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Abstract: In this study, a simple and amplified colorimetric assay is developed for the detection of
the enzymatic activity of glucose oxidase (GOx) based on in situ formation of a photoswitchable
oxidase mimetic of PO4

3´-capped CdS quantum dots (QDs). GOx catalyzes the oxidation of
1-thio-β-D-glucose to give 1-thio-β-D-gluconic acid which spontaneously hydrolyzes to β-D-gluconic
acid and H2S; the generated H2S instantly reacts with Cd2+ in the presence of Na3PO4 to give
PO4

3´-stabilized CdS QDs in situ. Under visible-light (λ ě 400 nm) stimulation, the PO4
3´-capped

CdS QDs are a new style of oxidase mimic derived by producing some active species, such as h+, ‚OH,
O2
‚´ and a little H2O2, which can oxidize the typical substrate (3,3,5,5-tetramethylbenzydine (TMB))

with a color change. Based on the GOx-triggered growth of the oxidase mimetics of PO4
3´-capped

CdS QDs in situ, we developed a simple and amplified colorimetric assay to probe the enzymatic
activity of GOx. The proposed method allowed the detection of the enzymatic activity of GOx
over the range from 25 µg/L to 50 mg/L with a low detection limit of 6.6 µg/L. We believe the
PO4

3´-capped CdS QDs generated in situ with photo-stimulated enzyme-mimicking activity may
find wide potential applications in biosensors.
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1. Introduction

Natural enzymes play an important role in biochemistry due to their high substrate specificity
and high catalytic efficiency in catalyzing various meaningful reactions. Unfortunately, being a
type of protein, natural enzymes suffer from some serious disadvantages: for example, (i) they can
be easily denatured by environmental changes; (ii) they are prone to being digested by protease;
and (iii) their preparation and purification are usually complex and expensive [1]. Accordingly,
searching for artificial enzyme mimics with good stability and high catalytic capability is of great
interest and urgently needed. Especially, the rapidly advancing field of nanotechnology supplies new
possibilities for the development of enzyme mimics. Gao et al. [2] reported that Fe3O4 nanoparticles
(NPs) possessed an intrinsic peroxidase-like activity in 2007, which opened the door for developing
various nanoscale materials such as enzyme mimetics in the biochemical field. Since then, many
manufactured nanomaterials have been found to possess peroxidase-like activity including noble
metals [3,4], metal oxides [5], carbon materials [6–9] and so on. Owning to the prominent advantages
of low cost, high stability, ease of storage, and tunability in catalytic activity, these nanomaterial-based
mimicking enzymes are promising candidates for natural enzymes in biological and biomedical
applications [10–12]. However, almost all of these nanomaterial-based peroxidase mimetics are
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ready-made ones; to construct exquisite nanoenzyme that can be integrated with biomolecules is
becoming a significant field.

In this paper, we report an advanced method to detect the enzymatic activity of glucose oxidase
(GOx) based on the GOx generation of S2´ anions followed by interaction with Cd2+/Na3PO4 to
give PO4

3´-capped CdS QDs in situ. Very interestingly, the PO4
3´-capped CdS QDs were found

to possess intrinsic oxidase-like activity under visible-light (λ ě 400 nm) stimulation, which could
catalyze the oxidation of the typical substrate (3,3,5,5-tetramethylbenzydine (TMB)) with dissolved
oxygen acting as the electron acceptor. Based on the GOx-triggered in situ growth of PO4

3´-capped
CdS QDs with intrinsic enzyme-like activity, we offered a novel approach to detect the enzymatic
activity of GOx with efficient signal amplification. The mechanism of the catalytic reaction of the
photoswitchable oxidase mimetics was also detected, proving that the generation of photo-generated
holes (h+), hydroxyl radicals (‚OH), hydrogen peroxide (H2O2) and especially superoxide anions
(O2

‚´) comprised the reactive species. Compared to natural horseradish peroxidase (HRP) or the
widely studied peroxidase mimetics based on nanomaterials, the photoswitchable oxidase mimetics of
PO4

3´-capped CdS QDs displayed several distinct advantages, such as the avoidance of damaging
hydrogen peroxide, excellent enzyme-like activity, good stability even in harsh environments, and the
easily triggered/controlled activity by visible light irradiation, etc., which fully demonstrated its great
application foreground in promising biosensing and biotechnology. Considering that GOx is one of
the most common enzymes (highly specific for β-D-glucose) that has been widely used in analytical
chemistry due to its high turnover, specificity and stability [13,14], we believe that the protocol of
coupling GOx with photoswitchable oxidase mimetics may find wide applications in biosensors.

2. Results and Discussion

2.1. The Photoswitchable Oxidase Mimetics of PO4
3´-Capped CdS QDs Generated by

GOx-Mediated Biocatalysis

GOx not only can enhance the oxidation of glucose, but it can also reinforce the oxidation of
1-thio-β-D-glucose to generate H2S [15]. The generated H2S could react immediately with cadmium
cations and give CdS QDs. In addition, PO4

3´ was used as a stabilizer for the formed CdS QDs
to prevent particle aggregation [16]. The size of the CdS QDs catalyzed by GOx is about 2–3 nm
(Figure 1A) as confirmed high resolution transmission electron microscopy (TEM). From the UV/vis
spectrum of the formed PO4

3´-capped CdS QDs (Figure 1B), we observe an absorption band from
300 to 480 nm and a shoulder peak at about 380 nm. The presence of this shoulder peak is explained
by the 1Sh–1Se excitonic transition [17] characteristic of CdS NPs with a diameter of ~2–3 nm from
the work of Peng et al. [18], which confirmed the data of the TEM analysis. The emission spectrum
indicated (blue line) a well-shaped peak at 550 nm with an excitation of 290 nm, also demonstrating
the typical fluorescence characteristics of QDs.

Using TMB as the typical substrate of peroxidase/oxidase [19], the enzyme-mimicking activity of
CdS QDs or PO4

3´-capped CdS QDs under visible-light irradiation was investigated. As indicated
in Figure 2, the formed CdS QDs could hardly induce the oxidation of TMB in the absence of visible
light (line a). When the visible light (λ ě 400 nm) was introduced, two apparent absorption peaks
at 370 nm and 652 nm appeared for CdS QDs (line b) and PO4

3´-capped CdS QDs (line c), which
were characteristic absorption peaks of oxidized TMB (oxTMB). However, neither Cd2+ nor S2´ alone
could catalyze the oxidation of TMB under visible light (λ ě 400 nm) irradiation (Figure S1), which
demonstrated that the enzyme-like catalytic activity was due to the photo-triggered CdS QDs. The
bare CdS without surface stabilizers was easy to gather, resulting in the decrease of catalytic effect.
Therefore, we imported a series of stabilizers to prevent its aggregation (Figure S2A). As reported,
thioglycolic acid (TGA) was usually used to stabilize QDs. Because the covalent binding of thiol (-SH)
and Cd2+ occurred, a protective layer with negative charges was formed on the surface of the QDs.
This protective layer with electrostatic repulsion prevents direct contact between the quantum dots,
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leading to the formation of stable water-soluble nanoparticles. Similarly, Na3PO4, poly dimethyl diallyl
ammonium chloride (PDDA) and chitosan (CS) could also stabilize QDs [16,20,21]. However, TGA
may inhibit the catalytic effect in our system because of its reducibility. PDDA, CS, Na3PO4 could
improve the catalytic effect with different degrees and the enhancement effect of Na3PO4 was the most
obvious (Figure S2A). So we chose Na3PO4 as the stabilizer of CdS for obtaining enhanced catalytic
activity. From Figure S2B, we found that the catalytic oxidation process leveled off in 12 min. Thus,
12 min was chosen as the illumination time.
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Figure 1. Characterization of the enzymatically generated CdS QDs. (A) HRTEM image and (B) the 
absorption (black line) and fluorescence (blue line) spectrum of PO43−-capped CdS QDs produced by 
Figure 1. Characterization of the enzymatically generated CdS QDs. (A) HRTEM image and (B) the
absorption (black line) and fluorescence (blue line) spectrum of PO4

3´-capped CdS QDs produced by
the enzymatic hydrolysis of 1-thio-β-D-glucose. PO4

3´-capped CdS QDs were formed in the presence
of GOx (20 mg/L), 1-thio-β-D-glucose (1 mM) and Cd2+ (1.5 mM), pH = 4.0.
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Figure 2. The UV/Vis spectra of (a) CdS + TMB; (b) CdS + TMB under visible-light irradiation; (c) 
PO43−-capped CdS QDs + TMB under visible-light irradiation. CdS QDs were formed in the presence 
of GOx (20 mg/L), 1-thio-β-D-glucose (1 mM) and Cd2+ (1.5 mM), pH = 4.0. Irradiation time: 12 min. 
Inset image is the corresponding color of the above solutions. 
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Figure 2. The UV/Vis spectra of (a) CdS + TMB; (b) CdS + TMB under visible-light irradiation;
(c) PO4

3´-capped CdS QDs + TMB under visible-light irradiation. CdS QDs were formed in the
presence of GOx (20 mg/L), 1-thio-β-D-glucose (1 mM) and Cd2+ (1.5 mM), pH = 4.0. Irradiation time:
12 min. Inset image is the corresponding color of the above solutions.

Similar to natural enzymes, the relative catalytic activities of the PO4
3´-capped CdS QDs were

also influenced by the solution pH and temperature. It was found that the PO4
3´-capped CdS QDs

could retain relatively high activity at a wide range of pH (Figure S2C) and temperature (Figure S2D);
the optimum reaction pH for PO4

3´-capped CdS QDs was 3.0, while HRP (using H2O2 as an electron
acceptor) achieved the highest catalytic activity at a pH of 5.0, and lower or higher pH both largely
inhibited the catalytic activity. From Figure S2D, we can see that the PO4

3´-capped CdS QDs keep a
high catalytic activity in a wide range of temperatures from 20 to 90 ˝C, and the optimum reaction
temperature was 43 ˝C, while HRP reached its maximum catalytic activity around 35 ˝C and showed a
significant decrease in catalytic activity at lower or higher temperatures. These results demonstrated
that PO4

3´-capped CdS QDs as enzyme mimetics showed better stability and higher activity even
under harsher conditions than that of HRP (using H2O2 as an electron acceptor).



Molecules 2016, 21, 902 4 of 10

We further examined the enzyme-like catalytic properties of PO4
3´-capped CdS QDs under

visible-light irradiation by steady-state kinetics. As shown in Figure S3, under the optimal conditions,
typical Michaelis–Menten curves were obtained for PO4

3´-capped CdS QDs with TMB as a substrate
at a certain range of concentrations. The Michaelis-Menten constant (Km), an indicator of an enzyme’s
affinity for its substrate, was obtained using Lineweaver–Burk plots (Figure S3 and Figure S4). The
apparent kinetic parameters were calculated by the equation υ = Vmax ˆ [S]/(Km + [S]), where υ is
the initial enzymatic reaction rate, [S] is the concentration of the substrate, Vmax is the maximum
enzymatic reaction rate and Km is the Michaelis-Menten constant. The apparent Km value of the
photo-activated PO4

3´-capped CdS QDs with TMB as a substrate was 97.7 µM, which was much lower
than that of HRP (Km = 434 µM). In addition, the Vmax was 42.86 nM¨ s´1. These results indicated that
PO4

3´-capped CdS QDs as a new kind of mimetic enzyme had a higher affinity for TMB than did HRP.

2.2. Mechanism of Photoswitchable Enzyme-Like Activity of PO4
3´-Capped CdS QDs

With the purpose of verifying the catalytic mechanism, we primarily bubbled high-purity nitrogen
into the catalytic reaction system for 20 min. From Figure S5, we could see the absorbance peak of
oxTMB declined distinctly, which demonstrated that dissolved oxygen as an oxidant was an integral
part of the catalytic oxidation system. As a result, we called the CdS QDs with photoswitchable
enzyme-like activity photoswitchable oxidase mimetics.

For further clarifying the active species of the system responsible for the catalyzed oxidization, we
applied a train of scavengers to capture the active species. As we know, KI and EDTA are scavengers of
photo-generated holes (h+) [22], NaHCO3 and t-butanol are scavengers of hydroxyl radicals (‚OH) [23],
superoxide dismutase (SOD) is the scavenger of superoxide anions (O2

‚´)[24] and catalase (CAT) can
catalyze the decomposition of H2O2 into water and oxygen [25]. As indicated in Figure 3, when these
scavengers were introduced in our system, respectively, the absorbance of oxTMB declined in varying
degrees. These experiments proved that the h+, ‚OH, H2O2 and especially O2

‚´ were the reactive
species responsible for TMB oxidation.
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PO4

3´-capped CdS QDs.

We introduced photoelectrochemistry and electrochemistry experiments to confirm the reactive
species generation mechanism of illuminated CdS QDs. Firstly, we investigated the photocurrent
of PO4

3´-capped CdS QDs in phosphate buffer. From Figure S6, we can see that the PO4
3´-capped

CdS QDs promptly generate a stable photocurrent with a reproducible response to on/off cycles,
demonstrating the effective electron/hole generation and transfer of photoactivated PO4

3´-capped
CdS QDs. Subsequently, we employed linear sweep voltammetry (LSV) to study the conduction
band (CB) (Figure S7A) and valence band (VB) (Figure S7B) edge of PO4

3´-capped CdS QDs. The
results showed that PO4

3´-capped CdS QDs had a CB edge at ´0.77 V and a VB edge at 0.93 V
vs. Ag/AgCl (saturated KCl). That meant the CB and VB potentials of PO4

3´-capped CdS QDs
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were ´0.57 and 1.13 V vs. normal hydrogen electrodes (NHE), respectively. CdS is a favorable
semiconductor material; under visible-light illumination, the electron of VB was excited into the
CB and led to the VB producing h+. Because of the potential gradient between the CB (´0.57 V vs.
NHE) of CdS QDs and the reduction potential of oxygen (0.815 V vs. NHE) [20], the oxygen in aqueous
solution could accept the excited electrons and formed O2

‚´ or ‚OH. The h+ were able to oxidize TMB
directly because the VB potential of CdS QDs was above that of TMB with an oxidation potential in
the range of 0.22–0.7 V [26]. The above experiments proved that O2

‚´, ‚OH and h+ were the main
reactive species responsible for TMB oxidation (Scheme 1).
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2.3. Probing the Activity of Glucose Oxidase Using PO4
3´-Capped CdS QDs

The coupling of biomolecules, for example natural enzymes, with nanomaterials formed in situ for
target analytes has high sensitivity due to the low background signals, and it has received increasing
attention by researchers [27,28]. As a biocatalyst, natural enzymes play an important role in the
catalytic reaction, and even a very tiny amount of the enzyme can stimulate the occurrence of the
catalytic reaction. PO4

3´-capped CdS QDs formed in situ by GOx biocatalysis is an excellent mimetic
oxidase that forms rapidly; once produced, it catalyzes the oxidation of TMB and further produces an
amplified signal. Further, our detection does not require the use of intricate instruments, which makes
it cheaper and more easy to operate. Based on the catalytic growth of PO4

3´-capped CdS QDs in situ
and the intrinsic oxidase-like property of PO4

3´-capped CdS QDs, we developed a facile colorimetric
method with efficient signal amplification to detect the enzymatic activity of GOx (Scheme 2).
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For the sake of acquiring a better catalytic effect, we adjusted and controlled the reaction conditions
of the GOx catalytic reaction, such as the reaction time and the concentration of 1-thio-β-D-glucose.
As shown in Figure S8A, the enzyme catalytic reaction proceeded quickly and achieved a balance in
60 min. As can be seen from Figure S8B, we can see that with the increase of the 1-thio-β-D-glucose
concentration, the absorbance of oxTMB gradually enhances, meaning that the catalytic effect is
strengthened step by step. When the 1-thio-β-D-glucose concentration is greater than 1 mM, the
absorbance of oxTMB hardly increases because of the depletion of GOx. Thus, we chose 60 min as the
enzyme reaction time and 1 mM as the concentration of thio-β-D-glucose.

To confirm that the activity of GOx was the main factor in the production of CdS QDs, we
verified the influence of the natural substrate β-D-glucose. Theoretically, the artificial substrate
and the natural one were supposed to compete for binding with the active site of GOx. Thus, the
presence of β-D-glucose consumes a part of the GOx and leads to the diminution of GOx to catalyze
1-thio-β-D-glucose. When the concentration of 1-thio-β-D-glucose is fixed, the increasing amount of
β-D-glucose leads to a decreasing amount of its oxidative decomposition to H2S and gluconic acid and
consequently weakens the catalytic effect of PO4

3´-capped CdS QDs (Figure S8C). Based on the above
results, we can see that the formation of PO4

3´-capped CdS QDs in situ originated from the enzymatic
reaction of 1-thio-β-D-glucose.

To study the sensitivity of the proposed method for the detection of GOx activity, different
amounts of commercially available GOx were added to the system and the absorption spectrum of
oxTMB was recorded. As illustrated in Figure 4A, with the increase of the GOx concentration, the
absorbance of oxTMB at 652 nm increased gradually and the absorbance increased linearly with the
logarithmic enzymatic activity of GOx over the range from 25 µg/L to 50 mg/L with a detection limit
of 6.6 µg/L (S/N = 3) (Figure 4B). The detection limit of this method for the enzymatic activity of GOx
was comparable or even lower than that of other methods [15,29] reported, and it has a sufficiently
wider linear range compared to other methods [30]. This colorimetric method for the detection of
the enzymatic activity of GOx is convenient for detection with the naked eye and fairly inexpensive
compared to other methods which are time-consuming or require specialized instruments.

Molecules 2016, 21, 902 6 of 9 

 

the catalytic effect is strengthened step by step. When the 1-thio-β-D-glucose concentration is greater 
than 1 mM, the absorbance of oxTMB hardly increases because of the depletion of GOx. Thus, we 
chose 60 min as the enzyme reaction time and 1 mM as the concentration of thio-β-D-glucose. 

To confirm that the activity of GOx was the main factor in the production of CdS QDs, we 
verified the influence of the natural substrate β-D-glucose. Theoretically, the artificial substrate and 
the natural one were supposed to compete for binding with the active site of GOx. Thus, the 
presence of β-D-glucose consumes a part of the GOx and leads to the diminution of GOx to catalyze 
1-thio-β-D-glucose. When the concentration of 1-thio-β-D-glucose is fixed, the increasing amount of 
β-D-glucose leads to a decreasing amount of its oxidative decomposition to H2S and gluconic acid 
and consequently weakens the catalytic effect of PO43−-capped CdS QDs (Figure S8C). Based on the 
above results, we can see that the formation of PO43−-capped CdS QDs in situ originated from the 
enzymatic reaction of 1-thio-β-D-glucose. 

To study the sensitivity of the proposed method for the detection of GOx activity, different 
amounts of commercially available GOx were added to the system and the absorption spectrum of 
oxTMB was recorded. As illustrated in Figure 4A, with the increase of the GOx concentration, the 
absorbance of oxTMB at 652 nm increased gradually and the absorbance increased linearly with the 
logarithmic enzymatic activity of GOx over the range from 25 μg/L to 50 mg/L with a detection limit 
of 6.6 μg/L (S/N = 3) (Figure 4B). The detection limit of this method for the enzymatic activity of GOx 
was comparable or even lower than that of other methods [15,29] reported, and it has a sufficiently 
wider linear range compared to other methods [30]. This colorimetric method for the detection of the 
enzymatic activity of GOx is convenient for detection with the naked eye and fairly inexpensive 
compared to other methods which are time-consuming or require specialized instruments. 

500 600 700 800
0.0

0.2

0.4

0.6

A
b

s(
a.

u
.)

Wavelength(nm)

0.025 mg/L

50 mg/LA

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

 

 

A
bs

(a
.u

.)

Log[GOx](mg/L)

 
 

A
b

s(
a.

u
.)

[GOx](mg/L)

B

 
Figure 4. Analytical performances of the protocol for probing the activity of GOx. (A) UV/vis spectra 
of oxTMB catalyzed by the PO43−-capped CdS QDs formed in situ under visible-light irradiation in 
the presence of different concentrations of GOx. From bottom to top, the concentrations of GOx are 
0.025, 0.1, 0.5, 1.0, 2.0, 4.0, 6.0, 10.0, 20.0, 50.0 mg/L. The inset shows the corresponding color change 
of oxTMB; (B) Absorption change and the linear relationship (insert curve) between the absorbance 
of oxTMB at 652 nm and the concentration of GOx. The error bars indicate relative standard 
deviation of four repeated experiments. 
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(GOx), horseradish peroxidase (HRP), superoxide dismutase (SOD) from bovine liver, catalase 
(CAT), poly dimethyl diallyl ammonium chloride (PDDA, 20%, w/w in water, molecular weight = 
200,000–350,000) and were purchased from Sigma-Aldrich, Co. (St. Louis, MO, USA). Na2S·9H2O 
was purchased from Shanghai Tongya Chemical Technology Co., Ltd (Shanghai, China). Glucose, 
ethylene diamine tetraacetic acid (EDTA), KI, t-butanol, 3,3′,5,5′-tetramethylbenzidine (TMB), 
3CdSO4·8H2O, thioglycolic acid (TGA), chitosan (CS), Na3PO4 were purchased from Sinopharm 

Figure 4. Analytical performances of the protocol for probing the activity of GOx. (A) UV/vis spectra
of oxTMB catalyzed by the PO4

3´-capped CdS QDs formed in situ under visible-light irradiation in
the presence of different concentrations of GOx. From bottom to top, the concentrations of GOx are
0.025, 0.1, 0.5, 1.0, 2.0, 4.0, 6.0, 10.0, 20.0, 50.0 mg/L. The inset shows the corresponding color change of
oxTMB; (B) Absorption change and the linear relationship (insert curve) between the absorbance of
oxTMB at 652 nm and the concentration of GOx. The error bars indicate relative standard deviation of
four repeated experiments.
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3. Materials and Methods

3.1. Chemicals and Materials

The 1-thio-β-D-glucose was purchased from J&K (Shanghai, China). Glucose oxidase type
VII (GOx), horseradish peroxidase (HRP), superoxide dismutase (SOD) from bovine liver, catalase (CAT),
poly dimethyl diallyl ammonium chloride (PDDA, 20%, w/w in water, molecular weight = 200,000–350,000)
and were purchased from Sigma-Aldrich, Co. (St. Louis, MO, USA). Na2S¨ 9H2O was purchased
from Shanghai Tongya Chemical Technology Co., Ltd (Shanghai, China). Glucose, ethylene
diamine tetraacetic acid (EDTA), KI, t-butanol, 3,31,5,51-tetramethylbenzidine (TMB), 3CdSO4¨ 8H2O,
thioglycolic acid (TGA), chitosan (CS), Na3PO4 were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). All other chemicals used were of analytical grade. All solutions were
prepared with ultrapure water (18.2 MΩ¨ cm´1) obtained from a Healforce water purification system.

3.2. Instrumentation

High resolution transmission electron microscopy (HRTEM) images of PO4
3´-capped CdS QDs

were obtained on a JEOL JEM-2100 transmission electron microscope (Hitachi, Japan). The fluorescence
spectra analysis and the resonance light scattering spectra were carried out on a Varian Cary Eclipse
fluorescence spectrophotometer at room temperature. UV/Vis absorption spectroscopic measurements
were carried out using a TU-1901 spectrophotometer (Beijing Purkinje General Instrument Co. Ltd.,
Beijing, China). A 300 W Xe lamp (NBeT, Beijing, China) equipped with an ultraviolet cutoff
filter (λ ě 400 nm) was used as the irradiation source. Photoelectrochemical measurements were
performed with a homemade photoelectrochemical system. Photocurrent was measured on a CHI
800C electrochemical workstation (Shanghai, China). PO4

3´-capped CdS QDs modified ITO electrode
was employed as the working electrode. A Pt wire was used as the counter electrode and a saturated
Ag/AgCl as the reference electrode. All the photocurrent measurements were performed at a constant
potential of 0 V (vs. saturated Ag/AgCl) in 0.2 M Na2SO4 solution as the supporting electrolyte.
Linear sweep voltammetry (LSV) was used to determine the conduction/valence band edge of the
PO4

3´-capped CdS QDs, which was performed with a CHI 800C electrochemical workstation at room
temperature under N2 atmosphere. A conventional three-electrode cell was used, including a Pt wire
counter electrode, a saturated Ag/AgCl reference electrode. A glassy carbon electrode was used as
working electrode. A 0.2 M Na2SO4 solution containing PO4

3´-capped CdS QDs was used as the
electrolyte solution. The detection of GOx activity by the absorption method was proceeded on 96 well
plates by the microplate reader (SpectraMax M5, Sunnyvale, California, USA).

3.3. The Colorimetric Detection of Glucose Oxidase Activity

A certain amount of 1-thio-β-D-glucose were incubated with different amounts of GOx in citrate
buffer (10 mM, pH 4.0) for 60 min at 37 ˝C. After that, 20 µL Cd2+/Na3PO4 mixture was added to the
samples. Subsequently, the mixed solution was added with 20 µL of 5 mM TMB and then diluted to
200 µL by acetate buffer (200 mM, pH 4.0) and illuminated under visible light irradiation (λ ě 400 nm)
for 10 min to allow development of the blue color, and the absorbance of the oxidized TMB (oxTMB) at
652 nm was measured.

4. Conclusions

In this work, we introduced a new, amplified approach for probing the activity of GOx based
on coupling the enzymatic reaction of GOx and its in situ generation of PO4

3´-capped CdS QDs
with photoswitchable oxidase-mimicking activity. Under visible-light (λ ě 400 nm) stimulation,
the generated PO4

3´-capped CdS QDs were found to possess intrinsic oxidase-like activity which
could catalyze the oxidation of the typical substrate (TMB) with dissolved oxygen acting as the
electron acceptor. Kinetic analysis proved that the catalysis was in accordance with the typical
Michaelis–Menten kinetics and had a higher affinity for TMB than that of HRP. The catalytic mechanism
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investigations indicated that photo-generated holes (h+), hydroxyl radicals (‚OH), and especially
superoxide anions (O2

‚´) were the reactive species for the catalytic reaction. By taking advantage of
the GOx-triggered growth of PO4

3´-capped CdS in situ and its intrinsic oxidase-like property, a facile,
sensitive and selective colorimetric method was developed to probe the activity of GOx. It is expected
that the PO4

3´-capped CdS QDs generated in situ by GOx with photo-stimulated enzyme-mimicking
activity may find wide potential applications in the fields of catalysis, biochemistry and biotechnology.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/21/7/902/s1.
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GOx glucose oxidase
CdS QDs cadmium sulfide quantum dots
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NPs Nanoparticles
h+ photo-generated holes
‚OH hydroxyl radical
O2
‚´ superoxide anion

HRP horseradish peroxidase
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