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Abstract: Kinsenoside, the herb-derived medicine isolated from the plant Anoect chilus, has diverse
pharmacological actions, and it is considered to be a promising antihyperlipidemic drug candidate.
This study evaluates the effects of kinsenoside on CYP enzyme-mediated drug metabolism in order
to predict the potential for kinsenoside-drug interactions. Kinsenoside was tested at different
concentrations of 0.1, 0.3, 1, 3, 10, 30, and 100 µM in human liver microsomes. The c Cktail probe assay
based on liquid chromatography-tandem mass spectrometry was conducted to measure the CYP
inhibitory effect of kinsenoside. Subsequently, the metabolism profiles of amlodipine and lovastatin in
human liver microsomes were analyzed following co-incubation with kinsenoside. The concentration
levels of the parent drug and the major metabolites were compared with the kinsenoside-cotreated
samples. The effect of kinsenoside was negligible on the enzyme activity of all the CYP isozymes
tested even though CYP2A6 was slightly inhibited at higher concentrations. The drug-drug
interaction assay also showed that the concomitant use of kinsenoside has a non-significant effect
on the concentration of lovastatin or amlodipine, and their major metabolites. So, it was concluded
that there is almost no risk of drug interaction between kinsenoside and CYP drug substrates via
CYP inhibition.
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1. Introduction

Kinsenoside (3-R-3-β-D-glucopyranosyloxybutanolide) is the principal bioactive constituent of
Anoect chilus formosanus, an important ethnomedicinal plant in Asian countries, primarily Taiwan
and China [1–3]. Studies have reported that kinsenoside exhibits a variety of pharmacological actions,
including antihyperlipidemic, antihyperglycemic, anti-inflammatory, antioxidant, immune-stimulating,
anti-osteoporosis, hepatoprotective, and vasculoprotective effects [1–9]. All of these pharmacological
activities and drug-likeness make kinsenoside a promising drug candidate, and further investigation
is needed to test its efficacy and safety.

Important medicinal plants and their bioactive constituents have been used therapeutically
all around the world [10]. Herbal medicines and herb-derived medicines are gaining importance
very quickly because they are derived from nature; thus, they are perceived to be free of side
effects [11]. However, their co-administration with conventional medicines can have life-threatening
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consequences [12]. For new drug entities, it is essential to determine the pharmacokinetics and the
drug’s cytochrome P450 (CYP) enzyme activity and metabolic profile in order to predict their possible
interactions with other drugs. CYP is a superfamily of hemoproteins that plays a central role in the
oxidative metabolism (phase I, biotransformation) of xenobiotics and endogenous compounds [13,14].
In humans and in animals, CYPs can be found virtually in all body organs, predominantly in the liver
and intestinal epithelia, which play a major role in CYP-mediated drug metabolism. Other tissues,
including the skin, the nasal epithelia, the lungs, and the kidneys, as well as the testes, brain, and other
organs, play a much smaller role in drug metabolism [15,16]. The most important CYP subfamilies are
1A2, 2A6, 2C8, 2C9, 2C19, 2D6, and 3A4; these are responsible for drug metabolism in humans [17,18].
Any combination of two or more drugs might be substrates of the same CYP isoenzyme when ingested
concomitantly; this could result in induction or inhibition of the CYP isoenzyme, resulting in clinically
significant drug-drug interactions that can cause unanticipated adverse reactions or therapeutic
failures [19–21].

Hypercholesterolemia is a well-established risk factor for arteriosclerosis, ultimately leading
to cardiovascular disease (CVD) and stroke, both of which are major causes of death in developed
countries [22]. Clinical evidence has shown that employing a combined/multifactorial approach
that uses a lipid-lowering agent with an antihypertensive agent to reduce the risk of CVD has
advantages over the older sequential monotherapy approach [23–26]. The combination of amlodipine
and lovastatin is primarily recommended to treat hypercholesterolemia, which can cause CVD and
stroke. So, kinsenoside, a promising antihyperlipidemic drug candidate [2], could possibly be used
concomitantly with these two classes of drugs.

Kinsenoside, which is an herb-derived medicine considered a promising new drug candidate,
should be investigated for the inhibitory effects on CYP enzyme activities in order to predict its possible
interaction with CYP drug substrates via CYP inhibition. No previous study has shown the kinsenoside
CYP activity. Because pharmacological studies have revealed that kinsenoside is a promising
antihyperlipidemic drug candidate, it should be directly evaluated for CYP-mediated drug interactions
towards antihyperlipidemic and antihypertensive classes of drugs. Therefore, this study, based on
liquid chromatography/tandem mass spectrometry (LC/MS/MS), examined the inhibitory effects
of kinsenoside on the CYP450-mediated drug metabolism in human liver microsomes, and further
investigated the qualitative and quantitative profile of CYP-mediated metabolites of commonly used
antihyperlipidemic and antihypertensive drugs, lovastatin and amlodipine, respectively, following the
treatment with kinsenoside.

2. Results

2.1. CYP Inhibition Assay

The inhibitory effects of kinsenoside on CYP enzymes were investigated in human liver
microsomes. The CYP inhibition assay was conducted with well-known CYP selective inhibitors.
Furafylline, methoxsalen, quercetin, sulfaphenazole, ticlopidine, quinidine, and ketoconazole were
used as positive controls for CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4,
respectively. Each CYP-speciflc metabolite that was formed was reduced by >95% after applying
its corresponding inhibitor, indicating that the assay system was functioning well. The inhibitory
effect of kinsenoside on the metabolite formation of CYP specific substrates was investigated at
concentrations of 0.1, 0.3, 1, 3, 10, 30, and 100 µM. The effects on the metabolite formation are presented
as % of control (Table 1). Figure 1 shows the representative MRM chromatograms of the control
and kinsenoside-treated human liver microsome samples. The results indicated that kinsenoside
has a negligible inhibitory effect on six CYP isozymes, while CYP2A6-specific metabolite formation
(i.e., 7-OH-coumarin) was slightly inhibited in a concentration-dependent manner. To confirm the
inhibition of CYP2A6 by kinsenoside, we further investigated with cDNA-expressed recombinant
CYP2A6 isozyme. Kinsenoside also exhibited a slight inhibitory effect on recombinant CYP2A6
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isozyme. However, the effect was shown to reach saturation at higher concentrations and remained
inhibited as approximately 60% of control even at a concentration of 100 µM (Figure 2).
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Figure 1. Representative MRM chromatograms of human liver microsome samples of (A) control and
(B) kinsenoside (100 µM)-treated. Human liver microsomal fraction was incubated with the substrate
mixture, NADPH-generating system, and kinsenoside for 30 min and the formation of the CYP-specific
metabolites was determined by LC-MS/MS.

Table 1. Effects of kinsenoside on CYP-specific metabolite formation in human liver microsomes.

P450 Specific Metabolite

Metabolite Formation (% of Control)

Kinsenoside Concentrations (µM)

0.1 0.3 1 3 10 30 100

Acetaminophen (1A2) 84.3 78.8 76.4 80.1 77.5 78.3 75.6
7-OH-coumarin (2A6) 82.4 84.3 71.2 70.5 67.4 64.2 58.3
6-OH-paclitaxel (2C8) 91.8 84.2 94.4 92.6 80.5 82.9 81.6
4-OH-diclofenac (2C9) 92.2 94.5 91.7 89.2 92.5 92.3 88.5

4-OH-mephenytoin (2C19) 88.6 95.2 100.2 99.4 99.3 95.5 89.2
Dextromethorphan (2D6) 92.1 101.7 100.5 98.9 96.2 95.3 92.8
1-OH-midazolam (3A4) 88.4 91.0 94.8 89.2 85.7 86.4 82.9
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Figure 2. The inhibitory effects of kinsenoside on CYP2A6 enzyme activity in c-DNA expressed
CYP2A6 supersomes.

2.2. Effects of Kinsenoside on the Metabolism of Amlodipine and Lovastatin

Because kinsenoside is considered to be an antihyperlipidemic drug candidate [2], its safety profile
in relation to CYP-mediated interaction was further investigated using drugs that are most likely to be
co-prescribed, such as antihypertensive and antihyperlipidemic drugs. Therefore, the most commonly
prescribed drugs, amlodipine and lovastatin, were selected. Amlodipine and lovastatin were incubated
concomitantly with kinsenoside in human liver microsomes under controlled conditions, in separate
studies. Each reaction mixture was incubated for 1 h so that the metabolites were generated enough to
obtain the clear metabolite profile. The CYP metabolites of amlodipine and lovastatin were evaluated
qualitatively and compared quantitatively to determine the kinsenoside-CYP interaction. In human
liver microsomes, the major metabolites identified for amlodipine were M-A1, M-A2, and M-A3, while
the major metabolites for lovastatin were M-L1, M-L2, and M-L3. The parent drugs with their respective
metabolites are tabulated in Table 2 and their MS/MS spectra were provided as Supplementary
Materials. For quantitative analysis, the concentrations of amlodipine, lovastatin, and their CYP
metabolites were calculated, and the control samples were compared with the kinsenoside-treated
samples. Our findings show that kinsenoside has a negligible effect on the metabolite profile of
lovastatin and amlodipine. Although a slight change (reduction) in the intensity of lovastatin peak
was observed, but the metabolite peak pattern was not affected. Figures 3 and 4 show the extracted
ion chromatograms (EICs) for amlodipine and lovastatin with their metabolites, respectively.

Table 2. Major metabolite pattern of amlodipine and lovastatin in human liver microsomes.

Drug Metabolites RT Chemical
Formula *

Mass
Error

Theoretical Experimental

Amlodipine

Parent 14.8 C20H26ClN2O5 409.1525 409.1511 3.4
M-A1 13.1 C20H24ClN2O5 407.1368 407.1349 4.7
M-A2 9.5 C16H15ClNO5 336.0633 336.0614 5.6
M-A3 13.0 C18H19ClNO5 364.0946 364.0923 6.3

Lovastatin

Parent 15.8 C24H36O5Na 427.2455 427.2429 6.1
M-L1 9.3 C24H36O6Na 443.2404 443.2403 0.4
M-L2 9.8 C24H36O6Na 443.2404 443.2400 ´5.6
M-L3 13.9 C24H38O6Na 445.2561 445.2545 3.6

* [M + H]+ and [M + Na]+ are presented in chemical formula of amlodipine and lovastatin, respectively.
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3. Discussion

The effect of kinsenoside on CYP enzyme activities was investigated for to predict its possible
interaction with CYP substrate drugs. As oral administration of kinsenoside at dose of 50 mg¨kg´1

and 100 mg¨kg´1 exhibited a significant antihyperlipidemic effect [2], so considering this, kinsenoside
was tested in the concentration range of 0.1–100 µM, which is expected to be enough to reflect the
clinically relevant concentrations. The inhibitory effect of kinsenoside on six CYP isozymes was
negligible, while CYP2A6 was slightly inhibited. The extent of CYP2A6 inhibition was ~42% even
at the highest concentration of kinsenoside (i.e., 100 µM, Figure 2) in recombinant CYP2A6 isozyme,
and the IC50 value was estimated greater than 100 µM. According to the FDA guideline, when
[I]/Ki < 0.1, the clinical relevance of competitive CYP inhibition is predicted as “Remote”. Ki can be
calculated as IC50/2 by assuming competitive inhibition [27]. Based on the present data, Ki would
be at least 50 µM; for [I]/Ki > 0.1, plasma concentration should be higher than 500 µM. Thus, the
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clinically relevant inhibition is highly unlikely. Therefore, we concluded that kinsenoside showed
non-significant inhibition on CYP2A6.

Kinsenoside, an antihyperlipidemic drug candidate, could possibly be used concomitantly with
amlodipine and lovastatin, was evaluated further for the qualitative as well as quantitative analysis
of CYP-mediated metabolites of both drugs. Lovastatin is a prescription drug frequently used
to treat dyslipidemia and cardiovascular diseases and it is a specific substrate for CYP3A4 in the
liver [28–30]. It is hydrolyzed to β-hydroxy acid lovastatin (M-L3), which is its active form in vivo, and
then it inhibits HMG-CoA reductase and the rate-limiting step in de novo cholesterol synthesis [31].
It has been reported that lovastatin is metabolized by CYP3A4 in human liver microsomes to yield
three major metabolites: 6-β-hydroxylovastatin (M-L1, M-L2), β-hydroxyacid lovastatin (M-L3), and
61-exomethylene lovastatin [32,33]. In the chromatogram for lovastatin metabolism with kinsenoside,
the slight decrease of the lovastatin peak was observed. This is supposed to be due to its chemical
stability rather than metabolism. In details, the chemical interconversion between lactones and hydroxy
acid forms are well recognized in all statin drugs and this conversion occurs in a pH-dependent
manner [34]. Thus, the chemically interconvertible (pH dependent) nature of lovastatin might result
in the slight reduction in lovastatin intensity. Amlodipine is a dihydropyridine calcium-channel
blocker that primarily inhibits the calcium ion influx into cardiac cells and vessel smooth muscle cells,
resulting in the reduction of blood pressure by peripheral arterial vasodilation [35]. It is one of the most
commonly prescribed drugs for the treatment of hypertension and ischemic heart disease. Metabolite
profiling data and mass balance suggested that amlodipine dehydrogenation to M-A1, followed by
multiple oxidative reactions of M-A1, is the major biotransformation pathway of amlodipine in humans.
It has been reported that many dihydropyridine analogs undergo CYP3A4-mediated dehydrogenation
to form the corresponding pyridine metabolites in vitro [36]. As expected from the CYP inhibition
assay results, modification for parent or major metabolites was not observed in the in vitro metabolism
profile of amlodipine with kinsenoside.

4. Materials and Methods

4.1. Chemicals and Reagents

Kinsenoside was contributed by Prof. Zhang, Tongji Medical College of Huazhong University of
Science and Technology (Wuhan, China). Kinsenoside purity was determined by a high performance
liquid chromatography with an evaporative light scattering detector (ELSD), which was >98% [37].
The HPLC-ELSD chromatogram of kinsenoside is shown in Figure 5.

Pooled human liver microsomes and recombinant CYP2A6 were purchased from BD
Gentest (Woburn, MA, USA). Glucose-6-phosphate, β-NADP+, glucose-6-phosphate dehydrogenase,
phenacetin, coumarin, diclofenac, mephenytoin, dextromethorphan, midazolam, ketoconazole, and
terfenadine were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Amlodipine and lovastatin
were purchased from Sigma-Aldrich (St. Louis, MO, USA). All other solvents used were of HPLC
grade and were purchased from J. T. Baker (Phillipsburg, NJ, USA). Distilled water was prepared
using a Milli-Q purification system (Millipore, Billerica, MA, USA). All standard solutions and mobile
phases were passed through a 0.22 µm membrane filter before use.



Molecules 2016, 21, 800 7 of 11

Molecules 2016, 21, 801 6 of 11 

 

Kinsenoside, an antihyperlipidemic drug candidate, could possibly be used concomitantly with 
amlodipine and lovastatin, was evaluated further for the qualitative as well as quantitative analysis 
of CYP-mediated metabolites of both drugs. Lovastatin is a prescription drug frequently used to 
treat dyslipidemia and cardiovascular diseases and it is a specific substrate for CYP3A4 in the liver  
[28–30]. It is hydrolyzed to β-hydroxy acid lovastatin (M-L3), which is its active form in vivo, and 
then it inhibits HMG-CoA reductase and the rate-limiting step in de novo cholesterol synthesis [31]. 
It has been reported that lovastatin is metabolized by CYP3A4 in human liver microsomes to yield 
three major metabolites: 6-β-hydroxylovastatin (M-L1, M-L2), β-hydroxyacid lovastatin (M-L3), and  
6′-exomethylene lovastatin [32,33]. In the chromatogram for lovastatin metabolism with 
kinsenoside, the slight decrease of the lovastatin peak was observed. This is supposed to be due to 
its chemical stability rather than metabolism. In details, the chemical interconversion between 
lactones and hydroxy acid forms are well recognized in all statin drugs and this conversion occurs 
in a pH-dependent manner [34]. Thus, the chemically interconvertible (pH dependent) nature of 
lovastatin might result in the slight reduction in lovastatin intensity. Amlodipine is a 
dihydropyridine calcium-channel blocker that primarily inhibits the calcium ion influx into cardiac 
cells and vessel smooth muscle cells, resulting in the reduction of blood pressure by peripheral 
arterial vasodilation [35]. It is one of the most commonly prescribed drugs for the treatment of 
hypertension and ischemic heart disease. Metabolite profiling data and mass balance suggested that 
amlodipine dehydrogenation to M-A1, followed by multiple oxidative reactions of M-A1, is the 
major biotransformation pathway of amlodipine in humans. It has been reported that many 
dihydropyridine analogs undergo CYP3A4-mediated dehydrogenation to form the corresponding 
pyridine metabolites in vitro [36]. As expected from the CYP inhibition assay results, modification 
for parent or major metabolites was not observed in the in vitro metabolism profile of amlodipine 
with kinsenoside. 

4. Materials and Methods 

4.1. Chemicals and Reagents 

Kinsenoside was contributed by Prof. Zhang, Tongji Medical College of Huazhong University 
of Science and Technology (Wuhan, China). Kinsenoside purity was determined by a high 
performance liquid chromatography with an evaporative light scattering detector (ELSD), which 
was >98% [37]. The HPLC-ELSD chromatogram of kinsenoside is shown in Figure 5.  

 
Figure 5. Representative HPLC-ELSD chromatogram of kinsenoside (1 µg mL−1), analyzed by ELSD 
(evaporation temperature: 70 °C and nebulization temperature: 50 °C), with a C8 column. 

min0 5 10 15

mV

100

200

300

400

500

600

700
800

Figure 5. Representative HPLC-ELSD chromatogram of kinsenoside (1 µg¨mL´1), analyzed by ELSD
(evaporation temperature: 70 ˝C and nebulization temperature: 50 ˝C), with a C8 column.

4.2. CYP Inhibition Assay

The reaction mixtures used in this study consisted of human liver microsomes (0.5 mg¨mL´1),
kinsenoside at different concentrations in distilled water (DW) (0.1, 0.3, 1, 3, 10, 30, and 100 µM),
an NADPH-generating system (NGS) containing β-NADP+ (10 mg¨mL´1), glucose-6-phosphate (0.1 M)
and glucose-6-phosphate dehydrogenase (1.0 U¨mL´1), and a mixture of substrates (phenacetin 40 µM,
coumarin 2.5 µM, dextromethorphan 5 µM, diclofenac 10 µM, mephenytoin 160 µM, paclitaxel 10 µM,
and midazolam 2.5 µM) in 200 µL of potassium phosphate buffer (0.05 M, pH 7.4). The reaction
mixture without NGS was pre-incubated at 37 ˝C for 5 min and then further incubated with NGS for
30 min in a water bath. For the positive control, 5 µM ketoconazole, 50 µM sulfaphenazole, 10 µM
furafylline, 10 µM methoxsalen, 30 µM quercetin, 50 µM quinidine, and 20 µM ticlopidine were tested.
After incubation, the reaction was stopped by adding 400 µL of internal standard terfenadine (0.16 µM)
in 0.1% acetic acid (cold ice). For the test with a recombinant CYP2A6 isozyme, cDNA-expressed
CYP2A6 supersomes and a single substrate (coumarin) were used instead of human liver microsomes
and the substrate mixture, respectively. The rest of the procedure was the same as described above.

4.3. Kinsenoside CYP Interaction Assay for Amlodipine and Lovastatin

Qualitative and quantitative analysis of CYP-mediated metabolites of amlodipine and lovastatin
were conducted. In this study, the reaction mixtures consisted of human liver microsomes
(0.5 mg¨mL´1), amlodipine or lovastatin at a concentration of 10 µM, kinsenoside at a concentration
of 10 µM, and an NADPH-generating system (NGS) containing β-NADP+ (10 mg¨mL´1),
glucose-6-phosphate (0.1 M), and glucose-6-phosphate dehydrogenase (1.0 U¨mL–1) in 200 µL of
potassium phosphate buffer (0.05 M, pH 7.4). For the control sample, kinsenoside was replaced by DW.
The reaction mixture without NGS was pre-incubated at 37 ˝C for 5 min and then further incubated
with NGS for 60 min in a water bath. After one hour, the reaction was stopped by adding 400 µL of
0.1% acetic acid (ice cold), and the sample was placed in ice until solid-phase extraction (SPE).

4.4. Sample Preparation

The SPE Oasis Sep-Pak C18 cartridges (HLB 96-well plate, 30 µm, Waters Co., Milford, MA, USA)
were activated with 1 mL of methanol followed by 1 mL of 0.1% acetic acid in water. The incubation
mixtures were loaded into the cartridge, and then washed twice with 1 mL of 0.1% acetic acid in water
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under vacuum. The analytes were eluted with 1 mL of methanol. The eluate was evaporated under
nitrogen gas; the residue was reconstituted in 100 µL of the mobile phase. A 5 µL aliquot was injected
into the respective mass spectrometry systems for analysis.

4.5. LC-MS/MS Analysis

An Agilent 1260 binary pump HPLC system, with the Agilent 6460 Triple Quadrupole mass
spectrometer (Agilent Technologies, Palo Alto, CA, USA) equipped with an electrospray ionization
(ESI) source were used as the Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
system. The Fortis C8 column (2.1 mm ˆ 100 mm, 5 µm; Fortis Technologies Ltd., Cheshire, UK)
was used for the chromatographic separation. The column temperature was maintained at 40 ˝C.
The high-performance liquid chromatography (HPLC) mobile phases consisted of solvent A, 0.1%
formic acid in DW and solvent B, 90% acetonitrile in solvent A. A gradient elution was used with an
initial concentration of 15% of solvent B and a flow rate of 0.2 mL¨min´1. The solvent B composition was
changed as follows: 0–3.0 min, 85% (gradually increased); 3.0–4.5 min, 85% (maintained); 4.5–4.6 min,
15%; and 4.6–8.0 min, 15% (re-equilibrium). The total run time was 8.0 min, and the injection volume
was 5 µL. Mass detection was performed in positive ion mode with multiple reaction monitoring
(MRM). The MRM modes used for the precursor-product ion pairs (Q1/Q3) are shown in Table 3,
while the representative MRM chromatograms are shown in Figure 1.

Table 3. Precursor-product ion pairs of CYP-specific metabolites for multiple reaction monitoring detection.

P450-Isozyme Tested Metabolites Precursor Ion Product Ion

CYP 1A2 Acetaminophen 152.1 110.1
CYP 2A6 7-OH-coumarin 162.9 106.9
CYP 2C8 6-OH-paclitaxel 870.4 286.1
CYP 2C9 4-OH-diclofenac 312.2 230.9

CYP 2C19 4-OH-mephenytoin 235.0 150.1
CYP 2D6 Dextrorphan 258.3 157.1
CYP 3A4 1-OH-midazolam 343.1 325.1

Internal Standard Terfenadine 472.4 436.4

4.6. Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry (LC-QTOF MS)

For CYP metabolite analysis of amlodipine and lovastatin, an Agilent 1260 binary pump HPLC
system with an Agilent 6530 LC-QTOF MS system (Agilent Technologies) was used. The chromatographic
separation was performed using a Thermo Hypersil GOLD column (2.1 mm ˆ 150 mm, 5 µm;
Thermo Fisher Scientific Inc., Waltham, MA, USA), with the column temperature maintained at
40 ˝C. The HPLC mobile phases consisted of solvent A, 0.1% formic acid in DW and solvent B,
90% acetonitrile in solvent A. A gradient elution was used with an initial concentration of 10%
of solvent B and a flow rate of 0.3 mL¨min´1 for amlodipine. The solvent B composition was
changed as follows: 0–20 min, 10%–70% (gradually increased); 20–21 min, 70%–10%; and 21–30 min,
10% (re-equilibrium). For lovastatin, the gradient elution was: initial, 30% B; 0–15 min, 30%–80%;
15–18 min, 80%; 18–18.1 min, 80%–30%; and 18.1–25 min, 30%. The injection volume was 5 µL for both
amlodipine and lovastatin. A mass detection scan was performed in the positive ion mode.

5. Conclusions

Kinsenoside is a promising drug candidate, however, despite its pharmacological importance
no study has yet shown the effects of kinsenoside on CYP enzyme activities. For the first time, this
study investigated the inhibitory effect of kinsenoside on such enzymes. To predict possible drug-drug
interactions, the in vitro metabolic profile of amlodipine (an antihypertensive drug) and lovastatin
(an antihyperlipidemic drug) after treatment with kinsenoside were investigated. The results showed
that there is almost no risk of potential drug interactions between kinsenoside and CYP drug substrates
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via CYP inhibition. Therefore, considering our findings, the drug-drug interaction between kinsenoside
and other conventional drugs via CYP inhibition would be negligible.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049
/21/6/800/s1.

Acknowledgments: This work was supported by the research grant through the National Research Foundation
(NRF) funded by the Korea government (NRF-2012K1A3A1A20031104).

Author Contributions: H.H.Y, Z.L., Y.X., G.Y. and Y.Z. conceived and designed the experiments; S.U.R., M.S.C,
and I.S.K performed the experiments; S.U.R and H.H.Y analyzed the data; Z.L., Y.X., G.Y. and Y.Z. contributed
reagents/materials/analysis tools; S.U.R and H.H.Y wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

cDNA complementary deoxyribonucleic acid
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