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Abstract: Evodiamine (EVO) and rutaecarpine (RUT) are promising anti-tumor drug candidates.
The evaluation of the anti-proliferative activity and cellular uptake of EVO and RUT in 3D
multicellular spheroids of cancer cells would better recapitulate the native situation and thus better
reflect an in vivo response to the treatment. Herein, we employed the 3D culture of MCF-7 and
SMMC-7721 cells based on hanging drop method and evaluated the anti-proliferative activity and
cellular uptake of EVO and RUT in 3D multicellular spheroids, and compared the results with those
obtained from 2D monolayers. The drugs’ IC50 values were significantly increased from the range of
6.4–44.1 µM in 2D monolayers to 21.8–138.0 µM in 3D multicellular spheroids, which may be due
to enhanced mass barrier and reduced drug penetration in 3D models. The fluorescence of EVO
and RUT was measured via fluorescence spectroscopy and the cellular uptake of both drugs was
characterized in 2D tumor models. The results showed that the cellular uptake concentrations of
RUT increased with increasing drug concentrations. However, the EVO concentrations uptaken by
the cells showed only a small change with increasing drug concentrations, which may be due to the
different solubility of EVO and Rut in solvents. Overall, this study provided a new vision of the
anti-tumor activity of EVO and RUT via 3D multicellular spheroids and cellular uptake through the
fluorescence of compounds.
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1. Introduction

Evodia rutaecarpa (Chinese name: Wu-Chu-Yu), a traditional Chinese herb, has been widely used
for treating various diseases (e.g., gastrointestinal disorders, amenorrhea, headache, and postpartum
hemorrhage) for thousands of years [1]. Evodiamine (EVO) and rutaecarpine (RUT), belonging to the
quinazolinocarboline alkaloid class, are the two main bioactive components isolated from Evodiae
fructus [2]. Ever since first reported in 1915, the pharmacological activity of these two alkaloids,
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including anti-inflammatory [3], anti-obesity [4] and anti-tumor effects [5–10], has been well studied.
For example, it has been reported that EVO has anti-tumor potential by inhibiting cell proliferation and
inducing apoptosis via various molecular mechanisms [9,11]. In comparison, the anti-tumor activity of
RUT is weak and the underlying mechanism is not clear [12]. Therefore, it is of great importance to
further study the anti-tumor effects of EVO and RUT.

Two-dimensional (2D) in vitro models based on monolayer cell cultures are commonly used to
investigate the anti-tumor activity of drugs and identify effective cancer therapies. However, 2D models
fail to recapitulate the microarchitecture, cell-cell and cell-matrix interactions, and mass transfer barriers
of native tumor tissues [13], which may lead to therapy failure during in vivo trials, and even further
in clinical testing [14]. As alternatives, cellular spheroids have emerged as powerful three-dimensional
(3D) tissue models for drug development, since cellular spheroids could naturally mimic avascular
tumors with inherent metabolic and proliferative gradients to reflect tissue heterogeneity [15,16].
For example, 3D tumor spheroids have been proven to be more physiologically relevant to in vivo
tumors for anti-cancer drug testing compared to 2D cultures [14,17]. Various methods have been
developed for fabricating 3D tumor spheroids, including hanging drops [18,19], microwells [20] and
bioprinting [21–23]. Among these methods, the hanging drop method is a scaffold-free technology,
with the advantages of easy operation and no need for special equipment [24,25]. Although the
antiproliferative and apoptotic effects of EVO and RUT have been well studied on 2D models [26], the
application of 3D tumor models for studying their anti-tumor effects has not been explored yet.

Quantification of cellular uptake of drugs is very important for assessing their anti-tumor
effect [27–29], where fluorescence-based methods offer several advantages such as high sensitivity, fast
and easy operation [30,31]. EVO and RUT are derivatives of the quino[21,31-3,4]pyrrolo-[2,1-b]quinazoline
ring system whose structures comprise a quinoline ring system, a pyridone ring and a terminal
hydroxylactone ring (Scheme 1), similar to the strong topoisomerase I inhibitor luotonin A and
anticancer drug camptothecin [32,33]. The rigid planar structure of these alkaloids (containing
an extended conjugation of four aromatic and heteroaromatic rings) endows them notable
auto-fluorescence, making it possible to track these drugs using fluorescence spectroscopy [34,35].
However, the auto-fluorescence of EVO and RUT has not been explored before for quantitative
determination of the cellular uptake of the two drugs.
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Scheme 1. The structures of EVO and RUT.

Herein, for the first time, the anti-tumor activities of EVO and RUT were studied with in vitro
3D tumor spheroid models. In addition, a fluorescence-based method was explored to quantitatively
evaluate the cellular uptake of EVO and RUT in MCF-7 and SMMC-7721 cancer cells.

2. Results

2.1. Fabrication and Characterization of 3D Tumor Spheroids

To evaluate the anti-tumor effects of EVO and RUT using a native-mimicking model, we first
fabricated 3D tumor spheroids of two human cancer cell lines, MCF-7 and SMMC-7721, using a
hanging drop method (Figure 1A). From scanning electron microscope (SEM) images, we observed
that both MCF-7 and SMMC-7721 cells formed packed spheroid aggregates after culture for 2 days
(Figure 1B,D). We also checked the cell viability using live/dead staining and found that most (>90%)
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of cells in the spheroids remained alive after culture for 4 days, as shown by confocal laser imaging
(Figure 1C,E).Molecules 2016, 21, 954 3 of 13 
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Figure 1. Formation and characterization of 3D tumor spheroids. (A) Schematic representation of 3D
tumor spheroid formation using a hanging drop method; (B) SEM images of MCF-7 spheroids after
culture for 2 days and (C) live/dead stained fluorescence images of MCF-7 spheroids after culture
for 2 days and (D,E) SMMC-7721 spheroids over 4 days cultures, respectively. Cell growth curves
of (F) MCF-7 and (G) SMMC-7721 cell spheroids with different cell density. Error bars, s.d. (n = 3).
Scale bars, 20 µm.

To identify appropriate culture conditions, including cell density and cultivation time, for getting
suitable 3D tumor spheroids for drug testing, we examined the growth kinetics of the MCF-7 and
SMMC-7721 cell spheroids with initial cell numbers of 100, 1000 and 10,000 cells per drop, respectively
(Figure 1F,G). Cells in all the groups formed cell spheroids, and the diameter of cell spheroids increased
with increasing cultivation time over the period of 6 days for the fixed initial cell numbers. Specifically,
the spheroid diameters of MCF-7 with initial cell number of 10,000 were about 261.4 ˘ 7.9, 287.0 ˘ 13.7
and 380.1 ˘ 3.0 µm after culture for 2, 4 and 6 days, respectively, which are similar to those reported in
literature [36]. After 2 days of growth, the spheroid diameters of MCF-7 and SMMC-7721 with initially
10,000 cells per drop had already reached 261.4 ˘ 7.89 and 263.3 ˘ 2.3 µm, respectively, in which
the sizes are clinically relevant for evaluating drug activity [37,38]. Therefore, 10,000 cells per drop
and 2 days were selected, respectively, as appropriate culture conditions to achieve the right size of
spheroids for subsequent studies [18].

2.2. Anti-Tumor Activity Testing of Drugs in 2D and 3D Models

To compare the antitumor activities of EVO with that of RUT in 2D cultures, the in vitro
antiproliferative effects of EVO and RUT against MCF-7 and SMMC-7721 were both evaluated via
tetrazolium-based colorimetric (MTT) assay. The inhibition rate of drugs to tumor cells was calculated
as percentage of dead cells [39]. The inhibition rates of EVO on MCF-7 cells were 34.1% ˘ 0.6%,
42.5% ˘ 1.4%, 44.0% ˘ 0.9%, 53.0% ˘ 4.1% at drug concentrations of 5, 10, 15 and 20 µM, respectively,
while for RUT, they were 6.9% ˘ 1.3%, 18.0% ˘ 1.2%, 28.5% ˘ 3.3%, 34.5% ˘ 1.8%, respectively
(Figure 2A). As for the SMMC-7721 cells, the inhibition rates of EVO were 21.0% ˘ 1.4%, 47.9% ˘ 0.8%,
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50.8% ˘ 0.9%, 56.9% ˘ 1.4% and for RUT were 25.4% ˘ 3.1%, 36.2% ˘ 0.3%, 50.0% ˘ 1.8%, 74.9% ˘ 2.2%,
at drug concentrations of 10, 20, 30 and 40 µM, respectively (Figure 2B). Although the inhibition rates
of EVO and RUT on SMMC-7721 cells increased with increasing drug concentrations, the inhibitory
rates of EVO were significantly higher than those of RUT for MCF-7 in the concentration range of
5–20 µM (p < 0.01), which indicates that EVO may have higher in vitro anti-tumor activity than RUT
for MCF-7 cells (Figure 2A). However, there are no significant difference between EVO and RUT for
SMMC-7721 in the concentration range of 10–40 µM (Figure 2B), which indicates that EVO and RUT
have similar anti-tumor activity to SMMC-7721. We further checked the IC50 values of EVO and
RUT against the two tumor cell lines after 48 h treatment (Table 1). The IC50 values of EVO against
MCF-7 and SMMC-7721 cells were 18.1 and 27.4 µM, respectively, and those of RUT were 44.1 and
24.2 µM, respectively.
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cells in 2D model at different drug concentrations after 48 h incubation. The results are expressed as
means ˘ standard deviation (SD) (n = 3). ** p < 0.01. NS, no significance.

Table 1. The IC50 values of the model drugs (EVO, RUT) and control drug (CDDP) against the
two tumor cell lines in 2D and 3D culture systems at different drug concentrations after 48 h treatment.
Unit: µM.

Cells
EVO RUT CDDP

2D 3D 2D 3D 2D 3D

MCF-7 18.1 34.6 44.1 138.0 15.9 [40] 39.9
SMMC-7721 27.4 56.2 24.2 42.3 6.4 [40] 21.8

To validate our 3D tumor models as an effective drug-testing platform, we used CDDP, which
is commonly used for testing anti-cancer activity in 3D cancer models [40,41], as a positive control.
The IC50 concentration of drugs determined in 2D tests (EVO: 18.1 and 27.4 µM for MCF-7 and
SMMC-7721, respectively; RUT: 44.1 and 24.2 µM for MCF-7 and SMMC-7721, respectively) (Table 1)
were selected as initial drug concentration to evaluate the anti-tumor activities of drugs in the 3D assay.
The results showed that the inhibition rates of EVO to MCF-7 and SMMC-7721 tumor cell spheroids
were 36.5% ˘ 1.9% and 39.7% ˘ 2.1%, respectively, while those of RUT were 27.40% ˘ 0.52% and
42.20% ˘ 2.45%, respectively. Since the inhibition rate cannot reach 50% after 48 h of drug treatment in
3D cellular spheroid using the IC50 concentration from 2D test, we used drug concentrations of 1-, 2-,
5- and 10-fold the IC50 of the drug concentrations from the 2D tests for further 3D studies.

We first checked the viability of the cells in the spheroids after treatment with drugs at different
concentrations by using a live/dead staining assay (Figure 3A,B). We observed that the number of
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live cells (green) decreased with increasing drug concentration after 48 h treatment. To further check
the drug treatment response, we calculated the spheroids diameter after treatment over 2 days, and
analyzed the changes of the spheroids diameter ratio (the ratio of spheroid diameters after 48 h of drug
treatment relative to that of 0 h) of MCF-7 and SMMC-7721 cells (Figure 3C,D). The spheroid diameter
ratio of MCF-7 (Figure 3C) and SMMC-7721 cell (Figure 3D) after 48 h of drug treatment decreased
with increasing drug concentration compared with negative control (drug concentration = 0 µM).Molecules 2016, 21, 954 5 of 13 
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Figure 3. Anti-proliferative effects of the model drugs (EVO, RUT) and control drug (CDDP) on
MCF-7 and SMMC-7721 cells in a 3D model. The live/dead images of (A) MCF-7 and (B) SMMC-7721
spheroids after treatment of different drug concentrations measured. The cell spheroid diameter ratio
of (C) MCF-7 and (D) SMMC-7721 after 48 h treatment of the three drugs at different concentrations.
The results are expressed as means ˘ SD (n = 6). *** p < 0.001, drugs versus negative control. # p < 0.05.
The inhibition rate of the three drugs in (E) MCF-7 and (F) SMMC-7721 cells in 3D cultures at different
concentrations of drug treatment after 48 h incubation. The results are expressed as means ˘ SD (n = 6).
* p < 0.05. Scale bars, 20 µm.
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Furthermore, the statistical analysis results indicate that there are significant differences (p < 0.05)
between EVO and RUT for MCF-7 (Figure 3C), and RUT versus CDDP for SMMC-7721 (Figure 3D).
To evaluate the anti-tumor activities of EVO and RUT in 3D tumor spheroids, the relationships between
drug concentration and the inhibition rate in 3D were studied (Figure 3E,F). The percentage of dead
(red) cells of drugs to cell spheroids after 48 h treatment with different concentrations of drugs was
calculated from the live/dead staining images. In order to verify the validity of the 3D tumor models we
fabricated, CDDP was used as a positive-control drug to study its inhibition rate on MCF-7 spheroids.
We observed that CDDP suppressed 23.7% ˘ 0.9% of the growth of cell spheroids, which is close to the
value reported elsewhere [40,41], indicating that the 3D tumor model fabricated herein could be used
to evaluate the anti-tumor activity of drugs. The inhibition rate of EVO, RUT and CDDP in MCF-7
spheroids at 1-fold IC50 drug concentration was 36.5%, 27.4% and 23.7%, respectively (Figure 3E).
At higher drug concentration (e.g., 10-fold the IC50), EVO had a similar anti-tumor potential for MCF-7
spheroids as CDDP (EVO: 87.4% at 180.7 µM vs CDDP: 86.2% at 158.6 µM), as shown in Figure 3E.
However, RUT was less active than EVO, where it inhibited spheroid growth about 50% at 138.0 µM,
which is a much higher value than that of EVO (34.6 µM). Furthermore, the statistical analysis results
(Figure 3E) indicate that there is significant difference (p < 0.05) between EVO and RUT for MCF-7.
These results indicate that EVO may have higher in vitro anti-tumor activity than RUT for MCF-7 cells,
as reported elsewhere [39]. However, the statistical analysis results (Figure 3F) indicate that there is no
significant difference between EVO and RUT for SMMC-7721, which is consistent with the 2D assay
results, indicating EVO and RUT have similar anti-tumor activity for SMMC-7721. To further compare
the results of 2D and 3D assays, the IC50 values generated from the two assays are shown in Table 1.
The IC50 of MCF-7 and SMMC-7721 cells in 2D for all three drugs was in the range of 6.4–44.1 µM,
while the IC50 of the MCF-7 and SMMC-7721 cell spheroids were much higher (21.8–138.0 µM), which
may be due to enhanced mass barrier and reduced drug penetration in 3D models.

2.3. Cellular Uptake of EVO and RUT in in Vitro 2D and 3D Models

The rigid planar structure of RUT and EVO containing a quinoline ring system, a pyridone ring
and a terminal hydroxylactone ring endows them with notable auto-fluorescence, making it possible
to track these drugs using fluorescence spectroscopy. To quantify cellular uptake of EVO and RUT
in vitro, we measured the UV/Vis absorption and fluorescence spectra of EVO and RUT in ethanol
solutions (10 µM). The UV absorption spectra of RUT (Figure 4A; red line) exhibits an absorption
maxima at λ1abs = 363 nm, λ2abs = 346 nm, λ3abs = 330 nm (shoulder) and λ4abs = 242 nm (shoulder),
and the spectral shape and the position of the emission maxima were close to those described in
reference for luotonin A [33]. However, the absorption spectra of EVO (Figure 4A; blue line) exhibited
absorption maxima at λ3abs = 226 nm, λ2abs = 284 nm (shoulder) and λ1abs = 292 nm (shoulder),
without an absorption in the 300–400 nm region. The fluorescence emission spectra (solid lines) and
excitation spectra (dotted lines) of RUT and EVO in ethanol solvent (10 µM) are shown in Figure 4B.
We observed that the excitation spectrum of RUT (red dotted lines) exhibited two peaks at 356 nm
and 372 nm, which are near to and slightly shifted towards the longer wavelength as compared
to the UV-absorption spectra of RUT at 346 nm and 363 nm (Figure 4A), in which the fluorescence
maximum excitation (λmax) was at 372 nm. With 356 nm and 372 nm as the excitation wavelengths,
the emission spectrum of RUT (red solid lines, Figure 4B) consisted only one wide band characterized
by a fluorescence maximum at λmax = 406 nm, and was independent of the excitation wavelength.
However, the excitation spectra of EVO (blue dotted lines, Figure 4B) showed three resolved peaks at
292, 358 and 372 nm, respectively. With 372 nm as the excitation wavelength, the emission spectra of
EVO (blue solid lines, Figure 4B) showed two resolved peaks at 411 and 432 nm, with λmax = 432 nm.
Overall, this means that the fluorescence maximum excitation wavelength for both EVO and RUT was
372 nm, but the maximum emission wavelength of EVO was 432 nm, which is an obvious red shift in
the fluorescence spectra compared with that of RUT (at 406 nm).
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Figure 4. The model drugs, the spectrum characteristics of EVO and RUT and the cellular uptake of the
drugs in vitro tumor models. (A) UV spectrum of RUT (red line) and EVO (blue line) in CH3CH2OH
(1.0 ˆ 10´5 M); (B) The fluorescence spectrum of RUT (red line) and EVO (blue line) in CH3CH2OH
(1.0 ˆ 10´5 M); The amount of cellular uptake after treatment with the different concentrations of
the two drugs in (C) MCF-7 and (D) SMMC-7721 cells in 2D models; The fluorescence images of 3D
(E) MCF-7 and (F) SMMC-7721 spheroid cultures after treatment with the different drug concentrations
measured by fluorescence microscopy. The fluorescence intensity of (G) MCF-7 and (H) SMMC-7721
cell spheroids by fluorescence microscopy images of the drugs. The results are expressed as means ˘ SD
of six independent experiments. * p < 0.05 EVO versus RUT for MCF-7; NS: EVO versus RUT for
SMMC-7721. (* p < 0.05, NS: no significance).

Based on the fluorescence properties of both EVO and RUT, we quantified cellular uptake of
drugs through the fluorescence method by using excitation wavelengths of 372 nm, and using emission
wavelengths of 406 and 432 nm for RUT and EVO, respectively (Figure 4C,D). The fluorescence
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intensity of the drugs at different concentrations (0.5, 1.0, 2.5, 5.0, 10.0, 15.0, 20.0 µM) was analysed,
and the standard curve was established for the relationship between the concentration of drugs and
the fluorescence intensity. In 2D models, the results showed that the cellular uptake of RUT increased
with increasing drug concentrations (red lines, Figure 4C,D). However, the EVO concentrations
uptaken by the cells showed only a small change increasing drug concentrations (blue lines), and thus,
a dose-dependent effect of EVO to two cancer cells was not apparent. For MCF-7 cells, the cellular
uptake amount of RUT and EVO in the lowest concentrations (5 µM) is nearly equal, but the lowest
concentration of EVO expressed an inhibitory effect which was higher than the effects caused by the
same concentration of RUT.

The cellular uptake of drugs in 3D tumor spheroids of MCF-7 (Figure 4E) and SMMC-7721 cells
(Figure 4F) were also evaluated through the analysis of the fluorescence intensity of the tumor spheroids
based on fluorescence microscopy images of drugs. The results showed that the fluorescence intensity
of tumor spheroids increased with increasing drug concentrations (Figure 4G,H). Furthermore, the
EVO fluorescence intensity of the tumor spheroids was significantly higher (p < 0.05) than that of
RUT for MCF-7 (Figure 4G). However, there is no significant difference between EVO and RUT for
SMMC-7721 (Figure 4H).

3. Discussion

EVO and RUT are the two main bioactive components of a traditional Chinese medicine
(namely Evodiae), which have shown their potential anti-tumor activity [42]. However, this has
been mainly studied in 2D cancer models. In this study, we aimed to investigate the antiproliferative
activity and cellular uptake of EVO and RUT in 3D multicellular spheroids and compare the results
with 2D monolayers. Our results from both 2D and 3D studies showed that EVO has higher in vitro
anti-tumor activity than RUT for MCF-7 cells, however, for SMMC-7721, they have similar anti-tumor
activity. In addition, the drugs’ IC50 dramatically increased from the range of 6.4–44.1 µM in 2D
monolayers to 21.8–138.0 µM in 3D multicellular spheroids (Table 1). Generally, the chemotherapeutic
agents show better potency in 2D models than in 3D models [37]. The missing cell-cell interactions and
cell-ECM interactions in 2D models may explain the observed higher anti-tumor activity of drugs such
as CDDP [41,43]. Besides, the 3D tissue architecture in spheroids significantly enhances mass barrier,
resulting in reduced drug penetration [44]. Although accumulating evidence has shown that there
exists significant difference between cell behavior in 2D and 3D, the 3D multicellular spheroid tumor
models have been proven to be more physiologically relevant to in vivo tumors [45,46]. An effective
3D in vitro cancer model can provide an efficient way to obtain biological insights that are often lost
in 2D platforms. To fully understand the differences in drug resistance of cells in 3D culture vs. 2D,
the levels of certain gene expressions of cells should be further studied.

Due to the existence of a conjugated structure, the two compounds of EVO and RUT display
notable native fluorescence. This property makes it possible to use fluorescence spectroscopy to
determine or predict many biomedical properties. In this study, the cellular uptake of EVO and
RUT in tumor models was investigated by using fluorescence method based on the fluorescence
properties of the drugs. The results showed that the cellular uptake concentrations increased with
increasing drug concentrations for RUT. However, the EVO concentrations uptaken by cells showed
only a small change with increasing drug concentrations. The differences in cellular uptake of those
two compounds may be due to their molecular structure differences. For example, there is a methyl
group on the N atom of EVO but it is absent in RUT, which makes the molecular weight of EVO
(MW = 303) being relatively higher than RUT (MW = 289). The solubility of EVO and Rut in different
solvents is different [47], which may result in the differences in cellular uptake of these two compounds.
For MCF-7 cells, the cellular uptake amount of RUT and EVO in the lowest concentrations (5 µM) are
nearly equal, but the lowest concentration of EVO expressed an inhibitory effect, which was higher
than the effects caused by the same concentrations of RUT. Wang [9] reported that EVO mediated
degradation of estrogen receptor (ER) in MCF-7 cell lines. It suggested that EVO may inhibit breast
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cancer cell proliferation through the ER-inhibitory pathway. To further understand the differences in
activity between these EVO and RUT, the mechanism of drug action needs be studied in the future.

4. Materials and Methods

4.1. Chemicals and Reagents

All chemicals and reagents were purchased from Sigma-Aldrich Trading Co. Ltd.
(Shanghai, China), unless otherwise stated. RPMI 1640 medium, fetal bovine serum (FBS), and
penicillin-streptomycin (P/S) were obtained from Gibco (Invitrogen Corporation, Carlsbad, CA, USA).
3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was purchased from Thermo Fisher
Scientific (Beijing, China).

4.2. Cell Culture

SMMC-7721 and MCF-7 cells were purchased from the Type Culture Collection of Chinese
Academy of Sciences (Shanghai, China). MCF-7 cells were cultured in RPMI 1640 with 10% (v/v) FBS.
SMMC-7721 cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% (v/v)
FBS in a humidified atmosphere containing 5% CO2 at 37 ˝C. Cell subcultures were performed by
transferring the cell suspension to another culture flask after detachment from the flasks with trypsin.
The cell concentration was counted by using a hemocytometer.

4.3. Fabrication of 3D Tumor Spheroids

The hanging drop method was used to form 3D spheroids of MCF-7 and SMMC-7721 cell lines
(Figure 1A). Firstly, single-cell suspensions were generated from trypsinized monolayers and diluted
to the desired cell density. Then, 10 µL drops of cell suspension (1 ˆ 106 cells/mL) were deposited
onto the bottom of a culture dish lid, upon inversion of the lid, the 50 hanging drops were formed
by surface tension. The lid was placed on the dish and 3 mL PBS buffer solution was filled in the
bottom of the dish to avoid over evaporation of the medium. After 24 h of incubation in a humidified
atmosphere with 5% CO2 at 37 ˝C, the cells accumulated at the free liquid-air interface.

4.4. MTT Assay

Drug sensitivity in 2D culture systems was tested by the MTT assay. When cells reached the
period of logarithmic phase, they were trypsinized into single cells with a density of 1 ˆ 104 cells per
well in 96-well plates (180 µL/well). After 12 h of incubation, the 20 µL medium containing various
concentrations drugs (5, 10, 15, and 20 µM for MCF-7; and 10, 20, 30, and 40 µM for SMMC-7721) or
a drug-free medium (control) were added. After 48 h of incubation, the media were removed and
washed with PBS, replaced by 200 µL of 0.5 mg/mL MTT solution in RPMI 1640 media. Following 4 h
of incubation in this condition, the MTT solution was removed and 200 µL DMSO was added, and
the plates were shaken for 10 min. The optical density (OD) of each condition was measured using a
microplate reader (Multiskan G0, Thermo Scientific, Rockford, IL, USA) at a wavelength of 570 nm
with a reference wavelength of 630 nm. Then, the inhibition rate of drugs to tumor cells was calculated
as percentage of dead cells, as described elsewhere [39]. The IC50 values were obtained by fitting
the data to a sigmoidal dose-response curve (variable slope) using Prism 4 software (GraphPad) [48].
Each experimental condition was repeated for at least three times.

4.5. Cellular Uptake of EVO and RUT

Cells were dispensed in 6-well plates at a density of 1 ˆ 105 cells/well (1800 µL/well). After 12 h
of incubation, 200 µL of different drugs (5, 10, 15, and 20 µM for MCF-7; and 10, 20, 30, and 40 µM for
SMMC-7721) were added into the wells. After 48 h of incubation, the culture medium was removed
and the wells were washed with PBS and normal saline for three times. Then, the cells were carefully
scraped and dispensed into centrifuge tubes that were placed in an ice water bath for ultrasonication
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with an ultrasonic cell disruptor. Acetic ether (500 µL) was then added to dissolve cell debris, and
the mixture was shaken carefully, followed by extraction of the supernatant liquid. This process was
performed in three times and the supernatant liquids were collected. The combined supernatant liquid
was volatilized through nitrogen. After drying, 2 mL water was added to dissolve the components, and
analyzed with a QuantaMaster 40 spectrofluorometer (Photon Technology International, Lawrenceville,
NJ, USA) in a 1 cm quartz cell. Optical excitations were carried out with a 372 nm argon laser beam,
and the fluorescence emission intensity was detected at wavelengths of 406 nm and 432 nm for RUT
and EVO, respectively. The fluorescence intensity of the drugs at different concentrations (0.5, 1.0,
2.5, 5.0, 10.0, 15.0, and 20.0 µM) was determined and a standard curve was established according
to the relationship between the concentration of the drugs and the fluorescence intensity. Based on
the standard curve, the cellular uptake amount of both EVO and RUT in the two cancer cell lines
was calculated.

4.6. Live/Dead Assay

Chemosensitivity in 3D culture system was evaluated by a LIVE/DEAD Viability/Cytotoxicity
Kit [18]. Briefly, spheroids were seeded in the lid of the dish for 48 h to reach an average diameter
of 250–320 µm. For drug treatment, the media were removed and replaced by 20 µL fresh media
with different concentration of drugs at 48 h (final drugs concentration became 1-fold, 2-folds, 5-folds
and 10-folds of IC50 drug concentration determined in the 2D culture system). CDDP was used as a
positive control on each assay. Spheroids were added 10 µL of 2 mM calcein AM and 4 mM ethidium
homodimer-1, and incubated for 1 h at 37 ˝C. The live cells are stained by calcein AM, while the dead
cells are stained by ethidium homodimer-1. Images were acquired using a fluorescence microscope
(Olympus IX81, Tokyo, Japan) from which the percentages of live (green) and dead (red) cells were
quantified. Each experiment was repeated six times.

4.7. Morphology, Physical and Optical Characterization

SEM (JSM-6700F, JEOL, Tokyo, Japan) operating at 10 kV was used to characterize cellular
morphology. Cellular spheroids were fixed overnight on 2D glass slides with 2.5% glutaraldehyde
solution, dehydrated with sequential ethanol solution of 50, 70, 90, 95, and 100%, and then freeze
dried. Spheroids were coated by gold sputtering for 120 s and viewed with SEM. UV/Vis spectra
were recorded using a UV-3600 UV-Vis-NIR absorption spectrophotometer (Shimadzu Co., Kyoto,
Japan), and luminescence spectra with a QuantaMasterTM40 spectrofluorometer in a 1 cm quartz cell
at room temperature. The drugs’ luminescence images were acquired using Olympus IX81 fluorescent
microscope. The optical density (OD) was measured using Multiskan G0 microplate reader.

4.8. Statistical Analysis

All results were presented as mean ˘ standard deviation (SD). Student’s t-test was used to
analyze the statistically significant differences between cells exposed to drugs and their controls, where
statistical significance was defined as p-values less than 0.05 (p < 0.05).

5. Conclusions

In conclusion, the 3D spheroid assay provides a different potency trend of EVO and RUT compared
to 2D monolayer screening. Our findings may provide evidence for explaining why the effect of some
anticancer drugs have demonstrated valid effects on cancer cells when evaluated using in vitro 2D cell
culture system, but have shown significant discrepancies in the observed efficacy when these drugs
are evaluated in vivo. We believe our results may help for drug screening and cytotoxicity studies.
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