Supplementary Materials: A Convenient Synthesis of 3,7'-Bisindole Derivatives

Teng Liu, Hong-You Zhu, Da-Yun Luo, Sheng-Jiao Yan and Jun Lin

Table of Contents

General Information	
General Procedure for the Preparation of 3	
Spectroscopic Data of 3	S2–S10
Figure S1. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3a	S11
Figure S2. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3a	S12
Figure S3. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3b	S13
Figure S4. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3b	S14
Figure S5. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3c	S15
Figure S6. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3c	S16
Figure S7. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3d	S17
Figure S8. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3d	S18
Figure S9. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3e	S19
Figure S10. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3e	S20
Figure S11. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3f	S21
Figure S12. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3f	S22
Figure S13. ¹ H-NMR (500 MHz, DMSO-d ₆) spectra of compound 3g	S23
Figure S14. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3g	S24
Figure S15. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3h	S25
Figure S16. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3h	S26
Figure S17. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3i	S27
Figure S18. ¹³ C-NMR (125 MHz, DMSO-d6) spectra of compound 3i	S28
Figure S19. ¹ H-NMR (500 MHz, DMSO-d ₆) spectra of compound 3j	S29
Figure S20. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3j	S30
Figure S21. ¹ H-NMR (500 MHz, DMSO-d ₆) spectra of compound 3k	S31
Figure S22. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3k	S32
Figure S23. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 31	S33
Figure S24. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 31	S34
Figure S25. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3m	S35
Figure S26. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3m	S36
Figure S27. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3n	S37
Figure S28. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3n	S38
Figure S29. ¹ H-NMR (500 MHz, DMSO-d ₆) spectra of compound 30	S39
Figure S30. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 30	S40
Figure S31. ¹ H-NMR (500 MHz, DMSO-d ₆) spectra of compound 3p	S41
Figure S32. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3p	S42
Figure S33. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3q	S43
Figure S34. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3q	S44
Figure S35. 1H-NMR (500 MHz, DMSO-d6) spectra of compound 3r	S45
Figure S36. ¹³ C-NMR (125 MHz, DMSO-d ₆) spectra of compound 3r	S46
Figure S37. 1H-NMR (400 MHz, CDCl3) spectra of compound 3s	S47
Figure S38. ¹³ C-NMR (100 MHz, CDCl ₃) spectra of compound 3s	S40
Figure S39. 1H-NMR (400 MHz, CDCl3) spectra of compound 3t	S41
Figure S40. ¹³ C-NMR (100 MHz, CDCl ₃) spectra of compound 3t	S50
Figure S41. ¹ H-NMR (400 MHz, CDCl ₃) spectra of compound 3u	S51
Figure S42. ¹³ C-NMR (100 MHz, CDCl ₃) spectra of compound 3u	S52
Figure S43. 1H-NMR (400 MHz, CDCl3) spectra of compound 3v	S53
Figure S44. ¹³ C-NMR (100 MHz, CDCl ₃) spectra of compound 3v	S54

Figure S45. 1H-NMR (400 MHz, CDCl3) spectra of compound 3w	S55
Figure S46. ¹³ C-NMR (100 MHz, CDCl ₃) spectra of compound 3w	S56
References and Notes	S57

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX400 & DRX500. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated DMSO-*d*₆ and CDCl₃ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh).

Compounds **1** were prepared according to the literature [1-3]. Compound **2** were prepared according to the literature [4-5].

General Procedure for the Preparation of 3

To a 10 ml round-bottom flask, HKAs **1** (0.1 mmol) and substrate **2** (0.11 mmol) were added to a solution of Anhydrous ethanol (1 mL) and Et₃N (10 mol%), stirred at room temperature. The mixture was stirred for 12 h until the **1** were completely consumed. The solvent and other volatile liquids were evaporated under vacuum. The raw materials were purified by column chromatography to afford the 3,7'-bisindole derivatives **3** in 65%–91%.

Spectroscopic Data of 3

(8-Hydroxy-6-(2-methyl-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-10-yl)(4-methoxyphenyl)methanone (**3a**)

Yellow solid; Mp 221.5–222.5 °C; IR (KBr): 3439, 3230, 2904, 2586, 1722, 1599, 1514, 1333, 1223, 752 cm⁻¹; ¹H-NMR (500 MHz, DMSO- d_6): δ = 10.92 (br, 1H, NH), 8.51 (br, 1H, NH), 8.23 (s, 1H, ArH), 7.58 (d, *J* = 8.0 Hz, 2H, ArH), 7.28–7.30 (m, 2H, ArH), 7.06 (d, *J* = 8.0 Hz, 2H, ArH), 6.97–7.03 (m, 1H, ArH), 6.91–6.94 (m, 2H, ArH), 6.50 (br, 1H, OH), 3.91–3.95 (m, 2H, NCH₂), 3.85 (s, 3H, OCH₃), 3.46–3.50 (m, 2H, CH₂N), 2.30 (s, 3H, CH₃), 2.07–2.11 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO- d_6): δ = 186.8, 160.7, 153.1, 150.3, 135.6, 135.5, 133.1, 129.4, 129.4, 128.9, 128.8, 125.3, 120.2, 118.9, 118.7, 114.7, 113.9, 113.9, 113.9, 110.6, 110.5, 105.4, 94.9, 55.6, 39.3, 38.1, 20.6, 13.0; HRMS (ESI-TOF): m/z calcd. for C₂₈H₂₆N₃O₃ [M + H]⁺, 452.1969; found, 452.1947.

(8-Hydroxy-6-(2-methyl-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-10-yl)(*p*-tolyl)methanone (**3b**)

Yellow solid; Mp 228–230 °C; IR (KBr): 3394, 3053, 2928, 2316, 1728, 1591, 1443, 1335, 1171, 750 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.82 (br, 1H, NH), 8.44 (br, 1H, NH), 8.19 (s, 1H, ArH), 7.41 (d, *J* = 7.5 Hz, 2H, ArH), 7.23–7.32 (m, 3H, ArH), 7.21 (d, *J* = 7.5 Hz, 1H, ArH), 6.98 (t, *J* = 7.5 Hz, 1H, ArH), 6.85–6.92 (m, 2H, ArH), 6.32 (br, 1H, OH), 3.82–3.89 (m, 2H, NCH₂), 3.42–3.46 (m, 2H, CH₂N), 2.37 (s, 3H, CH₃), 2.24 (s, 3H, ArCH₃), 2.04–2.08 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 187.6, 153.3, 150.1, 139.8, 139.7, 135.5, 133.3, 129.3, 129.3, 129.0, 128.7, 127.3, 127.3, 125.1, 120.4, 118.9, 118.7, 115.1, 110.8, 110.5, 110.2, 105.4, 95.2, 39.5, 38.0, 21.4, 20.3, 12.7; HRMS (ESI-TOF): m/z calcd. for C₂₈H₂₆N₃O₂ [M + H]⁺, 436.2020; found, 436.2005.

(8-Hydroxy-6-(2-methyl-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-10-yl) - (phenyl)methanone (**3c**)

Yellow solid; Mp 317–318.5 °C; IR (KBr): 3323, 3055, 2972, 2866, 2314, 1726, 1614, 1529, 1319, 1174, 746 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.95 (br, 1H, NH), 8.60 (br, 1H, NH), 8.19 (s, 1H, ArH), 7.54–7.58 (m, 5H, ArH), 7.30 (t, *J* = 7.5 Hz, 2H, ArH), 6.98–7.04 (m, 1H, ArH), 6.90–6.98 (m, 2H, ArH), 6.34 (br, 1H, OH), 3.92–3.96 (m, 2H, NCH₂), 3.47–3.51 (m, 2H, CH₂N), 2.30 (s, 3H, CH₃), 2.08–2.12 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 187.2, 153.2, 150.3, 143.2, 135.7, 133.2, 129.8, 128.9, 128.7, 128.7, 128.7, 127.3, 127.3, 125.2, 120.2, 118.9, 118.7, 114.9, 110.7, 110.6, 110.5, 105.4, 95.0, 39.3, 38.1, 20.6, 13.0; HRMS (ESI-TOF): m/z calcd. for C₂₇H₂₄N₃O₂ [M + H]⁺, 422.1863; found, 422.1871.

(4-Chlorophenyl)(8-hydroxy-6-(2-methyl-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido-[1,2-*a*]indol-10-yl)methanone (**3d**)

Yellow solid; Mp 199.0–201.5 °C; IR (KBr): 3400, 3063, 2951, 2866, 2349, 1680, 1616, 1527, 1331, 750 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.91 (br, 1H, NH), 8.55 (br, 1H, NH), 8.27–8.32 (m, 1H, ArH), 7.55–7.59 (m, 4H, ArH), 7.23–7.31 (m, 2H, ArH), 6.96–7.02 (m, 1H, ArH), 6.87–6.96 (m, 2H, ArH), 6.32 (br, 1H, OH), 3.91–3.95 (m, 2H, NCH₂), 3.42–3.46 (m, 2H, CH₂N), 2.27 (s, 3H, CH₃), 2.08–2.12 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 185.6, 153.2, 150.5, 141.8, 135.6, 134.3, 133.1, 129.3, 129.3, 129.3, 128.9, 128.9, 128.9, 128.9, 124.9, 120.2, 118.9, 118.7, 115.0, 110.7, 110.5, 105.1, 95.0, 39.4, 38.1, 20.5, 13.0; HRMS (ESI-TOF): *m/z* calcd. for C₂₇H₂₃ClN₃O₂ [M + H]⁺, 456.1473; found, 456.1459.

(2-Chlorophenyl)(8-hydroxy-6-(2-methyl-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido-[1,2-*a*]indol-10-yl)methanone (**3e**)

Yellow solid; Mp 301–303 °C; IR KBr): 3342, 3061, 2966, 2868, 1726, 1618, 1531, 1429, 1329, 1176, 748 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.94 (br, 1H, NH), 8.52 (br, 1H, NH), 8.07 (s, 1H, ArH), 7.61 (d, *J* = 1.0 Hz, 1H, ArH), 7.47–7.61 (m, 2H, ArH), 7.34–7.39 (m, 1H, ArH), 7.30 (d, *J* = 8.0 Hz, 1H, ArH), 7.26 (d, *J* = 7.5 Hz, 1H, ArH), 6.96–7.03 (m, 1H, ArH), 6.88–6.95 (m, 2H, ArH), 5.71 (br, 1H, OH), 3.90–3.94 (m, 2H, NCH₂), 3.48–3.52 (m, 2H, CH₂N), 2.26 (s, 3H, CH₃), 2.08–2.12 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 183.7, 152.8, 150.5, 142.3, 135.7, 133.2, 130.4, 130.1, 129.6, 129.0, 128.9, 128.2, 128.1, 125.0, 120.3, 118.8, 118.7, 115.1, 110.7, 110.4, 104.7, 95.7, 39.3, 38.1, 20.4, 13.0; HRMS (ESI-TOF): *m/z* calcd. for C₂₇H₂₃ClN₃O₂ [M + H]⁺, 456.1473; found, 456.1462.

(4-Fluorophenyl)(8-hydroxy-6-(2-methyl-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido-[1,2-*a*]indol-10-yl)methanone (**3f**)

Yellow solid; Mp 247–248.5 °C; IR (KBr): 3394, 3053, 2928, 2860, 2316, 1720, 1591, 1441, 1335, 1170, 750 cm⁻¹; ¹H-NMR (500 MHz, DMSO- d_6): δ = 10.93 (br, 1H, NH), 8.54 (br, 1H, NH), 8.27 (s, 1H, ArH), 7.58–7.65 (m, 2H, ArH), 7.34 (t, *J* = 9.0 Hz, 2H, ArH), 7.28 (t, *J* = 9.0 Hz, 2H, ArH), 7.00 (t, *J* = 7.5 Hz, 1H, ArH), 6.87–6.97 (m, 2H, ArH), 6.31 (br, 1H, OH), 3.90–3.97 (m, 2H, NCH₂), 3.47–3.51 (m, 2H, CH₂N), 2.28 (s, 3H, CH₃), 2.08–2.12 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO- d_6): δ = 185.9, 164.0, 162.1, 153.1, 150.4, 139.6, 135.6, 133.1, 129.7, 129.7, 128.9, 125.1, 120.2, 118.9, 118.7, 115.7, 115.5, 114.9, 110.7, 110.7, 110.5, 105.1, 95.0, 39.4, 38.1, 20.5, 13.0; HRMS (ESI-TOF): *m*/*z* calcd. for C₂₇H₂₃FN₃O₂ [M + H]⁺, 440.1769; found, 440.1775.

(9-Hydroxy-7-(2-methyl-1*H*-indol-3-yl)-2,3,4,5-tetrahydro-1*H*-[1,3]diazepino[1,2-*a*]-indol-11-yl)(4-methoxyphenyl)methanone (**3g**)

Yellow solid; Mp 179.5–182 °C; IR (KBr): 3396, 3063, 2928, 2850, 2351, 1726, 1593, 1444, 1313, 1250, 1167, 1022, 744 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.93 (br, 1H, NH), 8.96 (br, 1H, NH), 8.32 (s, 1H, ArH), 7.59 (d, *J* = 7.6 Hz, 2H, ArH), 7.29 (d, *J* = 7.5 Hz, 1H, ArH), 7.26 (d, *J* = 7.4 Hz, 1H, ArH), 7.12 (s, 1H, ArH), 7.07 (d, *J* = 7.7 Hz, 2H, ArH), 7.00 (m, 1H, ArH), 6.91 (m, 1H, ArH), 6.45 (br, 1H, OH), 4.03–4.07 (m, 2H, NCH₂), 3.86 (s, 3H, OCH₃), 3.41–3.45 (m, 2H, CH₂N), 2.29 (s, 3H, CH₃), 1.87–1.97 (m, 4H, CH₂CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 188.3, 161.0, 160.0, 150.5, 135.6, 135.0, 133.2, 129.7, 129.7, 129.5, 128.9, 125.7, 120.2, 118.9, 118.7, 115.7, 113.9, 113.9, 112.2, 110.6, 105.3, 97.7, 55.6, 45.5, 45.1, 29.3, 27.0, 13.0; HRMS (ESI-TOF): *m*/*z* calcd. for C₂₉H₂₈N₃O₃ [M + H]⁺, 466.2125; found, 466.2145.

(9-Hydroxy-7-(2-methyl-1*H*-indol-3-yl)-2,3,4,5-tetrahydro-1*H*-[1,3]diazepino[1,2-*a*]-indol-11-yl)(*p*-tolyl)methanone (**3h**)

Yellow solid; Mp 242–244 °C; IR (KBr): 3394, 3053, 2926, 2858, 2314, 1726, 1593, 1446, 1335, 1169, 748 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.92 (br, 1H, NH), 9.05 (br, 1H, NH), 8.23 (s, 1H, ArH), 7.49 (d, *J* = 7.7 Hz, 2H, ArH), 7.33 (d, *J* = 7.6 Hz, 2H, ArH), 7.29 (d, *J* = 7.9 Hz, 1H, ArH), 7.25 (d, *J* = 7.8 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.96–7.03 (m, 1H, ArH), 6.91 (t, *J* = 7.3 Hz, 1H, ArH), 6.34 (br, 1H, OH), 4.04–4.11 (m, 2H, NCH₂), 3.39–3.43 (m, 2H, CH₂N),2.43 (s, 3H, ArCH₃), 2.28 (s, 3H, CH₃), 1.88–1.97 (m, 4H, CH₂CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 188.8, 160.0, 150.5, 139.9, 139.8, 135.6, 133.2, 129.7, 129.2, 129.2, 128.9, 127.7, 125.6, 120.2, 118.9, 118.7, 115.8, 112.2, 110.6, 110.5, 105.4, 97.6, 45.5, 45.0, 29.2, 26.9, 21.5, 13.0; HRMS (ESI-TOF): *m*/*z* calcd. for C₂₉H₂₈N₃O₂ [M + H]⁺, 450.2176; found, 450.2184.

(9-Hydroxy-7-(2-methyl-1*H*-indol-3-yl)-2,3,4,5-tetrahydro-1*H*-[1,3]diazepino[1,2-*a*]-indol-11-yl)(phenyl)methanone (**3i**)

Yellow solid; Mp 289–290 °C; IR (KBr): 3356, 3057, 2941, 2858, 2351, 1714, 1593, 1539, 1419, 1323, 1171, 748 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.92 (br, 1H, NH), 9.10 (br, 1H, NH), 8.21 (s, 1H, ArH), 7.53–7.57 (m, 5H, ArH), 7.29 (d, *J* = 8.0 Hz, 1H, ArH), 7.24 (d, *J* = 7.5 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.96–7.03 (m, 1H, ArH), 6.87–6.94 (m, 1H, ArH), 6.23 (br, 1H, OH), 4.04–4.08 (m, 2H, NCH₂), 3.45–3.49 (m, 2H, CH₂N), 2.27 (s, 3H, CH₃), 1.95–1.99 (m, 2H, CH₂), 1.89–1.93 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 188.8, 160.1, 150.5, 142.8, 135.6, 133.2, 130.1, 129.7, 128.9, 128.8, 128.8, 127.4, 127.4, 125.6, 120.2, 118.9, 118.7, 115.9, 112.2, 110.7, 110.4, 105.4, 97.5, 45.5, 44.9, 29.1, 26.9, 12.9; HRMS (ESI-TOF): *m*/z calcd. for C₂₈H₂₆N₃O₂ [M + H]⁺, 436.2020; found, 436.2034.

(4-Chlorophenyl)(9-hydroxy-7-(2-methyl-1*H*-indol-3-yl)-2,3,4,5-tetrahydro-1*H*-[1,3]-diazepino[1,2-*a*]indol-11-yl)methanone (**3**j)

Yellow solid; Mp 191–192.5 °C; IR (KBr): 3394, 3057, 2926, 2854, 2353, 1687, 1599, 1539, 1417, 1169, 1092, 746 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.92 (br, 1H, NH), 9.09 (br, 1H, NH), 8.37 (s, 1H, ArH), 7.56–7.60 (m, 4H, ArH), 7.28 (d, *J* = 8.0 Hz, 1H, ArH), 7.24 (d, *J* = 7.5 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.99 (t, *J* = 7.5 Hz, 1H, ArH), 6.87–6.94 (m, 1H, ArH), 6.25 (br, 1H, OH), 4.05–4.09 (m, 2H, NCH₂), 3.44–3.48 (m, 2H, CH₂N), 2.27 (s, 3H, CH₃), 1.95–1.99 (m, 2H, CH₂), 1.88–1.92 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 187.1, 160.1, 150.7, 141.4, 135.6, 134.7, 133.2, 129.7, 129.4, 129.4, 128.9, 128.9, 128.9, 125.3, 120.2, 118.9, 118.7, 115.9, 112.3, 110.6, 110.5, 105.1, 97.4, 45.5, 44.9, 29.0, 26.8, 13.0; HRMS (ESI-TOF): *m*/z calcd. for C₂₈H₂₅ClN₃O₂ [M + H]⁺, 470.1630; found, 470.1637.

(2-Chlorophenyl)(9-hydroxy-7-(2-methyl-1*H*-indol-3-yl)-2,3,4,5-tetrahydro-1*H*-[1,3]-diazepino[1,2-*a*]indol-11-yl)methanone (**3k**)

Yellow solid; Mp 240.5–241.5 °C; IR (KBr): 3398, 3063, 2937, 2347, 1726, 1597, 1439, 1336, 1176, 750 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.94 (br, 1H, NH), 9.21 (br, 1H, NH), 8.15 (s, 1H, ArH), 7.61 (d, *J* = 7.5 Hz, 1H, ArH), 7.46–7.56 (m, 2H, ArH), 7.35–7.41 (m, 1H, ArH), 7.30 (d, *J* = 8.0 Hz, 1H, ArH), 7.24 (d, *J* = 7.5 Hz, 1H, ArH), 7.09 (s, 1H, ArH), 7.00 (t, *J* = 7.5, 1H, ArH), 6.91 (t, *J* = 7.5 Hz, 1H, ArH), 7.09 (s, 1H, ArH), 7.00 (t, *J* = 7.5, 1H, ArH), 6.91 (t, *J* = 7.5 Hz, 1H, ArH), 5.69 (br, 1H, OH), 4.01–4.08 (m, 2H, NCH₂), 3.51–3.55 (m, 2H, CH₂N), 2.27 (s, 3H, CH₃), 1.98–2.02 (m, 2H, CH₂), 1.89–1.94 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO-d₆): δ = 185.0, 159.8, 150.8, 142.0, 135.6, 133.3, 130.6, 130.1, 130.0, 129.5, 128.9, 128.1, 128.1, 125.4, 120.3, 118.9, 118.8, 116.0, 112.3, 110.7, 110.3, 104.6, 97.8, 45.5, 44.7, 28.8, 26.8, 13.0; HRMS (ESI-TOF): *m*/*z* calcd. for C₂₈H₂₅ClN₃O₂ [M + H]⁺, 470.1630; found, 470.1621.

(4-Fluorophenyl)(9-hydroxy-7-(2-methyl-1*H*-indol-3-yl)-2,3,4,5-tetrahydro-1*H*-[1,3]-diazepino[1,2-*a*]indol-11-yl)methanone (**3**)

Yellow solid; Mp 259–261 °C; IR (KBr): 3390, 3064, 2929, 2343, 1720,1595, 1535, 1428, 1222, 1167, 749 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.91 (br, 1H, NH), 9.06 (br, 1H, NH), 8.32 (s, 1H, ArH), 7.59–7.65 (m, 2H, ArH), 7.35 (t, *J* = 8.5 Hz, 2H, ArH), 7.29 (d, *J* = 7.5 Hz, 1H, ArH), 7.24 (d, *J* = 7.5 Hz, 1H, ArH), 7.11 (s, 1H, ArH), 6.96–7.03 (m, 1H, ArH), 6.86–6.94 (m, 1H, ArH), 6.24 (br, 1H, OH), 4.04–4.08 (m, 2H, NCH₂), 3.44–3.48 (m, 2H, CH₂N), 2.28 (s, 3H, CH₃), 1.95–1.99 (m, 2H, CH₂), 1.89–1.93 (m, 2H, CH₂); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 187.4, 164.2, 162.3, 160.0, 150.7, 139.2, 135.6, 133.2, 129.9, 129.7, 129.7, 128.9, 125.5, 120.2, 118.9, 118.7, 115.8, 115.6, 112.3, 110.6, 110.5, 105.1, 97.5, 45.5, 44.9, 29.1, 26.9, 13.0; HRMS (ESI-TOF): *m/z* calcd. for C₂₈H₂₅FN₃O₂ [M + H]⁺, 454.1925; found, 454.1936.

(7-Hydroxy-5-(2-methyl-1*H*-indol-3-yl)-2,3-dihydro-1*H*-imidazo[1,2-*a*]indol-9-yl)(4-methoxyphenyl)methanone (**3m**)

Yellow solid; Mp 269–271 °C; IR (KBr): 3390, 3059, 2966, 2843, 2353, 1726, 1597, 1473, 1325, 1248, 1163, 744 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.93 (br, 1H, NH), 8.40 (br, 1H, NH), 7.63–7.67 (m, 2H, ArH), 7.28–7.32 (m, 2H, ArH), 7.04–7.08 (m, 5H, ArH), 6.90–6.94 (m, 2H, ArH), 3.98–4.10 (m, 4H, CH₂CH₂), 3.85 (s, 3H, OCH₃), 2.32 (s, 3H, CH₃); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 186.5, 161.2, 159.5, 150.4, 135.6, 134.8, 133.1, 130.7, 129.7, 129.7, 128.9, 126.0, 120.2, 118.9, 118.7, 115.0, 114.0, 114.0, 111.1, 110.7, 106.8, 93.4, 55.6, 49.5, 42.5, 13.0; HRMS (ESI-TOF): *m*/*z* calcd. for C₂₇H₂₄N₃O₃ [M + H]⁺, 438.1812; found, 438.1786.

(3n)

Yellow solid; Mp 298.5–300 °C; IR (KBr): 3408, 2899, 2584, 2345, 1726, 1597, 1475, 1327, 1167, 752 cm⁻¹; ¹H-NMR (300 MHz, DMSO-*d*_δ): δ = 10.91 (br, 1H, NH), 8.38 (br, 1H, NH), 7.53 (d, *J* = 6.5 Hz, 2H, ArH), 7.25–7.34 (m, 4H, ArH), 6.88–7.02 (m, 5H, ArH), 3.97–4.09 (m, 4H, CH2CH2), 2.40 (s, 3H, ArCH3), 2.29 (s, 3H, CH₃); ¹³C-NMR (125 MHz, DMSO- d_6): δ = 187.2, 159.7, 150.4, 140.1, 139.6, 135.6, 133.1, 130.5, 129.3, 129.3, 128.9, 127.6, 127.6, 126.0, 120.3, 118.9, 118.7, 115.2, 111.1, 110.7, 110.5, 106.9, 93.5, 49.5, 42.5, 21.5, 13.0; HRMS (ESI-TOF): *m/z* calcd. for C₂₇H₂₄N₃O₂ [M + H]⁺, 422.1863; found, 422.1837.

(7-Hydroxy-5-(2-methyl-1*H*-indol-3-yl)-2,3-dihydro-1*H*-imidazo[1,2-*a*]indol-9-yl)-(phenyl)methanone (**3o**)

Yellow solid; Mp 289.5–290.5 °C; IR (KBr): 3419, 3059, 2970, 2316, 1730, 1603, 1510, 1335, 1227, 744 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*_δ): δ= 10.92 (br, 1H, NH), 8.33 (br, 1H, NH), 7.61–7.65 (m, 2H, ArH), 7.52–7.56 (m, 3H, ArH), 7.28–7.32 (m, 2H, ArH), 6.91–7.02 (m, 5H, ArH), 3.99–4.11 (m, 4H, CH₂CH₂), 2.31 (s, 3H, CH₃); ¹³C-NMR (125 MHz, DMSO- d_6): δ = 187.1, 159.7, 150.4, 142.6, 135.6, 133.1, 130.8, 130.4, 130.3, 128.8, 128.8, 127.5, 127.5, 126.1, 120.2, 118.9, 118.7, 115.2, 111.1, 110.7, 110.5, 106.8, 93.5, 49.5, 42.5, 13.0; HRMS (ESI-TOF): *m/z* calcd. for C₂₆H₂₂N₃O₂ [M + H]⁺, 408.1707; found, 408.1713.

(4-Chlorophenyl)(7-hydroxy-5-(2-methyl-1H-indol-3-yl)-2,3-dihydro-1H-imidazo[1,2-a]indol-9yl)methanone (3p)

Yellow solid; Mp 204-206 °C; IR (KBr): 3435, 3072, 2902, 2347, 1724, 1600, 1510, 1402, 1330, 1223, 752 cm⁻¹; ¹H-NMR (500 MHz, DMSO- d_{δ}): δ = 10.95 (br, 1H, NH), 8.48 (br, 1H, NH), 7.60–7.66 (m, 2H, ArH), 7.54–7.60 (m, 2H, ArH), 7.25–7.32 (m, 3H, ArH), 7.00 (t, J = 7.0 Hz, 1H, ArH), 6.89–6.95 (m, 3H, ArH), 4.05–4.11 (m, 2H, NCH2), 3.98–4.03 (m, 2H, CH2N), 2.30 (s, 3H, CH3); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 185.6, 159.7, 150.5, 141.2, 135.6, 134.9, 133.1, 130.3, 129.5, 129.5, 128.9, 128.9, 128.9, 126.0, 120.2, 118.9, 118.7, 115.3, 111.2, 110.7, 110.5, 106.7, 93.3, 49.5, 42.5, 13.0; HRMS (ESI-TOF): *m/z* calcd. for C₂₆H₂₁ClN₃O₂ [M + H]⁺, 442.1317; found, 442.1309.

(2-Chlorophenyl)(7-hydroxy-5-(2-methyl-1*H*-indol-3-yl)-2,3-dihydro-1*H*-imidazo[1,2-*a*]indol-9-yl)methanone (**3q**)

Yellow solid; mp 339–341 °C; IR (KBr): 3429, 3346, 3059, 2918, 2580, 2318, 1728, 1520, 1464, 1327, 1225, 748 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.92 (br, 1H, NH), 7.87–8.07 (m, 1H, ArH), 7.10–7.60 (m, 8H, ArH), 6.87–7.02 (m, 3H, ArH), 4.08– 4.12(m, 4H, CH₂CH₂), 2.26 (s, 3H, CH₃); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 184.0, 160.1, 150.1, 142.1, 135.6, 133.2, 130.6, 130.2, 129.5, 128.8, 128.1, 128.1, 128.1, 126.1, 120.3, 118.8, 115.4, 111.2, 110.7, 110.3, 105.7, 94.1, 49.6, 42.4, 12.9; HRMS (ESI-TOF): *m/z* calcd. for C₂₆H₂₁ClN₃O₂ [M + H]⁺, 442.1317; found, 442.1302.

(4-Fluorophenyl)(7-hydroxy-5-(2-methyl-1*H*-indol-3-yl)-2,3-dihydro-1*H*-imidazo[1,2-*a*]indol-9-yl)methanone (**3r**)

Yellow solid; Mp 268–270 °C; IR (KBr): 3429, 3072, 2902, 2582, 2347, 1724, 1601, 1510, 1402, 1331, 1223, 1157, 752 cm⁻¹; ¹H-NMR (500 MHz, DMSO-*d*₆): δ = 10.92 (br, 1H, NH), 8.39 (br, 1H, NH), 7.65–7.72 (m, 2H, ArH), 7.27–7.37 (m, 4H, ArH), 6.89–7.04 (m, 5H, ArH), 4.06–4.13 (m, 2H, NCH₂), 3.98–4.04 (m, 2H, CH₂N), 2.31 (s, 3H, CH₃); ¹³C-NMR (125 MHz, DMSO-*d*₆): δ = 185.8, 164.4, 162.4, 159.7, 150.5, 139.0, 135.6, 133.1, 130.4, 130.0, 128.9, 126.0, 120.2, 118.9, 118.7, 115.8, 115.6, 115.2, 111.2, 110.7, 106.7, 93.3, 49.5, 42.5, 13.0; HRMS (ESI-TOF): *m*/*z* calcd. for C₂₆H₂₁FN₃O₂ [M + H]⁺, 426.1612; found, 426.1622.

(6-(1,2-Dimethyl-1*H*-indol-3-yl)-8-hydroxy-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-10-yl)(4-methoxyphenyl)methanone (**3s**)

Yellow solid; Mp 261–263 °C; IR (KBr) 3439, 2926, 2853, 2347, 1728, 1616, 1510, 1471, 1350, 1324, 1168, 740 cm⁻¹; ¹H-NMR (CDCl₃, 400 MHz): δ = 8.61 (br, 1H, NH), 7.69 (d, *J* = 8.8 Hz, 2H, ArH), 7.39 (d, *J* = 8.0 Hz, 1H, ArH), 7.34 (d, *J* = 8.0 Hz, 1H, ArH), 7.20–7.22 (m, 1H, ArH), 7.07–7.11 (m, 1H, ArH), 6.98 (d, *J* = 8.4 Hz, 2H, ArH), 6.86 (s, 1H, ArH), 6.71 (s, 1H, ArH), 4.93 (br, 1H, OH), 3.90–3.93 (m, 2H, CH₂N), 3.86 (s, 3H, NCH₃), 3.75 (s, 3H, OCH₃), 3.53–3.57 (m, 2H, CH₂), 2.34 (s, 3H, CH₃), 2.21–2.24 (m, 2H, CH₂N); ¹³C-NMR (CDCl₃, 100 MHz): δ = 188.8, 161.0, 153.5, 149.3, 137.0, 135.4, 134.9, 129.4, 129.4, 129.3, 127.5, 126.6, 121.5, 119.9, 118.9, 113.6, 113.6, 113.2, 109.5, 108.9, 107.7, 104.7, 95.8, 55.3, 39.3, 38.1, 29.9, 20.8, 11.1; HRMS (ESI-TOF): *m/z* calcd for C₂₉H₂₇N₃O₃[M + H]⁺, 466.2125; found, 466.2120.

(6-(1,2-Dimethyl-1*H*-indol-3-yl)-8-hydroxy-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-10-yl)(4-methoxyphenyl)methanone(6-(1,2-dimethyl-1*H*-indol-3-yl)-8-hydroxy-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-10-yl)(4-fluorophenyl)methanone (**3**t)

Yellow solid; Mp 173–175 °C; IR (KBr) 3437, 2925, 2582, 1721, 1617, 1534, 1470, 1325, 1221, 1173, 775 cm⁻¹; ¹H-NMR (CDCl₃, 400 MHz): δ = 8.62 (br, 1H, NH), 7.67–7.71 (m, 2H, ArH), 7.34–7.39 (m, 2H, ArH), 7.11–7.26 (m, 3H, ArH), 7.08–7.11 (m, 1H, ArH), 6.87 (s, 1H, ArH), 6.53 (s, 1H, ArH), 4.88 (br, 1H, OH), 3.94 (t, *J* = 6.0, 2H, CH₂N), 3.77 (s, 3H, NCH₃), 3.57–3.63 (m, 2H, CH₂), 2.35 (s, 3H, CH₃), 2.23–2.29 (m, 2H, CH₂N); ¹³C-NMR (CDCl₃, 100 MHz): δ = 188.0, 165.5, 162.5, 153.6, 149.4, 138.5, 137.0, 135.4, 129.6, 129.5, 129.4, 127.4, 126.4, 121.6, 120.0, 118.8, 115.5, 115.3, 113.4, 109.6, 108.9, 107.6, 104.5, 95.9, 39.3, 38.1, 29.9, 20.7, 11.1; HRMS (ESI-TOF): *m*/*z* calcd for C₂₈H₂₄N₃O₂ [M + H]⁺, 454.1925; found, 454.1931.

(8-Hydroxy-6-(2-phenyl-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-10-yl)(4-methoxyphenyl)methanone (**3u**)

Yellow solid; Mp 179–181 °C; IR (KBr) 3438, 2925, 2854, 1728, 1616, 1577, 1532, 1445, 1326, 1253, 1168, 747 cm⁻¹; ¹H-NMR (CDCl₃, 400 MHz) δ = 8.92 (br, 1H, NH), 8.59 (br, 1H, NH), 7.69 (d, *J* = 8.8 Hz, 2H, ArH), 7.45–7.40 (m, 4H, ArH), 7.28–7.22 (m, 4H, ArH), 7.13–7.10 (m, 1H, ArH), 6.96 (d, *J* = 8.8 Hz, 2H, ArH), 6.85 (s, 1H, ArH), 6.72 (s, 1H, ArH), 4.94 (br, 1H, OH), 3.82–3.86 (m, 5H, CH₂N, OCH₃), 3.47–3.51 (m, 2H, NCH₂), 2.19–2.16 (m, 2H, CH₂); ¹³C-NMR (CDCl₃, 100 MHz) δ = 188.9, 161.1, 153.6, 149.3, 136.2, 135.2, 134.8, 131.9, 129.7, 129.5, 129.4, 129.4, 128.9, 128.9, 127.9, 127.0, 127.0, 123.1, 120.6, 119.8, 113.6, 113.1, 113.0, 111.1, 109.5, 108.8, 105.2, 95.9, 55.3, 39.2, 38.0, 20.7; HRMS (ESI-TOF): *m/z* calcd for C₃₃H₂₇N₃O₃ [M + H]⁺, 514.2125; found, 514.2121.

(4-Fluorophenyl)(8-hydroxy-6-(2-phenyl-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido-[1,2-*a*]indol-10-yl)methanone (**3v**)

Yellow solid; Mp 264–266 °C; IR (KBr) 3426, 2924, 1721, 1617, 1535, 1478, 1325, 1221, 1176, 774 cm⁻¹; ¹H-NMR (CDCl₃, 400 MHz): δ = 8.75 (br, 1H, NH), 8.61 (br, 1H, NH), 7.71–7.67 (m, 2H, ArH), 7.44–7.40 (m, 4H, ArH), 7.31–7.26 (m, 4H, ArH), 7.16–7.11 (m, 3H, ArH), 6.85 (s, 1H, ArH), 6.54 (s, 1H, ArH), 4.92 (br, 1H, OH), 3.86–3.83 (m, 2H, CH₂N), 3.52–3.56 (m, 2H, NCH₂), 2.22–2.19 (m, 2H, CH₂); ¹³C-NMR (CDCl₃, 100 MHz): δ = 187.9, 165.0, 162.5, 153.7, 149.4, 138.4, 138.4, 136.1, 135.2, 131.9, 129.7, 129.6, 129.5, 128.9, 128.0, 126.9, 126.7, 123.2, 120.7, 119.8, 115.5, 115.3, 113.2, 111.1, 109.7, 108.7, 105.0,

104.9, 95.9, 39.2, 38.0, 20.4; HRMS (ESI-TOF): *m*/*z* calcd for C₃₂H₂₄FN₃O₂ [M + H]⁺, 502.1925; found, 502.1933.

(8-Hydroxy-6-(5-methoxy-1*H*-indol-3-yl)-1,2,3,4-tetrahydropyrimido[1,2-*a*]indol-10-yl)(4-methoxyphenyl)methanone (**3**w)

Yellow solid; Mp 184–186 °C; IR (KBr) 3430, 2921, 2852, 1724, 1612, 1557, 1528, 1450, 1340, 1250, 1170, 750 cm⁻¹; ¹H-NMR (CDCl₃, 400 MHz) δ = 8.60 (br, 1H, NH), 8.42 (br, 1H, NH), 7.70–7.68 (m, 1H, ArH), 7.64–7.61 (m, 2H, ArH), 7.35–7.33 (m, 1H, ArH), 7.01–6.94 (m, 5H, ArH), 6.70 (s, 1H, ArH), 5.08 (br, 1H, OH), 3.98–3.94 (m, 2H, CH₂N), 3.88 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 3.58–3.56 (m, 2H, NCH₂), 2.27–2.23 (m, 2H, CH₂); ¹³C-NMR (CDCl₃, 100 MHz) δ = 188.8, 161.0, 154.8, 153.6, 148.9, 137.8, 134.7, 131.5, 129.4, 126.5, 123.9, 118.8, 116.3, 113.6, 113.5, 112.3, 108.7, 107.6, 105.3, 105.1, 101.1, 95.8, 55.9, 55.3, 39.2, 38.0, 20.7; HRMS (ESI-TOF): *m*/*z* calcd for C₂₈H₂₅N₃O₄ [M + H]⁺, 468.1918; found, 468.1922.

Figure S1. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3a.

Figure S2. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3a.

Figure S3. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3b.

Figure S4. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3b.

HO

10

9

0.918

8

5.189

055

7

н

.120

10.951

11

1.000

4

2.081

2.022

3

2

3.079

1

5

6

1.048

ppm

0

Figure S6. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3c.

Figure S7. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound **3d**.

205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 ppm

Figure S8. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3d.

Figure S9. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound **3e**.

Figure S10. ¹³C-NMR (125 MHz, DMSO-d₆) spectra of compound 3e.

Figure S11. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3f.

Figure S12. ¹³C-NMR (125 MHz, DMSO-d₆) spectra of compound 3f.

Figure S13. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3g.

Figure S14. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3g.

Figure S15. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3h.

Figure S16. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3h.

Figure S17. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3i.

Figure S18. ¹³C-NMR (125 MHz, DMSO-d₆) spectra of compound 3i.

Figure S19. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3j.

Figure S20. ¹³C-NMR (125 MHz, DMSO-d₆) spectra of compound 3j.

S31 of S57

Figure S21. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound **3k**.

Figure S22. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3k.

Figure S23. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 31.

Figure S24. ¹³C-NMR (125 MHz, DMSO-d₆) spectra of compound 31.

Figure S25. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3m.

Figure S26. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3m.

Figure S28. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3n.

Figure S29. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 30.

-187.100

HO

CH₃

Figure S30. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 30.

10 ppm

20

Figure S31. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound **3p**.

Figure S33. ¹H-NMR (500 MHz, DMSO-*d*₆) spectra of compound 3q.

Figure S34. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3q.

Figure S36. ¹³C-NMR (125 MHz, DMSO-*d*₆) spectra of compound 3r.

Figure S37. 1H-NMR (400 MHz, CDCl3) spectra of compound 3s.

S48 of S57

Figure S39. ¹H-NMR (400 MHz, CDCl₃) spectra of compound 3t.

8.921

4.937

3.835

Figure S41. ¹H-NMR (400 MHz, CDCl₃) spectra of compound 3u.

Figure S43. 1H-NMR (400 MHz, CDCl3) spectra of compound 3v.

Figure S44. ¹³C-NMR (100 MHz, CDCl₃) spectra of compound 3v.

Figure S45. ¹H-NMR (400 MHz, CDCl₃) spectra of compound 3w.

Figure S46. ¹³C-NMR (100 MHz, CDCl₃) spectra of compound 3w.

References

- 1. Huang, Z.-T.; Wang, M.-X. A New Route to 3*H*-1,5-Benzodiazepines and Heterocyclic Ketene Aminals from Benzoyl Substituted Ketene Dithioacetals and Diamines. *Synthesis* **1992**, *12*, 1273–1276.
- 2. Li, Z.-J.; Charles, D. The synthesis of Fluoroheterocyclic Ketene Aminals. Synth. Commun. 2001, 31, 527–533.
- 3. Chen, X.-B.; Liu, X.-M.; Huang, R.; Yan, S.-J.; Lin, J. Three-Component Synthesis of Indanone-Fused Spirooxindole Derivatives. *Eur. J. Org. Chem.* **2013**, 4607–4613.
- 4. Zhang, H.-B.; Liu, L.; Chen, Y.-J.; Wang, D.; Li, C.-J. "On Water"-Promoted Direct Coupling of Indoles with 1,4-Benzoquinones without Catalyst. *Eur. J. Org. Chem.* **2006**, 869–873.
- 5. Niu, F.; Liu, C.-C.; Cui, Z.-M.; Zhai, J.; Jiang, L.; Song, W.-G. Promotion of organic reactions by interfacial hydrogen bonds on hydroxyl group rich nano-solids. *Chem. Commun.* **2008**, 2803–2805.