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Abstract: Formylation of amino groups is a critical reaction involved in several biological
processes including post-translational modification of histones. The addition of a formyl
group (CHO) to the N-terminal end of a peptide chain generates biologically active molecules.
N-formyl-peptides can be produced by different methods. We performed the N-formylation of
two chemotactic hexapetides, Met1-Leu2-Lys3-Leu4-Ile5-Val6 and Met1-Met2-Tyr3-Ala4-Leu5-Phe6,
carrying out the reaction directly on peptidyl-resin following pre-activation of formic acid with
N,N-dicyclohexylcarbodiimmide (DCC) in liquid phase. The overnight incubation at 4 ˝C resulted in
a significant increase in production yields of formylated peptides compared to the reaction performed
at room temperature. The method is consistently effective, rapid, and inexpensive. Moreover, the
synthetic strategy can be applied for the formylation of all primary amines at N-terminus of peptide
chains or amino groups of lysine side-chains in solid phase.
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1. Introduction

Protein post-translational modifications by the covalent addition of functional groups to
N-terminal amino acids greatly expand their biological properties in prokaryotic as well eukaryotic
organisms. The most common reactions include acetylation, methylation, pyroglutammate formation,
myristoylation, amidation, glycosyl phosphatidylinositol (GPI) attachment, and formylation [1].
N-formyl peptides derived from cleavage of bacterial and mitochondrial proteins have an important
role in host defense against microbial agents for their ability to chemo attract phagocytic leukocytes to
the site of infection or tissue damage [2]. Moreover, formylation is one of the many post-translational
modifications occurring in histone protein which modulates chromatin conformation and gene
activation [3]. In prokaryotic as well as eukaryotic cells, an increasing number of modifying enzymes
have shown to contain formylation domains [4].

In organic synthesis, several methods for the formylation of amines have been developed mainly
based on the dissolution of formylating reagents in liquid phase [5]. The main amine formylating
reagents include chloroform [6], formic acid and derivatives [7], paraformaldehyde [8], methanol [9],
carbon dioxide [10], and carbon monoxide [11]. Nevertheless, formic acid being inexpensive and easily
available represents the preferential reagent to produce formylated molecules in high yields. The use
of solid-supported reagents and microwave irradiation allows for the automation and acceleration
the organic syntheses [12]. Recently, several chemical techniques have been published to convert
amines into the corresponding N-formamides in good yields [5–17]. Waki and Meienhofer developed
an efficient procedure for the preparation of Nα-formyl amino acid tert-butyl esters with minimal
racemization to be utilized as starting material for peptide synthesis. The method is based on the
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mixing of formic acid and N,N-dicyclohexylcarbodiimmide (DCC) in the presence of chloroform to
form the active formylating reagent, which was added to solutions of tert-butyl amino acid esters [17].
However, a major issue in the reported chemical technique of formylation remains the removal of
side products (i.e., urea) from synthesized molecules with lengthy purifications and reduction of the
reaction yields.

We developed a simple method for the N-formylation of primary amines in solid phase synthesis,
which affords high quantities of N-formylated peptides and to easily remove the side products by
resin washings.

2. Results and Discussion

We synthesized two peptides (peptide “a” and peptide “b”) corresponding to subunit 4 and
6 of human mitochondrial NADH dehydrogenase, respectively. The formylated sequences act as
chemoattractants for leukocytes, can trigger a dramatic increase in the phosphorylation levels of
ERK1/2, and are able to change the cytosolic calcium concentration in promyelocytic HL-60 cell line,
stably expressing either FPR1 or FPR2 [18]. The synthesis of peptide “a” is illustrated in Scheme 1.
The protocol is based on the addition of a formylation group to the N-terminus of a peptidyl-resin
followed by cleavage to obtain the final formylated peptides (Met1-Leu2-Lys3-Leu4-Ile5-Val6
(MH+ = 744 a.m.u.) and Met1-Met2-Tyr3-Ala4-Leu5-Phe6 (MH+ = 803 a.m.u.)) illustrated in Figure 1.
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Scheme 1. Synthesis of N-formylated peptide: (a) Fmoc deprotection of preloaded resin with the
first amino acid (20% piperidine in N,N-dimethylformamide (DMF) for 10 min); (b) amino acid
coupling (HBTU/Fmoc-AA-OH/DIPEA (4:4:8), reaction time 20 min); (c) Fmoc deprotection (as for
step a); (d) amino acid coupling as for step (b) for all amino acids; (e) formylation of the peptidyl-resin
by overnight incubation at 4 ˝C with a formylating reagent produced by incubation of formic
acid and N,N-dicyclohexylcarbodiimmide (DCC) in diethyl ether at 0 ˝C for 4 h; (f) Cleavage of
formylated peptides from the resin by 3 h incubation with a solution of TFA/TIS/H2O (95:5:5). See the
Abbreviations section for definitions.
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Figure 1. Structure of formylated peptide (a) and formylated peptide (b). 

The formylated peptides were synthesized using a standard Fmoc-based solid phase peptide 
synthesis [19,20]. In particular, the preloaded Fmoc-Val-PEG-PS resin was employed for peptide “a” 
and Fmoc-Phe-PEG-PS was employed for peptide “b”. The formylation reaction was performed after 
the complete assembly of the peptide chains on solid support by incubation with the formylating 
reagent obtained, in liquid phase, by mixing formic acid with DCC in diethyl ether at  
0 °C. The formylating solution, filtered to remove the side product urea and concentrated by rotary 
evaporator, was added to the peptidyl-resins with DIPEA (diisopropylethylamine) in DMF (N,N-
dimethylformamide). The reaction was carried out at 4 °C overnight. Low temperatures were 
important for preventing formic acid decomposition. The outcome of the N-formylation reaction was 
verified by the Kaiser test. The final step consisted in the cleavage of the formylated peptide from the 
solid support with an aqueous acidic solution containing TFA (trifluoroacetic acid) and the addition 
of TIS (triisopropylsilane) as scavengers to prevent by-product formation from electrophilic 
intermediates present in the cleavage process. The final products were obtained in good yield  
(70%–75%) and in high purity after RP-HPLC purification. The analyses by HPLC and MALDI-Tof 
of purified products are reported in Figures 2 and 3, respectively. 
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Figure 1. Structure of formylated peptide (a) and formylated peptide (b).

The formylated peptides were synthesized using a standard Fmoc-based solid phase peptide
synthesis [19,20]. In particular, the preloaded Fmoc-Val-PEG-PS resin was employed for peptide “a”
and Fmoc-Phe-PEG-PS was employed for peptide “b”. The formylation reaction was performed
after the complete assembly of the peptide chains on solid support by incubation with the
formylating reagent obtained, in liquid phase, by mixing formic acid with DCC in diethyl ether
at 0 ˝C. The formylating solution, filtered to remove the side product urea and concentrated by
rotary evaporator, was added to the peptidyl-resins with DIPEA (diisopropylethylamine) in DMF
(N,N-dimethylformamide). The reaction was carried out at 4 ˝C overnight. Low temperatures were
important for preventing formic acid decomposition. The outcome of the N-formylation reaction was
verified by the Kaiser test. The final step consisted in the cleavage of the formylated peptide from the
solid support with an aqueous acidic solution containing TFA (trifluoroacetic acid) and the addition of
TIS (triisopropylsilane) as scavengers to prevent by-product formation from electrophilic intermediates
present in the cleavage process. The final products were obtained in good yield (70%–75%) and in high
purity after RP-HPLC purification. The analyses by HPLC and MALDI-Tof of purified products are
reported in Figures 2 and 3, respectively.
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Figure 3. Maldi-Tof analysis of peptide (a) (MH+ = 744 a.m.u) and peptide (b) (MH+ = 803 a.m.u.). 
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Different temperatures were used in preliminary reactions in order to identify optimal conditions.
We found that the temperature has a significant effect on the formylating reaction efficiency.
Reactions carried out between 10 ˝C and room temperature were much faster but provided very
low yields (5% of purified product) in comparison to the reactions performed at 4 ˝C (yield 70%–75%).
The best yields were obtained by incubating formic acid with DCC at 0 ˝C to form the active formylating
reagent and at 4 ˝C to perform the formylation of N-terminus peptides. As reported in the literature,
good yields of formylation (50%–90%) have been also obtained in liquid phase [5]. However, the
synthesis in liquid phase is more laborious, requiring a higher number of steps. Liquid phase reactions
have several disadvantages such as expensive reagents, the formation of side products, thermal
instability, and difficult accessibility to reagents. Chemical modifications in solid phase facilitate the
entire procedure by the elimination of tedious purification steps that often contribute to lower the
yield. Excess of reagents are removed by filtration.

The method that we have developed is applicable in solid phase for the formylation of all primary
amines at N-terminus of peptide chains and for the formylation of amino groups of lysine side-chains
after the selective removing of side-chain protecting groups on resins.

3. Materials and Methods

All reagent were obtained from commercial suppliers and were used without further purification.
Preloaded resins were purchased from Rapp Polymere (Tuebingen, Germany), and protected amino
acids were purchased from AGTC Bioproducts (East Riding of Yorkshire, UK). Formic acid and all
other chemicals was provided by Sigma-Aldrich Srl (Milano, Italy). The analytical and preparative
reverse phase HPLC (RP-HPLC) columns were purchased from Phenomenex (Castelmaggiore, Italy).
Maldi-Tof spectral analyses were carried out on MALDI-Tof Voyager-DE mass spectrometer by
Perspective Biosystems (Framingham, MA, USA).

3.1. Peptides Synthesis

Peptides Met1-Leu2-Lys3-Leu4-Ile5-Val6 (a) and Met1-Met2-Tyr3-Ala4-Leu5-Phe6 (b) were
synthesized through solid phase strategy in continuous flow with automatic synthesizer Syro by
Multisynthec using the Fmoc (9-fluorenylmethoxycarbonyl) chemistry. The supports Fmoc-Val-PEG-PS
(resin substitution: 0.23 mmol/g, from Applied Biosystem, (Foster City, California, CA, USA) and
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Fmoc-Phe-PEG-PS (resin substitution: 0.20 mmol/g, from Applied Biosystem) allow for the obtainment
of the peptides as acid at C-terminal. The synthesis was made on a 0.05-mmol scale for each peptide,
using as a protected amino acid Fmoc-Met-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Ile-OH,
Fmoc-Val-OH, Fmoc-Tyr(t-Bu)-OH, Fmoc-Ala-OH, and Fmoc-Phe-OH. The automatic synthesis
proceeded through Fmoc deprotection steps [piperidine:DMF, 0.2:1 (v/v)] and Fmoc-aminoacid
coupling steps [Support:Fmoc-aminoacid:HBTU:DIEA, 1:4:4:8].

3.2. Formylation and Cleavage from the Solid Support

The formylating reagent for each peptide was produced by incubation in a flask of formic acid
(0.94 mL, 25 mmol) and DCC (2.57 g, 12.5 mmol) with diethyl ether (14.5 mL) at 0 ˝C for 4 h. This reagent
was then filtered to remove DCU (dicyclohexylurea), and the total volume (about 16 mL) was reduced
to 2 mL by evaporation under vacuum. The final solution was added to each peptidyl-resin in DMF
(1 mL) with DIEA (20 microliters, 125 mmol), and the reaction tube was kept at 4 ˝C overnight to
avoid formic acid decomposition. Completeness of formyl coupling reactions was monitored by the
ninydrin test of Kaiser. The resin was washed consecutively with DMF (2 times), with dry DCM
(dichloromethane) (3 times) and dried in vacuo. Each linear peptide was cleaved from the solid support,
and amino acid side-chains were simultaneously deprotected by suspending the resin in 2 mL of
a mixture of TFA:water:TIS [95:2.5:2.5 (v/v)] for three hours.

The resin was then removed by filtration under a reduced pressure, and the filtrate poured into
eight volumes of cold ether to achieve a good peptide precipitation. The suspensions were centrifuged,
and the ether carefully decanted. After a further ether wash, the peptides were dissolved in 0.1% TFA
(v/v) in water (3 mL) and then lyophilized.

3.3. Peptides Analysis and Purification

Analytical RP-HPLC runs were carried out on a Shimadzu LC-10 ADVP (detector: SPDM)
apparatus using a C12 column by Phenomenex (column 4.6 ˆ 150 mm; eluent A: 0.1%TFA in water;
eluent B: 0.1%TFA in acetonitrile; gradient: from 5%B to 65%B in 20 min; flow 1.0 mL¨ min´1).
Preparative RP-HPLC was carried out on a Shimadzu LC-8 apparatus equipped with an UV Shimadzu
detector SPD-10AVP using a Phenomenex C12 column, 22 ˆ 250 mm with a flow rate of 20 mL¨ min´1

and with a linear gradient from 5%B to 65%B in 30 min. The main peaks of the analytical chromatogram,
with Rt = 18.8 min for peptide “a” and with Rt = 20.6 min for peptide “b” were confirmed by
MALDI-TOF spectrometry (peptide “a” (MH+ = 744 a.m.u.) and peptide “b” (MH+ = 803 a.m.u.).

4. Conclusions

We developed a simple and efficient method for N-formylation of peptides using the standard
Fmoc-based solid phase peptide synthesis. This method affords good yields and high purity products in
comparison with the liquid phase synthesis, which render the separation of the byproduct difficult, and
the formylation in acidic condition, which might cause some premature removal of the peptide from
the resin. The formylation reaction performed directly on solid phase incubating the peptidyl-resin
with the formylating reagent, obtained by reaction, in liquid phase, of formic acid with DCC in diethyl
ether, is especially recommended because the reagents are easy to handle, inexpensive, commercially
available, and upscalable for industrial processes.
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Abbreviations

The following abbreviations are used in this manuscript:

DCC N,N-dicyclohexylcarbodiimmide
DCM Dichloromethane
DIPEA diisopropylethylamine;
DMF N,N-dimethylformamide
Fmoc 9-fluorenylmethoxycarbonyl
HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate
TFA trifluoroaceticacid
TIS triisopropylsilane
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