49
HDL-cholesterol (mg/dL) 55 ± 10
LDL-cholesterol (mg/dL) 114 ± 33

Fasting plasma glucose (mg/dL) 84 ± 14

2.2. (Poly)phenol Content of Blueberry Intervention

Volunteers consumed 11 g of freeze-dried blueberry powder (equivalent to 100 grams of fresh
blueberry) dissolved in water twice daily. Each drink contained a total of 302 ± 6 mg of total
(poly)phenols. Of these, 150 ± 3 mg were anthocyanins, 64 ± 1 mg chlorogenic acids, 49 ± 2 mg
flavanol oligomers (between trimers and decamers), 3 ± 0 mg flavonols dimers, 4 ± 0 mg flavanol
monomers, 31 ± 0 mg flavonols, 1 ± 0 mg benzoic, and cinnamic acids.

2.3. Plasma Blueberry (Poly)phenol Metabolites after Acute and Repetitive Intake

A total of 61 phenolic metabolites were quantified in plasma at baseline on day 1, of which
43 increased after acute or chronic consumption of blueberries over one month (Table 2). These were
benzoic acids, phenylacetic acids, propionic acids, pyrogallols, catechols, hipuric acids, cinnamic acids,
flavonols, and valerolactone derivatives.

At 2 h after blueberry consumption, plasma concentration of 19 compounds increased, including
one catechol, four flavonols, two hippuric, six benzoic, and six cinnamic acids, but only chlorogenic
acid and quercetin 3-O-β-D-glucuronide reached statistical significance with respect to baseline
(p = 0.003 and 0.004, respectively). The largest changes in plasma were detected for catechol-O-sulfate
(∆ = 531 ± 346 nM), benzoic acid (∆ = 138 ± 74 nM) and vanillic acid (∆ = 96 ± 70 nM). Overall,
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catechols, benzoic, and cinnamic acids were responsible for 95% of the increases in plasma phenolic
compounds after acute blueberry consumption (Figure 1A).

When comparing the baseline plasma concentrations on day 1 with day 30 (chronic or repetitive
intake), 38 compounds increased their levels, including 15 cinnamic acid, eight benzoic acids,
four hippuric acids, three phenylacetic acids, two pyrogallols, two catechols, and one benzaldehyde.
Of these, eight compounds displayed a significantly higher plasma concentration: dihydrocaffeic acid
3-O-sulfate (p = 0.004), catechol-O-sulfate (p = 0.016), vanillic acid (p = 0.005), hippuric acid (p = 0.021),
3-hydroxyhippuric acid (p = 0.0013), isoferulic acid 3-O-β-D-glucuronide (p = 0.033), benzoic acid
(p = 0.046), and 2,5-dihydroxybenzoic acid (0.048). The most abundant compound detected in plasma
was by far hippuric acid, which almost double its concentration after the 30-day chronic intake (17.4 µM
and 32.5 µM, respectively, ∆ = 15 ± 5 µM), followed by catechol-O-sulfate (∆ = 1.4 ± 0.5 µM) and
3-hydroxyhippuric acid (∆ = 0.4 ± 0.1 µM), justifying 94% of the positive changes detected (Figure 1B).
Minor contributions could be attributed to benzoic acids, followed by cinnamic acids and to a lesser
extent to phenylacetic acids, pyrogallols, and flavonols.

On day 30, 19 (poly)phenols increased their plasma concentration at 2 h after consumption
(acute + chronic intake, Table 2). The increases were statistically significant for chlorogenic acid
(p = 0.002), 4-methylgallic acid-3-O-sulfate (p < 0.001) and quercetin 3-O-β-D-glucuronide (p = 0.006).
The highest plasma level variations were detected for 2,3-dihydroxybenzoic acid (∆ = 589 ± 1882 nM),
vanillic acid (∆ = 81 ± 85 nM),s and chlorogenic acid (∆ = 40 ± 20 nM), which accounted for almost
all the plasma increases with only minor contributions of valerolactones and flavonols (0.9% each)
(Figure 1C). Interestingly, as reflected in Figure 1, the major changes in plasma phenolic metabolites
were different for acute, chronic, and acute on chronic intake.

Table 2. Plasma (poly)phenol concentration at 0 and 2 h post-consumption of wild blueberries (n = 18)
after acute (day 1) and repetitive intake (day 30). Compounds which had statistically higher plasma
concentrations at 2 h when compared to 0 h on day 1 (acute) are marked with a. Statistical significant
plasma concentrations when comparing 0 h at day 30 with 0 h on day 1 (chronic) were marked with b

and statistical significance at 2 h on day 30 when compared to 0 h on the same day (acute + chronic) are
marked with c.

Plasma Concentration (nM)

Day 1 Day 30

0 h 2 h 0 h 2 h

Benzoic acid Derivatives
Benzoic acid 794 ± 56 932 ± 63 981 ± 72 b 926 ± 47

2-Hydroxybenzoic acid 80 ± 22 131 ± 60 103 ± 15 106 ± 15
3-Hydroxybenzoic acid 17 ± 3 13 ± 2 21 ± 5 17 ± 3
4-Hydroxybenzoic acid 27 ± 8 23 ± 6 18 ± 4 18 ± 3

2,3-Dihydroxybenzoic acid 8891± 1550 7430 ± 1323 8070 ± 1210 8658 ± 1642
2,4-Dihydroxybenzoic acid 13 ± 5 11 ± 3 25 ± 7 18 ± 3
2,5-Dihydroxybenzoic acid 71 ± 10 54 ± 6 101 ± 10 b 94 ± 11

Protocatechuic acid 22 ± 6 18 ± 6 11 ± 4 8 ± 3
Syringic acid 4 ± 1 8 ± 2 9 ± 3 11 ± 3
Vanillic acid 290 ± 48 397 ± 53 644 ± 122 b 730 ± 109

Vanillic acid-4-O-sulfate 30 ± 6 29 ± 6 34 ± 6 34 ± 6
Isovanillic acid 429 ± 51 447 ± 58 426 ± 46 430 ± 57

4-Methylgallic acid-3-O-sulfate 43 ± 28 48 ± 11 28 ± 7 58 ± 15 c

Phenylacetic acid derivatives
Homovanillic acid 74 ± 7 52 ± 3 86 ± 14 71 ± 11

Homovanillic acid sulfate 4 ± 1 4 ± 1 6 ± 1 4 ± 1
Phenylacetic acid 2854 ± 1319 2599 ± 1578 1634 ± 603 1130 ± 315

3,4-Dihydroxyphenylacetic acid 91 ± 13 76 ± 9 89 ± 14 87 ± 11
3-Hydroxyphenylacetic acid 142 ± 32 103 ± 25 174 ± 29 152 ± 27
4-Hydroxyphenylacetic acid 333 ± 50 215 ± 31 289 ± 61 230 ± 49
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Table 2. Cont.

Plasma Concentration (nM)

Day 1 Day 30

0 h 2 h 0 h 2 h

Propionic acid derivatives
2-(4-hydroxyphenoxy)propionic acid 4 ± 1 3 ± 1 2 ± 0 2 ± 1

Benzaldehyde derivatives
4-Hydroxybenzaldehyde 62 ± 17 58 ± 16 55 ± 10 46 ± 10

3,4-Dihydroxybenzaldehyde 1 ± 0 1 ± 0 1 ± 0 1 ± 0

Pyrogallol derivatives
Pyrogallol-O-1-sulfate 22 ± 6 15 ± 2 23 ± 5 15 ± 2
Pyrogallol-O-2-sulfate 134 ± 60 99 ± 48 104 ± 44 62 ± 23

1-Methylpyrogallol-O-sulfate 87 ± 24 57 ± 16 112 ± 36 90 ± 31
2-Methylpyrogallol-O-sulfate 61 ± 18 58 ± 18 29 ± 7 22 ± 4

Catechol derivatives
Catechol-O-sulfate 1228 ± 231 1759 ± 179 2726 ± 440 b 1565 ± 195

4-Methylcatechol-O-sulfate 693 ± 104 468 ± 81 860 ± 250 775 ± 234

Hippuric acid derivatives
Hippuric acid 17,445 ± 3746 12,367 ± 2464 32545 ± 5252 b 29,644 ± 5587

2-Hydroxyhippuric acid 5 ± 2 9 ± 4 8 ± 2 8 ± 2
3-Hydroxyhippuric acid 290 ± 72 320 ± 84 708 ± 159 b 416 ± 87
4-Hydroxyhippuric acid 77 ± 12 59 ± 8 76 ± 12 64 ± 8
α-Hydroxyhippuric acid 485 ± 66 385 ± 43 539 ± 82 463 ± 62

Cinnamic acid derivatives
Cinnamic acid 22 ± 5 22 ± 5 20 ± 4 20 ± 6

Caffeic acid 7 ± 2 7 ± 2 6 ± 2 7 ± 2
Caffeic acid 3-O-β-D-glucuronide 2 ± 1 2 ± 1 4 ± 3 3 ± 1
Caffeic acid 4-O-β-D-glucuronide 1 ± 0 1 ± 0 2 ± 2 2 ± 1

Dihydrocaffeic acid 24 ± 6 17 ± 4 27 ± 6 23 ± 5
Dihydrocaffeic acid 3-O-sulfate 53 ± 12 41 ± 11 104 ± 28 b 73 ± 15

Dihydrocaffeic acid 3-O-β-D-glucuronide 9 ± 1 8 ± 1 11 ± 2 10 ± 2
Ferulic acid 6 ± 2 6 ± 2 7 ± 2 6 ± 1

Ferulic acid 4-O-glucuronide 156 ± 40 182 ± 32 195 ± 76 223 ± 67
Ferulic acid 4-O-sulfate 90 ± 33 106 ± 40 74 ± 26 80 ± 17

Dihydroferulic acid 100 ± 23 72 ± 24 111 ± 22 74 ± 15
Dihydroferulic acid 4-O-sulfate 154 ± 26 96 ± 19 138 ± 29 90 ± 17

Dihydroferulic acid 4-O-β-D-glucuronide 116 ± 23 76 ± 16 124 ± 31 100 ± 25
Isoferulic acid 1941 ± 348 1633 ± 312 1842 ± 377 1686 ± 319

Isoferulic acid 3-O-sulfate 19 ± 3 18 ± 2 22 ± 5 20 ± 4
Isoferulic acid 3-O-β-D-glucuronide 38 ± 10 38 ± 8 74 ± 13 b 77 ± 16
Dihydro isoferulic acid 3-O-sulfate 102 ± 64 73 ± 39 44 ± 11 40 ± 8

Dihydroisoferulic acid 3-O-β-D-glucuronide 8 ± 2 6 ± 2 9 ± 2 8 ± 2
m-Coumaric acid 1 ± 0 1 ± 0 1 ± 0 1 ± 0
o-Coumaric acid 1 ± 0 1 ± 0 1 ± 0 1 ± 0
p-Coumaric acid 3 ± 0 4 ± 1 4 ± 1 4 ± 1

Sinapic acid 11 ± 2 7 ± 1 8 ± 1 7 ± 1
Chlorogenic acid 22 ± 10 60 ± 18 a 20 ± 6 63 ± 22 c

Flavonol derivatives
Kaempferol 64 ± 17 68 ± 17 71 ± 22 75 ± 23

Kaempferol-3-O-β-D-glucuronide 1 ± 0 1 ± 0 2 ± 2 2 ± 0
Quercetin 32 ± 8 35 ± 9 28 ± 7 28 ± 7

Quercetin-3-O-β-D-glucuronide 3 ± 1 5 ± 1 a 6 ± 1 9 ± 2 c

Valerolactone derivatives
(4R)-5-(3′-hydroxyphenyl)-γ-

valerolactone-4′-O-sulfate 62 ± 26 31 ± 10 60 ± 16 67 ± 25
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Figure 1. Distribution of (poly)phenols classes which exhibited an increase in plasma concentrations
after: (A) 2 h of blueberry consumption on day 1 (acute intake); (B) one month daily supplementation
(chronic); and (C) 2 h post-consumption on day 30 (acute on chronic).

2.4. Urinary Excretion of Blueberry (Poly)phenols after Acute and Repetitive Intake

A total of 62 phenolic metabolites were detected in urine after blueberry consumption, with
a very similar profile as detected in plasma, except for gallic acid which was only detected in
urine (Table 3). Of these, 29 phenolic metabolites increased their 24 h urinary excretion at day 30
when compared to excretion at day 1 of the intervention although without statistical significance
(Table 3). (Poly)phenols that presented an increase after repetitive intake were mainly catechols,
benzoic, hippuric, cinnamic, and phenylacetic acids. Urinary recovery was in average 16% ± 2% and
17% ± 2% for days 1 and 30, respectively.
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Table 3. Urinary excretion (24 h) after acute (day 1) and repetitive intake (day 30) of wild blueberries.
Data is expressed as average ± SEM (µg). The % recovery (bold values at bottom) represent the
percentage of the total amount of (poly)phenols ingested in the blueberry drink that were excreted in
urine. No statistical significances were found between day 1 and day 30.

Total 24 h Urinary Excretion (µg) Day 1 Day 30

Benzoic Acid Derivatives

Benzoic acid 204 ± 49 286 ± 115
2-Hydroxybenzoic acid 50 ± 30 18 ± 10
3-Hydroxybenzoic acid 22 ± 7 22 ± 5
4-Hydroxybenzoic acid 519 ± 97 397 ± 60

2,3-Dihydroxybenzoic acid 6590 ± 1351 6079 ± 727
2,4-Dihydroxybenzoic acid 54 ± 13 61 ± 15
2,5-Dihydroxybenzoic acid 668 ± 119 757 ± 106

Protocatechuic acid 284 ± 52 217 ± 47
Syringic acid 86 ± 21 76 ± 20
Vanillic acid 264 ± 88 219 ± 36

Vanillic acid-4-O-sulfate 392 ± 103 407 ± 147
Isovanillic acid 68 ± 10 69 ± 13

Gallic acid 2 ± 1 1 ± 0
4-Methylgallic acid-3-O-sulfate 194 ± 56 149 ± 50

Phenylacetic acid derivatives
Homovanillic acid 939 ± 175 941 ± 143

Homovanillic acid sulfate 37 ± 9 48 ± 19
Phenylacetic acid 318 ± 50 429 ± 129

3,4-Dihydroxyphenylacetic acid 219 ± 39 168 ± 29
3-Hydroxyphenylacetic acid 900 ± 130 1230 ± 188
4-Hydroxyphenylacetic acid 1910 ± 284 1592 ± 199

Propionic acid derivatives
2-(4-hydroxyphenoxy)propionic acid 38 ± 19 39 ± 15

Benzaldehyde derivatives
4-Hydroxybenzaldehyde 2 ± 0 1 ± 0

3,4-Dihydroxybenzaldehyde 25 ± 4 20 ± 2

Pyrogallol derivatives
Pyrogallol-O-1-sulfate 22 ± 6 19 ± 6
Pyrogallol-O-2-sulfate 154 ± 41 92 ± 34

1-Methylpyrogallol-O-sulfate 71 ± 19 74 ± 31
2-Methylpyrogallol-O-sulfate 48 ± 15 35 ± 12

Catechol derivatives
Catechol-O-sulfate 325 ± 69 456 ± 138

4-Methylcatechol-O-sulfate 842 ± 127 874 ± 181

Hippuric acid derivatives
Hippuric acid 55,827 ± 7000 62,840 ± 8552

2-Hydroxyhippuric acid 651 ± 308 555 ± 297
3-Hydroxyhippuric acid 5729 ± 938 6242 ± 1119
4-Hydroxyhippuric acid 480 ± 116 397 ± 114
α-Hydroxyhippuric acid 4887 ± 1198 3857 ± 1052

Cinnamic acid derivatives
Cinnamic acid 2 ± 1 2 ± 1

Caffeic acid 18 ± 2 20 ± 3
Caffeic acid 3-O-β-D-glucuronide 142 ± 25 148 ± 37
Caffeic acid 4-O-β-D-glucuronide 67 ± 12 60 ± 12

Dihydrocaffeic acid 46 ± 9 74 ± 14
Dihydrocaffeic acid 3-O-sulfate 824 ± 194 1032 ± 244

Dihydrocaffeic acid 3-O-β-D-glucuronide 105 ± 20 114 ± 20
Ferulic acid 10 ± 3 13 ± 2
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Table 3. Cont.

Total 24 h Urinary Excretion (µg) Day 1 Day 30

Cinnamic acid derivatives
Ferulic acid 4-O-glucuronide 1942 ± 266 1924 ± 300

Ferulic acid 4-O-sulfate 3861 ± 638 3828 ± 597
Dihydroferulic acid 147 ± 44 152 ± 36

Dihydroferulic acid 4-O-sulfate 954 ± 158 932 ± 136
Dihydroferulic acid 4-O-β-D-glucuronide 427 ± 130 404 ± 79

Isoferulic acid 832 ± 243 889 ± 371
Isoferulic acid 3-O-sulfate 310 ± 79 302 ± 74

Isoferulic acid 3-O-β-D-glucuronide 290 ± 58 284 ± 55
Dihydro isoferulic acid 3-O-sulfate 121 ± 27 184 ± 64

Dihydro isoferulic acid 3-O-β-D-glucuronide 152 ± 39 166 ± 47
m-Coumaric acid 9 ± 2 15 ± 3
o-Coumaric acid 2 ± 0 1 ± 0
p-Coumaric acid 3 ±1 2 ± 0

Sinapic acid 60 ± 16 46 ± 14
Chlorogenic acid 370 ± 85 338 ± 102

Flavonol derivatives
Kaempferol 51 ± 13 70 ± 18

Kaempferol-3-O-β-D-glucuronide 6 ± 2 4 ± 1
Quercetin 51 ± 11 140 ± 76

Quercetin-3-O-β-D-glucuronide 19 ± 4 24 ± 8

Valerolactone derivatives
(4R)-5-(3′-hydroxyphenyl)-γ-valerolactone-4′-O-sulfate 1354 ± 277 1246 ± 292

Total amount excreted (mg) 95 ± 11 101 ± 13
Recovery (%) 16 ± 2 17 ± 2

2.5. Inter-Individual Variability in Plasma and Urinary Levels of Blueberry (Poly)phenol Metabolites

The sum of total (poly)phenol metabolites quantified in plasma at 2 h post-consumption on day 1
is presented in Figure 2 for each volunteer. The average total plasma concentration was 30 µM, ranging
between 16 µM and 63 µM, with a coefficient of variation (CV) of 44%.

One month after blueberry daily consumption the average plasma concentration of the sum of
(poly)phenols at baseline was 53 µM. The minimum and maximum concentrations detected were
20 and 98 µM, respectively (Figure 3), with a CV = 40%. At 2 h post-consumption (acute + chronic) the
sum of (poly)phenols quantified in plasma ranged from 10 to 109 µM and the CV was 48%.Molecules 2016, 21, 1120 8 of 15 
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Figure 3. Total (poly)phenols concentration (µM) at 0 h after daily consumption of wild blueberries
for 30 days (n = 18).

The 24 h total (poly)phenol urinary excretion values were calculated for both days 1 and 30
(Table 3). The CV% was 47% and 54% for days 1 and 30, respectively (Table 3). The recovery of
(poly)phenols in urine also registered considerable large inter-individual variability. At day 1 the
urinary recovery rates varied between 4% and 25%, while these values ranged from 2% to 41% at day 30.

Interindividual variability was also assessed in terms of classes of (poly)phenols. Catechols
and benzoic acids showed the lowest inter-individual variability in plasma (36%–58% and 50%–63%,
respectively), whereas in urine benzaldehydes, phenylacetic and benzoic acids were the compounds
excreted with less variability (47%–69%, 50%–54% and 40%–71%, respectively) (Table 4). Propionic
acids, pyrogallols, and valerolactones were the (poly)phenols with the highest inter-individual
variability, either in plasma or urine. As far as the sum of (poly)phenols detected in either plasma or
excreted in urine is concerned, the inter-individual variability was lower in plasma (40%–48%) than in
urine (47%–54%).

Table 4. Coefficient of variation (%) of (poly)phenols detected in plasma and urine after acute and
chronic wild blueberry consumption.

Plasma Urine

Day 1 Day 30 Day 1 Day 30

0 h 2 h 0 h 2 h 24 h 24 h

Benzoic acids 63 61 50 62 71 40
Phenylacetic acids 164 228 120 85 50 54

Propionic acids 96 111 105 127 198 158
Benzaldehydes 115 117 78 90 69 47

Pyrogallols 87 133 141 125 77 134
Catechols 52 36 58 45 61 84

Hippuric acids 90 82 66 78 50 57
Cinnamic acids 65 63 79 74 57 65

Flavonols 81 83 91 88 79 151
Valerolactones 182 148 113 157 82 94

Total (poly)phenols 44 44 40 48 47 54

3. Discussion

In this work, we report for the first time the profile of phase II and gut microbial metabolites of
blueberry (poly)phenols in plasma and urine of healthy volunteers after acute and repetitive intake.
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A total of 61 and 62 metabolites were found in plasma and urine, respectively, of which 19 were
found to increase at 2 h post consumption and 38 after one month daily supplementation of wild
blueberry. We report here a statistically significant increase at 2 h post consumption of quercetin
3-O-β-D-glucuronide and chlorogenic acid, which exhibited a two- and three-fold increase, respectively.
Although 17 other compounds increased their concentration at 2 h compared to baseline it is likely that
the Tmax of these compounds was not reached at 2 h. (Poly)phenols as p-coumaric acid, caffeic acid
3-O-β-D-glucuronide, ferulic acid 4-O-β-D-glucuronide, isoferulic acid 3-O-β-D-glucuronide reach their
Tmax as early as 1 h post consumption while catechol-O-sulfate, benzoic, isovanillic, 2-hydroxyhippuric,
and 3-hydroxyhippuric acids reach their Tmax at least 6 h after cranberry intake [21]. The most abundant
compound at 2 h post consumption was hippuric acid, followed by 2,3-dihydroxybenzoic acid,
phenylacetic acid, catechol-O-sulfate, and isoferulic acid. Hippuric and isoferulic acids increases
in plasma concentration have been associated with blueberry intake [7,8,20] and catechol-O-sulfate
has been reported after consumption of mixed berries [22] or cranberry juice [21].

One month after daily consumption of blueberry, 38 compounds increased their fasted plasma
level when compared to the first day of the intervention. To the best of our knowledge this is the
first report describing increases in plasma concentration after sustained intake of wild blueberry.
Significant increases were detected for eight compounds, including catechols, namely catechol-O-sulfate,
three benzoic acids, two hippuric acids and two phase II cinnamic acid metabolites. Metabolites such
as benzoic, 2,5-dihydroxybenzoic, and vanillic acids can be present in blueberry but they are also
products of the gut microbiota or flavonoid metabolism [23]. Phase II metabolites as catechol-O-sulfate,
dihydrocaffeic acid 3-O-sulfate, isoferulic acid 3-O-β-D-glucuronide were also significantly increased
after one month which suggest that blueberry (poly)phenols may selectively alter the metabolizing
capacity of sulfotransferases and glucuronosyltransferases; however, not all the phase II metabolites
showed a significant increase. The efficiency of the gut microbiota to metabolize polyphenols may also
have been affected, as all metabolites increasing concentration after one month could be derived
from gut microbial metabolism. Hippuric acid was the biggest contributor of the (poly)phenol
pool of circulating metabolites, accounting to approximately 15 µM (86%). These results are in
agreement with previous works which showed that hippuric acid was significantly associated with
bilberry consumption after a 12-week intervention [24] and with a high-(poly)phenol intake for
eight weeks [25]. Our findings are extremely pertinent as the higher levels of hippuric acid and other
(poly)phenols could justify, in part, the improvements detected after daily intake of blueberry in
cardiovascular health and memory [3–6,10,26]. However, we cannot discard the possibility that these
metabolites are coming from the intake of the blueberry drink the evening before or even from other
(poly)phenol sources in the diet. A limitation of the current work is that plasma was collected only
at one time point (2 h). Moreover, the level of some metabolites, even when individuals are properly
fasted and followed a low polyphenol diet for 24 h, can be high and mask increases deriving from
a (poly)phenol intervention. Limited data is available regarding the bioaccumulation of polyphenols
after chronic intake. In agreement with our data, daily intake of varied berries for eight weeks show
significant increases in several plasma (poly)phenol metabolites, including quercetin, p-coumaric
acid, caffeic acid, protocatechuic acid, vanillic and homovanillic acid, 3-hydroxyphenylpropionic
acid, and 3-(3-hydroxyphenyl)propionic acid [27]. Previous works in which volunteers were given
three different doses of quercetin over two weeks resulted in increased plasma levels of quercetin
metabolites [28]. A 12 week supplementation with cocoa flavanols also increased fasted plasma levels
of epicatechin and valerolactone metabolites [29]. In contrast, supplementation of an elderberry
extract for 12-weeks showed no significant increases in plasma levels of anthocyanin metabolites [30].
Whether or not (poly)phenol disposition is fast and bioaccumulation negligible after chronic exposure
needs further investigation. The evidence available suggest that the effects are likely not relevant in
terms of toxicity, as no adverse effects were reported in those studies.

In this work, we also report for the first time the urinary profile after acute and chronic intake of
wild blueberries. Hippuric acids were the major (poly)phenols excreted in urine, followed by cinnamic,
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benzoic, phenylacetic acids, and valerolactones. Although almost half of the compounds registered
an increase in 24 h-urine when comparing day 30 with day 1, these increases were discrete and not
statistically significant, leading to a total polyphenol excretion of 95 and 101 mg which corresponds to
16% and 17% of total urinary recovery, respectively. Our results are in agreement with Ferrars et al.
which also did not observe any significant differences in excretion of anthocyanins from elderberry
when comparing acute and chronic interventions [30]. However, Koli et al., found significant increases
in urinary levels of quercetin, p-coumaric and 3-hydroxyphenylacetic acid after eight week berry
consumption, with no differences in other phenolic metabolites [27]. Although further work is needed,
the available data suggest that chronic consumption of berries do not greatly affect the urinary excretion
of polyphenols. Studies with other (poly)phenol rich foods have reported significant increases in some
urinary catechin metabolites after six and 12 weeks of green tea supplementation [31], suggesting that
the bioaccumulation of (poly)phenols depends on their chemical composition.

The bioavailability of plant food bioactives may be dependent on intrinsic (e.g., age, sex,
ethnicity, disease, genetic polymorphisms, etc.) and extrinsic factors (e.g., dose, food matrix, dietary
habits, etc.) [32–38]. In this study, a large inter-individual variability was seen after wild blueberry
intake not only at 2 h in plasma but also in 24 h (poly)phenol urinary excretion. When considering
classes of (poly)phenols we reported a minimum and maximum CV in plasma of 36% and 228% for
catechols and phenylacetic acids, respectively, at 2 h post-consumption on day 1. These magnitudes
of variation are in agreement with a previous report that showed a CV in terms of Cmax of 22% for
2,5-dihydroxybenzoic acid and 225% for phenylacetic acid [20], after intake of a similar amount (766 mg)
of wild blueberry (poly)phenols. Other authors have reported high plasma inter-individual variability
in response to berry intake. Pimpao et al. quantified (poly)phenol sulfates with Cmax CV between
133% for pyrogallol-O-1-sulfate (652 ± 328 nM) and 238% for vanillic acid-O-sulfate (1345 ± 1310 nM)
after the consumption of mixed berries [22]. After intake of 13C-labelled anthocyanins, the Cmax

CV of (poly)phenol sulfates varied between 76% for protocatechuic acid-4-sulfate (1244 ± 333 nM)
and 152% for isovanillic acid-3-sulfate (822 ± 557 nM) [14]. Large inter-individual variability was
also reported after consumption of raspberries with CV of Cmax oscillating between 33% for ferulic
acid-4-O-β-D-glucuronide (18 ± 2 nM) and 161% for urolithin B-3-O-glucuronide (23 ± 14 nM) [39].
The high inter-individual variability of urolithins has led to stratification of individuals according to
their metabotype [40] and can be an interesting approach to decrease the large variability observed in
human intervention studies with (poly)phenols and other bioactive food components. Stratification
of different genotypes in terms of protein efflux transporters of phase II metabolites has showed
significant differences in isoflavones plasma levels [41].

Interestingly, when considering the sum of all (poly)phenols concentration after 2 h post
consumption of wild blueberry, the CV ranged between 44% and 48% which is in agreement with
a CV of 49% of the AUC of the sum of 23 metabolites reported after blueberry intake [20]. Our results
suggest that the pool of total circulating (poly)phenol metabolites has a lower inter-individual
variability then plasma concentration of individual compounds. The inter-individual variability was
also evident when analyzing the 24 h urine samples. The urinary excretion was approximately 17%
either acutely or chronically but in some individuals urinary recovery rates as low as 2% and as high
as 34% were observed. Previous works have showed that urinary excretion of (poly)phenols can
vary between 0.05% and 6.3% after strawberry consumption, or between 0.21% and 7.6% following
raspberry intake [42].

One of the factors that may explain part of the variability observed in this work is differences
in the gut microbiota, which composition is affected by (poly)phenol intake [43,44], but also varies
with diet, ethnicity, among other factors. Future works should focus on stratification of individuals
based on gut microbiota composition as recently done in the context of nutrition [45] and health
diagnostics [46]. Age and sex stratification may also be important factors explaining inter-individual
variability, although a recent study suggests that the absorption, metabolism and excretion of cocoa
flavanols is not age dependent [37].
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In conclusion, our current data illustrate that blueberry (poly)phenols are absorbed and
extensively metabolized by phase II enzymes and by the gut microbiota, leading to a whole array of
metabolites that may be responsible for the beneficial effects observed after blueberry consumption.
Our results also indicate that chronic consumption of blueberry may lead to modest changes in the
metabolizing capacity of enzymes and gut microbiota, as an increase in plasma phenolic metabolites
was seen after daily consumption of blueberry. However, no differences were seen in the total urinary
excretion of polyphenols suggesting that sustained consumption of blueberry does not induce sufficient
bioaccumulation to enhance systemic toxicity. The characterization of blueberry related metabolites in
plasma may help to understand the biological health effects of (poly)phenols.

4. Materials and Methods

4.1. Intervention Study Subjects

Eighteen healthy male volunteers from 18 to 70 years were recruited from the University of
Düsseldorf and surrounding area. Health was ascertained by a routine clinical physical exam and
specific cardiovascular history performed by a cardiovascular specialist. Manifest cardiovascular
disease, including coronary artery disease, cerebrovascular disease, and peripheral artery disease,
diabetes mellitus, acute inflammation, terminal renal failure, malignancies, and heart rhythm other
than sinus were exclusion criteria.

4.2. Human Study Design

This study was part of a double blind, parallel randomized controlled trial conducted to
investigate the vascular effects of freeze-dried wild blueberry consumption in a population of healthy
men comparing daily wild blueberry ingestion over one month with a control/placebo drink. Informed
consent was obtained and subjects were randomized to the treatments. We investigated the plasma and
urinary phenolic profile of 18 healthy men after daily consumption of 11 g of freeze-dried blueberry
powder (equivalent to 100 g of fresh blueberries) dissolved in water twice per day. Plasma samples
were taken at baseline and at 2 h post-acute consumption on day 1 and after one month of daily
consumption of blueberry at baseline and at 2 h, as well. Urine was collected between 0–12 h and
12–24 h on day 1 and one month after blueberry supplementation.

Volunteers were instructed not to alter their usual dietary or fluid intake. Those selected for
the study were asked to refrain from the following for 24 h prior to the study: consumption of
polyphenol-rich foods including fruits, vegetables, cocoa, chocolate, coffee, tea, and wine, participating
in vigorous exercise (>3 × 20 min/week) and consuming more than 168 g of alcohol (any form) per
week. Compliance to the diet and lifestyle restrictions was determined via a 24 h-dietary recall and
via interview.

This study was conducted according to the guidelines laid down in the Declaration of Helsinki
and all procedures involving human subjects were approved by the University of Düsseldorf Research
Ethics Committee (ref: 4306). The study was also registered with the National Institutes of Health
(NIH)-randomized trial records held on the NIH ClinicalTrials.gov website (NCT02520830).

4.3. Blueberry Test Drinks

The Wild Blueberry Association of North America (WBANA) supplied the freeze-dried wild
blueberry. Each sachet of blueberry (11 g of freeze-dried blueberry powder, dissolved in 500 mL of
water) contained 363 mg of total polyphenols, so the daily polyphenol consumption was 726 mg.

4.4. Plasma and Urine Collection

The blood samples collected in EDTA/heparin tubes were spun (1700× g; 15 min; 4 ◦C)
immediately after collection. Samples for (poly)phenol analysis were spiked with 2% formic acid.
Ascorbic acid was added to urine containers (3.75 g/2 L container) prior to urine collection.
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Urine containers were kept in an opaque cool bag with ice blocks at all times during the 24 h collection.
The total volume of urine excreted by each volunteer was measured and an aliquot was taken and
acidified with formic acid until pH 2.5 was achieved. All samples were aliquoted and frozen at −80 ◦C
until analysis.

4.5. UPLC-Q-TOF MS Analysis of Plasma (Poly)phenols

Plasma and urinary analysis of polyphenol metabolites was performed using microelution solid
phase extraction coupled with ultra high-performance liquid chromatography quadrupole time of
flight coupled to mass spectrometry (UPLC-Q-TOF MS) and authentic standards for quantification
as previously described [21]. Urinary recovery (%) was calculated by normalizing the concentration
measured in urine (nM) in terms of volume excreted (mL) during each collection time point. The nmoles
excreted were further converted into µg in order to be able to calculate the urinary recovery.
This parameter was determined by dividing the sum of total (poly)phenols excreted in urine (mg)
in 24 h by the total (poly)phenols consumed per day (726 mg). Due to failure in collecting one time
point (12–24 h) on day 30, volunteers 9 and 17 were not taken into account for the urinary excretion
calculations (n = 16).

4.6. Statistical Analysis

Average values of results are presented as mean values and their standard error of means.
Comparison between plasma concentrations at 2 h post consumption with baseline on day 1 (acute)
and baseline after 30 days of blueberry supplementation with baseline at day 0 (chronic) were done
by one-way ANOVA or Wilcoxon test, depending if the distributions had equal or unequal variances,
respectively. Analyses were computed with Graph Pad Prism 6 and JMP Pro 11.
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