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Abstract: Green is the future of chemistry. Catalysts with high selectivity are the key to green
chemistry. Polymer-supported Raney catalysts have been found to have outstanding performance
in the clean preparation of some chemicals. For example, a polyamide 6-supported Raney nickel
catalyst provided a 100.0% conversion of n-butyraldehyde without producing any detectable n-butyl
ether, the main byproduct in industry, and eliminated the two main byproducts (isopropyl ether and
methyl-iso-butylcarbinol) in the hydrogenation of acetone to isopropanol. Meanwhile, a model for
how the polymer support brought about the elimination of byproducts is proposed and confirmed.
In this account the preparation and applications of polymer-supported Raney catalysts along with
the corresponding models will be reviewed.
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1. Introduction

Catalytic reactions frequently bring about side reactions. In the chemical industry these side
reactions, consuming a large amount of resources and energy and producing a mass of waste, cause
seriously negative impacts on the environment. In the pharmaceutical and food industry impurities
could harm and even threaten our life. Therefore, it is of great significance to improve catalytic
selectivity to reduce and if possible eliminate side reactions.

Raney catalysts (e.g., Raney nickel, Raney cobalt, and Raney copper) are a series of important
catalysts routinely used in the chemical industry. Raney catalysts, with their high specific surface area,
offer the advantage over conventionally supported metal catalysts of having a high catalytic activity at
a relatively low temperature. Nevertheless, Raney catalysts have some disadvantages as well, which
limit their applications. For example, powdered Raney catalysts cannot be applied in fix-bed reactors.
Therefore, currently they are mainly employed in slurry phase reactors for small batch production. In
this case, catalytic selectivity is hard to control [1]; moreover, Raney catalysts must be separated from
the reaction medium. Another shortcoming of Raney catalysts is that inevitably they contain a certain
fraction of Al2O3 [2], and the acidity of Al2O3 often leads to some side reactions. In order to overcome
the disadvantages of Raney catalysts, a number of researchers have devoted their efforts to shaping
Raney catalysts for fixed-bed reactions [3–17], which, however, didn’t work out satisfactorily [18].

Polymer materials with different structures, possessing excellent processibility, recyclability and
surface properties, could be ideal alternatives for replacing conventional catalyst supports to meet
different specific demands of catalysts for different chemical reactions. More importantly, the acidity
or alkalinity of polymer materials could be adjusted at the molecular level by means of chemical
functionalization, so that the corresponding side reactions could be minimized. As such, polymers
could be an optimum kind of catalyst support for green chemistry as long as the specific surface area

Molecules 2016, 21, 833; doi:10.3390/molecules21070833 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
http://www.mdpi.com/journal/molecules


Molecules 2016, 21, 833 2 of 11

of the final catalyst could be large enough, which makes porous Raney metals suitable components for
polymer-supported catalysts.

Combining the merits of both Raney metals and polymers, polymer-supported Raney catalysts
with high selectivity were developed for fixed-bed reactions [19], and have been successfully applied
to many chemical reactions [18,20–34]. The major disadvantages of Raney catalysts were satisfactorily
overcome. Moreover, the preparation and recycle processes of these catalysts are much more
eco-friendly than that of those traditional Al2O3-/SiO2-supported catalysts [19]. In this account,
the preparation and applications along with corresponding models of polymer-supported Raney
catalysts will be reviewed.

2. Preparation

Polymer-supported Raney catalysts are typically prepared as follows [19,21]: polymer granules
are separately buried into a full mold of Raney alloy powder at the temperature 30–50 ˝C higher than
melting point of the polymer used, and then the mold is compressed (2 MPa). Thus, Raney alloy
powders are embedded into the surface of the polymer granules. Thereafter, the mold is cooled down
to give special granules, on which surface the Raney alloy particles are embedded as shown in Figure 1.
After sieving out the special granules from the excess Raney alloy powder, the polymer-supported
Raney catalyst is obtained after alkaline leaching of these special granules.
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Figure 1. (a) Schematic representation of the process whereby Raney alloy particles are embedded
in a polymer surface; (b) Photograph of the special granules. Inset shows the sectional view of a cut
sample [19]. Reproduced from Ref. [19] with permission from the Royal Society of Chemistry.

3. Application of Polymer-Supported Raney Catalysts in Clean Preparation of n-Butanol

We [19,21,22,30] firstly prepared three different catalysts for the hydrogenation reaction of
n-butyraldehyde, which were neutral polypropylene (PP)-supported Raney Ni catalyst (Raney Ni/PP),
acidic maleic anhydride grafted PP (MAHPP)-supported Raney Ni catalyst (Raney Ni/MAHPP), and
traditional Al2O3-supported Ni catalyst (Ni/Al2O3). This hydrogenation reaction has one main side
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reaction, which is acid-catalyzed, and the yield of the n-butyl ether byproduct increases with increasing
acid strength of the catalyst [35,36]. The worldwide consumption of n-butanol is more than 3 million
tons per year, and in order to separate n-butyl ether from n-butanol, a large amount of energy is
required because an azeotrope is formed. For the reduction of pollution, and energy and resource
consumption in n-butanol production, it is important to eliminate this side reaction. We found, as
shown in Table 1, that the neutral support PP effectively reduced the side reaction with respect to
those acidic supports (i.e., MAHPP and Al2O3). However, although the fraction of the byproduct was
very small, the Raney Ni/PP catalyst didn’t eliminate the n-butyl ether byproduct completely because
of the residual Al2O3 in the Raney Ni [2]. In order to further reduce the acid-catalyzed side reaction,
we then prepared alkalescent polyamide 6 (PA6)-supported Raney Ni catalyst (Raney Ni/PA), PA6
with lone pair electrons at the N atom for every repeating unit. Significantly, a clean preparation of
n-butanol with a 100% conversion and undetectable n-butyl ether byproduct was achieved with the
Raney Ni/PA catalyst at a relatively low temperature (110 ˝C, also see Table 1).

Table 1. Hydrogenation of n-butyraldehyde with different catalysts over 100–140 ˝C [19]. Reproduced
from Ref. [19] with permission from the Royal Society of Chemistry.

Catalyst T (˝C) Conversion (%) n-Butyl Ether (wt %)

Raney Ni/PP

100 99.99 0.013
110 100 0.053
120 100 0.095
140 100 0.499

Raney Ni/MAHPP

100 99.99 0.300
110 100 0.632
120 100 1.049
140 100 1.843

Ni/Al2O3

100 100 0.159
110 100 0.292
120 100 0.677
140 100 1.706

Raney Ni/PA

100 99.99 undetected
110 100 undetected
120 100 0.015
140 100 0.016

In order to reveal how the PA6 support could diminish the side reaction brought about by the
Al2O3 in Raney Ni, we [19] firstly confirmed, by XPS measurements, that the basic N atom in PA6 did
not affect the acidity of Al atom of Al2O3 in the Raney Ni because of the relatively large “intermolecular
distance”. The XPS Al 2s peaks of the Raney Ni/PA and Ni/Al2O3 catalysts were located at 74.03
and 73.93 eV, respectively, which were almost the same within the experimental error and indicated
no charge-transfer (base-acid neutralization) interaction between basic PA6 and acidic Al2O3 in the
Raney Ni. It is well accepted that the adsorption ability of a catalyst support to reactants and products
can largely affect the catalytic reactivity [37,38]. Since the N atoms in PA6 can form hydrogen bonds
with the -OH groups in n-butanol and the interval between every two neighboring N atoms in PA6
molecule chain is only about 0.86 nm, the PA6 support possesses strong adsorption ability toward
n-butanol. Therefore, we considered that the following processes might have occurred (see Figure 2).
Process 1: n-butyraldehyde was adsorbed by the Raney Ni of the Raney Ni/PA catalyst; process
2: n-butyraldehyde was catalytically reduced to n-butanol by Ni metal; process 3: once produced,
n-butanol was selectively adsorbed by N atoms in the PA6, rather than the acidic Al atoms in the
Raney Ni. Unlike the acidic Al atoms in Al2O3, the basic N atoms in the PA6 support couldn’t catalyze
n-butanol to n-butyl ether conversion. For the Raney Ni/MAHPP catalyst, the maleic anhydride in
the MAHPP support could also selectively adsorb n-butanol over Al2O3. However, the acidic maleic
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anhydride could effectively catalyze the n-butanol to n-butyl ether step, leading to the formation of
even more n-butyl ether by the Raney Ni/MAHPP catalyst with respect to the Ni/Al2O3 catalyst
(see Table 1). Clearly, therefore, it was the interplay of the alkalinity and strong adsorption ability of
n-butanol to intrinsically associate with the N atoms in the PA support that made the clean preparation
of n-butanol by the Raney Ni/PA catalyst possible. The relationships between the alkalinity or acidity
of the catalyst supports and the byproduct content (n-butyl ether) are summarized in Table 2.
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Table 2. The relationship between the property of catalyst support and the byproduct content [19].
Reproduced from Ref. [19] with permission from the Royal Society of Chemistry.

Inorganic Support Organic Support Organic Support with Acid or Alkaline
Group Which Can Adsorb n-Butanol

Support with
alkalinity or acidity Al2O3 (acidity) PP (neutral) PP-g-MAH (acidity) PA6 (alkalinity)

n-Butyl ether content High Low Very high Very low to
undetectable

To further illustrate the difference between the Raney Ni/PA catalyst and Ni/Al2O3 catalyst,
we [19] performed SEM (see Figure 3) studies and found quite different surface morphologies and
different porosity. Besides, based on the BET and XPS results, we found that even though the BET
specific surface area of the Raney Ni/PA catalyst (only 4.5 m2/g) was much lower than that of
Ni/Al2O3 catalyst (tens to hundreds m2/g), the Raney Ni/PA catalyst possessed higher catalytic
activity owing to the surface of Raney Ni/PA catalyst mostly covered by active Ni component.
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Finally, the long-term activity and selectivity of the Raney Ni/PA catalyst were also investigated
(see Figure 4), and showed that the Raney Ni/PA catalyst had an excellent performance in terms of
both activity and selectivity over long-term operation.
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Figure 4. Long-term catalytic test for the Raney Ni/PA catalyst under a pressure of 4.0 MPa at different
temperatures over 100–140 ˝C; red stepwise lines represent the temperature sequence used for the
test [19]. Reproduced from Ref. [19] with permission from the Royal Society of Chemistry.

4. Application of Polymer-Supported Raney Catalysts in the Hydrogenation of Acetone
to Isopropanol

Since hydrogenation reaction of n-butyraldehyde has only one main side reaction, in order to
investigate the performance of polymer-supported Raney catalysts in a relatively more complex
reaction system, we [18] prepared four different catalysts for the hydrogenation of acetone to
isopropanol, which were Ni/Al2O3 catalyst, Al2O3-supported Raney Ni catalyst (Raney Ni/Al2O3),
unsupported granular Raney Ni catalyst, and Raney Ni/PA catalyst. This hydrogenation
reaction has two main byproducts, isopropyl ether and methyl-iso-butylcarbinol (MIBC) (see
Reactions (1)–(4)) [39–41].
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We found that the three Raney Ni-related catalysts all had both higher activity and selectivity
than the Ni/Al2O3 catalyst (see Table 3), indicating Raney Ni’s good catalytic performance for the
hydrogenation of acetone to isopropanol. That was because the acidity of Al2O3 could catalyze the
generation of byproducts in this reaction and the Al2O3 in Ni/Al2O3 catalyst apparently had much
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more opportunities to catalyze the side reactions than the Al2O3 remaining inside the pores of Raney
Ni resulting from the incomplete leaching of Al in Ni-Al alloy [2]. Moreover, supported by PA6, Raney
Ni not only maintained its high activity, but even reached 100% selectivity to achieve clean preparation
of isopropanol. The support-effect model proposed in clean preparation of n-butanol was also used to
explain why both byproducts isopropyl ether and MIBC were eliminated.

Table 3. Hydrogenation of acetone with different catalysts at 132 ˝C [18]. Reproduced with permission
from Jiang H., Sci. China Chem.; published by Springer, 2016.

Catalyst Conversion (%)
Selectivity (%)

Isopropanol Isopropyl Ether MIBC

Ni/Al2O3 98.97 99.87 0.05 0.08
Raney Ni/Al2O3 99.71 99.91 0.04 0.05

Granular Raney Ni 99.76 99.94 0.04 0.02
Raney Ni/PA 99.75 100.00 undetectable undetectable

The isopropyl ether byproduct was generated from the main product isopropanol, catalyzed by
acidic Al2O3 (Reaction (2)). Once adsorbed by the remaining Al2O3 inside the pores of Raney Ni,
isopropanol would be catalytically converted to the byproduct isopropyl ether. As already noted, the
PA6 support possesses strong adsorption ability for the -OH groups of isopropanol. Therefore, as
shown in Figure 5, once produced, isopropanol was selectively adsorbed by N atoms in the PA6, rather
than the acidic Al atoms inside the pores of Raney Ni. Unlike the acidic Al atoms in Al2O3, the basic N
atoms in the PA6 support cannot catalyze the conversion of isopropanol to isopropyl ether. Clearly,
it was also the interplay of the alkalinity and strong adsorption ability to isopropanol intrinsically
associated with the N atoms in the PA6 support that made the elimination of isopropyl ether possible.
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The byproduct MIBC was generated through the reaction processes shown in Figure 6 [39].
Obviously, removing the effect of acidic Al2O3 was also the key to eliminating the MIBC byproduct.
The PA6 support possesses strong adsorption ability toward the -OH groups of diacetone alcohol;
therefore, the byproduct MIBC was eliminated just like the byproduct isopropyl ether was, as shown
in Figure 7.
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5. Application of Polymer-Supported Raney Catalysts in Hydroamination of Acetone
to Isopropylamine

It was obvious that the basic N atoms in the PA6 support having strong interactions with reactants
plays a key role in the clean preparation of both n-butanol and isopropanol. In order to confirm the
above conclusion, we studied the hydroamination of acetone to isopropylamine [18]. Similarly, this
reaction has two main side reactions, which generate the byproducts diisopropylamine (DIPA) and
isopropanol, respectively (see Reactions (5)–(7)). We found that conversion, selectivity, and byproduct
contents over the four catalysts displayed a monotonically changing relationship (see Table 4). The
support-effect model proposed in the clean preparation of n-butanol was again successfully used to
explain the reaction results. NH3, easily adsorbed by Al2O3 acidic sites, was indispensable for the
production of both the main product isopropylamine and the byproduct DIPA (see Reactions (5) and
(6)). Therefore, Al2O3/Ni catalyst, with the highest Al2O3 content, possessed the highest activity
and byproduct DIPA content among these four catalysts. Since there was just a small amount of
Al2O3 remaining inside the pores of Raney Ni, the Al2O3 contents of these four catalysts showed the
following ranking: Ni/Al2O3 > Raney Ni/Al2O3 > Granular Raney Ni > Raney Ni/PA, which was in
agreement with that of conversion and byproduct DIPA content.
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It was clear and interesting that the catalyst support could play an important role in the chemical
reactions. Different products could be produced when different catalyst supports were used, even
when the chemicals, active component of the catalyst and reaction conditions were same. The main
reactions and side reactions could even be reversed sometimes.

6. Application of Polymer-Supported Raney Catalysts in Other Chemical Reactions

Besides in reactions with selectivity issues, polymer-supported Raney catalysts were also
successfully applied in other examples. Thanks to the much more eco-friendly preparation and recycle
processes of polymer-supported Raney catalysts, it is meaningful to substitute them for traditional
Al2O3-/SiO2-supported catalysts in some reactions. We have used the Raney Ni/PA catalyst to refine
ethylene glycol (EG), with the ultraviolet (UV) transmittance of EG at wavelength of 220 nm, 275 nm,
and 350 nm improved from 26.4%, 43.8% and 61.0% to 42.8%, 63.8% and 84.4%, respectively [31]. We
also applied the Raney Ni/PA catalyst in low-temperature methanation reactions [25], and found that
the Raney Ni/PA catalyst had higher catalytic activity than the current commercial catalyst under both
normal and high pressures. Many other chemical reactions using polymer-supported Raney catalysts
have been patented in China and other countries [20,21,23,24,26–29,32–34].

7. Outlook

High activity, high selectivity, good stability, and eco-friendly catalyst preparation and
recycling processes make the polymer-supported catalysts promising for green chemistry. Though
outstanding performances in many applications have been reported as summarized in this review,
polymer-supported catalysts’ potential are far from being fully revealed. We believe that the
catalytic selectivity of Raney catalysts and other hydrogenation catalysts in chemical industry, oil
refining industry, pharmaceutical industry, and food industry, could be greatly improved by selecting
appropriate polymer supports according to the features of specific reactions.

Conflicts of Interest: The authors declare no conflict of interest.
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