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Abstract: A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic
oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused
with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and
benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure
was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives,
a novel dithiazole rearrangement (15Ñ13) featuring unexpected movement of the dithiazole
ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of
4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction.
Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was
observed, most likely including hydrodechlorination at a low potential.

Keywords: fused 1,2,3-dithiazoles; synthesis; sulfur monochloride; X-ray diffraction;
cyclic voltammetry

1. Introduction

1,2,3-Dithiazoles, the five membered sulfur-nitrogen heterocycles, are promising for science and
technology because of their biological activity, unusual chemical transformations and interesting
physical properties [1–3]. In particular it has been shown that the 1,2,3-dithiazole scaffold can be
effectively used in the design and synthesis of stable neutral and negatively charged radicals (i.e.,
radical anions)—actual or potential building blocks for molecule-based conductive and/or magnetic
functional materials [4–7]. One can imagine that continued exploration of the 1,2,3-dithiazole chemistry
is guaranteed to yield new compounds of fundamental and/or applied significance.

Normally, monocyclic 1,2,3-dithiazoles are prepared from 4,5-dichloro-1,2,3-dithiazolium chloride
(the Appel salt) as the key synthon [8,9]. Benzo-fused 1,2,3-dithiazolium chlorides (the Herz salts)
can be easily prepared by the Herz reaction from aromatic amines and sulfur monochloride S2Cl2.
Although this reaction has been known for about one hundred years, it is still used nowadays as
well [10,11].
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Other synthetic precursors of fused 1,2,3-dithiazoles are cyclic oximes used in reactions with S2Cl2
in the presence of organic bases such as N-ethyldiisopropylamine (Hünig’s base) and triisobutylamine.
The disadvantage of this method is that no general procedure is established and in all cases arduous
purification of products by column chromatography is required [12–15].

During our ongoing work with S2Cl2 we have found that the reaction conditions and
nature of the organic base have a crucial role influencing the yields of the target sulfur-nitrogen
heterocycles [16–19]. It was shown that many nitrogen organic bases, such as tertiary amines, for
example 1,4-diazabicyclooctane (DABCO), interact with S2Cl2 forming ionic complexes in some
cases [17]. However, to the best of our knowledge, possible interaction/complexation between S2Cl2
and such a strong nitrogen organic base such as pyridine has not been investigated.

In this paper we report a study of a reaction between cyclic oximes and S2Cl2/pyridine
covering selective synthesis of fused 1,2,3-dithiazoles together with their structural characterization by
single-crystal X-ray diffraction (XRD) and investigation of their electrochemical properties by cyclic
voltammetry (CV).

2. Results and Discussion

2.1. Syntheses

In an effort to improve the synthesis of fused 1,2,3-dithiazoles, we re-investigated the reaction of
1-indanone oxime 1 with S2Cl2. Treatment of 1 with S2Cl2 in dimethylformamide (DMF), i.e., a solvent
which is frequently used in S2Cl2 reactions [16,19], in the temperature range from ´25 to 20 ˝C gave
8-chloroindeno[1,2-d]-1,2,3-dithiazole 2 in low yields. Note, that in this case the hetero ring-closure was
accompanied by chlorination. The type of base used was important for the success of reactions with
S2Cl2 in other solvents, such as chloroform or acetonitrile (MeCN). Reaction of 1 with a two-fold excess
of S2Cl2 and DABCO in chloroform at ´5 ˝C led to complex mixtures containing 2 in the yield of 35%.
The best results were achieved by treating 1 with a three-fold excess of S2Cl2 or a four-fold excess of
pyridine in MeCN at 5 ˝C for 1 h which gave target 2 selectively in 81% yield (Scheme 1). The main
feature of this and other S2Cl2/pyridine reactions is that the reaction mixtures are not tarry, and the
product isolations do not require chromatography in contrast with the literature procedures [12–15].
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Treatment of the archetypal cyclopentanone oxime 5a with an excess of S2Cl2 (6 equiv) and
pyridine (8 equiv) in boiling MeCN gave 4,5,6-trichlorocyclopenta-1,2,3-dithiazole 6a in moderate
yield. Using lesser amounts of S2Cl2 or/and pyridine in an attempt to obtain less chlorinated product
failed since only 6a was isolated in lower yields. With a similar procedure, 4-carbethoxy substituted
derivative 5b was converted into dichlorocyclopentadithiazole 6b in a good yield (Scheme 3). In both
cases, the yields of dithiazoles 6 were slightly higher than those reported in the literature [12,15].
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In the previous study on six-membered oximes, p-benzoquinone monooxime 7 gave a complex
mixture of products on reaction with S2Cl2 and the desired fused dithiazole was obtained in a low
yield [13]. We have found that the treatment of 7 with S2Cl2/pyridine in MeCN leads selectively
to dichloro dithiazole 8 or to trichloro dithiazole 9 depending on the molar excess of the reagents.
In boiling MeCN, reaction with a larger excess (S2Cl2, 6 equiv; pyridine, 8 equiv) gave 9, whereas with
a smaller excess (S2Cl2, 3 equiv; pyridine, 4 equiv) 8, in both cases, however, in low yields (Scheme 4).

Molecules 2016, 21, 596 3 of 10 

 

Treatment of the archetypal cyclopentanone oxime 5a with an excess of S2Cl2 (6 equiv) and 
pyridine (8 equiv) in boiling MeCN gave 4,5,6-trichlorocyclopenta-1,2,3-dithiazole 6a in moderate 
yield. Using lesser amounts of S2Cl2 or/and pyridine in an attempt to obtain less chlorinated product 
failed since only 6a was isolated in lower yields. With a similar procedure, 4-carbethoxy substituted 
derivative 5b was converted into dichlorocyclopentadithiazole 6b in a good yield (Scheme 3). In both 
cases, the yields of dithiazoles 6 were slightly higher than those reported in the literature [12,15]. 

 

 
Scheme 3. Reaction of oximes 5 with S2Cl2/pyridine to give dithiazoles 6. 

In the previous study on six-membered oximes, p-benzoquinone monooxime 7 gave a complex 
mixture of products on reaction with S2Cl2 and the desired fused dithiazole was obtained in a low 
yield [13]. We have found that the treatment of 7 with S2Cl2/pyridine in MeCN leads selectively to 
dichloro dithiazole 8 or to trichloro dithiazole 9 depending on the molar excess of the reagents. In 
boiling MeCN, reaction with a larger excess (S2Cl2, 6 equiv; pyridine, 8 equiv) gave 9, whereas with a 
smaller excess (S2Cl2, 3 equiv; pyridine, 4 equiv) 8, in both cases, however, in low yields (Scheme 4). 

 

 
Scheme 4. Reaction of oxime 7 with S2Cl2/pyridine to give dithiazoles 8 and 9. 

Treatment of benzosuberone oxime 10 with S2Cl2/pyridine gave selectively 4,5,6-trichlorobenzo[6,7] 
cyclohepta[1,2-d][1,2,3]dithiazole 11 independent of the quantities of reagents; the best yield of 11 
(61%) was obtained when 6 equiv of S2Cl2 and 8 equiv of pyridine were employed (Scheme 5). 

 

 
Scheme 5. Reaction of oxime 10 with S2Cl2/pyridine to give dithiazole 11. 

1,4-Naphthoquinone oxime 12 treated with 3 equiv of S2Cl2 and 4 equiv of pyridine gave 
4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 in 74% yield (Scheme 6). The structure of 13 was 
confirmed by single-crystal XRD (Figure 1).  

Scheme 4. Reaction of oxime 7 with S2Cl2/pyridine to give dithiazoles 8 and 9.

Treatment of benzosuberone oxime 10 with S2Cl2/pyridine gave selectively
4,5,6-trichlorobenzo[6,7]cyclohepta[1,2-d][1,2,3]dithiazole 11 independent of the quantities of
reagents; the best yield of 11 (61%) was obtained when 6 equiv of S2Cl2 and 8 equiv of pyridine were
employed (Scheme 5).
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An unexpected result was obtained with naphthoquinone oxime 14, an isomer of
oxime 12. Treatment of 14 with S2Cl2/pyridine in MeCN gave a mixture of two isomeric
chloronaphthodithiazolones 13 and 15 in comparable yields (Scheme 7). First of all, it was shown that
14 was an individual compound with no traces of its isomer 12. Special experiments on individual
13 and 15 showed that 15 converts into 13 when treated with S2Cl2/pyridine, whereas 13 remains
unchanged. Effectively, the dithiazole ring moved from α- to β-position, with respect to the keto
group, and the reaction under discussion represents a novel rearrangement. Earlier, similar processes
were discovered by us for fused 1,2,3,4,5-pentathiepines [22–24]. Apparently, the mechanism of this
rearrangement includes dithiazole ring-opening in 15 by the action of the chlorinating agent (i.e.,
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2.2. Electrochemical Reduction and Oxidation of Dithiazole 13

Recently, it was shown that benzo-fused 1,2,3-dithiazoles are able to form persistent radical-anions
(RAs) under conditions of electrochemical and chemical reduction and one of the RAs was isolated
in the form of thermally-stable paramagnetic salts [6,7]. Amongst compounds synthesized in this
work napthoquinone-fused derivatives 13 and 15 are especially interesting in the context of RAs since
one may expect some concentration of a negative charge on the C=O moieties (ultimately leading to
the C–O´ bonding situation) enlarging their ability to coordinate metal cations. This might be a new
approach to the design and synthesis of sulfur-nitrogen π-heterocyclic RA salts as potential building
blocks of magnetic functional materials [25–29].

The electrochemical behavior of 13 was studied and found to be a very complex multistep process.
Thus, the CV of 13 in MeCN (0 > E > ´2.0 V) contains six irreversible peaks in the cathodic branch of
the voltammogram. The additional quasi-reversible peaks 1c’´1a’ and 2c’´2a’ were observed in the
second cycle at lower potentials than E1C

p (Figure 2).
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Figure 2. CV of 13 in MeCN (black curve: first cycle; red curve: second cycle). The potential sweep
range was 0 > E > ´2.0 V and the potential sweep rate 100 mV¨ s–1. Peak potentials (´Eij

p [30], V):
1C, 0.80; 2C, 0.93; 3C, 1.37; 4C, 1.47; 5C, 1.68, 6C, 1.76; 1c’, 0.24; 1a’, 0.19; 2c’, 0.62; 2a’, 0.56.

With a limited potential sweep covering only reduction peaks 1C and 2C (0 > E > ´1.2 V), peaks
1c’–1a’ and 2c’–2a’ did not vanish (Figure 3a). Moreover, further decrease in the potential sweep down
to the range 0 > E > ´0.88 V embracing only the first irreversible step of the reduction of 13 (Figure 3b)
did not cause any qualitative change in the compound’s CV. We conclude that both electrode processes
1c’–1a’ and 2c’–2a’ belong to the product(s) of transformation of 13 at the first step of its reduction, and
their currents are kinetically controlled by the reactions at the peak 1C.
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The electrochemical reduction of 13 could be accompanied by its rapid irreversible dechlorination
initiated by electron transfer (cf. [31]). Additionally, the bond C=N of the 1,2,3-dithiazole ring can
undergo irreversible reduction in the RA state of a molecule, or the ring can be opened by the cleavage
of S-S or/and S-N bonds (cf. [32]). However, it is impossible to assign, unambiguously, these processes
to the peaks 1C or 2C. No long-lived paramagnetic products were observed by conventional EPR
spectroscopy under stationary electrolysis of 13 in the range of potentials ´0.8 > E > ´1.8 V.

CV of 13 in oxidative area of potentials is characterized by the only irreversible peak 1A (Ox) at
the potential E1A(Ox)

p = 1.53 V (Figure 4). An additional irreversible peak 2C (Ox) (E2A(Ox)
p = 0.85 V)

corresponding to the reduction of oxidation products of 13 is observed in the cathode branch of the CV.
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Overall, the electrochemical behavior of 13 is characterized by a large number of multistage
irreversible processes and their interpretation is a real challenge. Due to this complexity, at the
current state of research only a qualitative description of the electrochemical behavior of 13 is possible.
For further work preparative electrochemical reduction of 13 at controlled potentials is planned
to obtain samples of reduction products enable their conventional characterization, together with
generation of RAs from chlorine-less 1,2,3-dithiazoles such as 4 and related derivatives.

3. Experimental Section

3.1. General Information

Elemental analyses for C, H, and N were performed with Perkin Elmer 2400 Elemental Analyser
(Perkin Elmer, Waltham, MA, USA). Melting points were determined on a Boetius hot-stage apparatus
and are uncorrected.

1H (300.1 MHz) and 13C (75.5 MHz) NMR spectra were taken for CDCl3 solutions with a Bruker
AM-300 (Bruker AXS Handheld Inc., Kennewick, WA, USA).

MS spectra (EI, 70 eV) were obtained with a Finnigan MAT INCOS 50 (Hazlet, NJ, USA), and
high-resolution MS spectra with a Bruker micrOTOF II (Bruker Daltonik Gmbh, Bremen, Germany)
instruments using electrospray ionization. The measurements were operated in a positive ion mode
(interface capillary voltage´4500 V) or in a negative ion mode (3200 V); mass range was from m/z 50 to
m/z 3000 Da; external or internal calibration was done with Electrospray Calibrant Solution (Fluka).
A syringe injection was used for solutions in MeCN, methanol, or water (flow rate 3 µL¨min´1).
Nitrogen was applied as a drying gas; interface temperature was 180 ˝C.

IR spectra were measured with a Specord M-80 instrument (Carl Zeiss, Jena, Germany) in
KBr pellets.

Oximes 3 [33], 7 [34], 12 [35] and 14 [36] were prepared according to the published procedures.
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3.2. General Procedure for the Reaction of Cyclic Oximes with S2Cl2 and Pyridine in Acetonitrile

At´25 ˝C and under argon, S2Cl2 (0.24 mL, 3.0 mmol; or 0.48 mL, 6.0 mmol) was added dropwise
to a stirred solution of oxime (1.0 mmol) and pyridine (0.32 mL, 4.0 mmol; or 0.64 mL, 8.0 mmol) in dry
MeCN (10 mL). The mixture was stirred for 0.5 h at ´5–0 ˝C, for 24 h at ambient temperature, refluxed
for 1 h, filtered and the solvent was distilled off under reduced pressure. The residue was dissolved in
EtOH (20 mL), diluted by H2O (20 mL) and extracted with ether (3 ˆ 20 mL). Combined extracts were
washed with H2O (20 mL), dried, and solvent was evaporated.

8-Chloroindeno[1,2-d]-1,2,3-dithiazole 2. Red solid, mp 108–110 ˝C (107–109 ˝C [12]). IR and MS spectra
are similar to the literature data [12].

8-Phenylindeno[1,2-d]-1,2,3-dithiazole 4. Yellow solid, mp 111–112 ˝C (111–113 ˝C [12]). IR and MS
spectra are similar to the literature data [12].

4,5,6-Trichlorocyclopenta[d][1,2,3]dithiazole 6a. Deep purple solid, mp 122–124 ˝C (125–127 ˝C [12]).
IR and MS spectra are similar to the literature data [12].

Ethyl 5,6-dichlorocyclopenta[d][1,2,3]dithiazole-4-carboxylate 6b. Yellow solid, mp 80–82 ˝C (83–84 ˝C [15]).
IR and MS spectra are similar to the literature data [15].

5,7-Dichloro-6H-1,2,3-benzodithiazol-6-one 8. Red solid, mp 259–261 ˝C (257–258 ˝C [13]). IR and MS
spectra are similar to the literature data [13].

4,5,7-Trichloro-6H-1,2,3-benzodithiazol-6-one 9. Red solid, mp 214–215 ˝C (216–217 ˝C [13]). IR and MS
spectra are similar to the literature data [13].

4,5,6-Trichlorobenzo[6,7]cyclohepta[1,2-d][1,2,3]dithiazole 11. Red solid, mp 119–121 ˝C (121–122 ˝C [12]).
IR and MS spectra are similar to the literature data [12].

4-Chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13. Red solid, mp 230–233 ˝C (234–235 ˝C [13]). IR and
MS spectra are similar to the literature data [13].

9-Chloro-4H-naphtho[2,3-d][1,2,3]dithiazol-4-one 15. Blue solid, mp 192–195 ˝C (195–196 ˝C [13]). IR and
MS spectra are similar to the literature data [13].

All compounds synthesized had correct elemental analyses and NMR spectra.

3.3. Behavior of 1,2,3-Dithiazoles 13 and 15 in the S2Cl2/Pyridine System

At ´25 ˝C and under argon, S2Cl2 (0.048 mL, 0.6 mmol) was added dropwise to a stirred solution
of 15 (25 mg, 0.1 mmol) and pyridine (0.064 mL, 8.0 mmol) in dry MeCN (3 mL). The mixture was
refluxed for 2 h, filtered and the solvent was distilled off under reduced pressure. The residue was
dissolved in CH2Cl2 (7 mL), washed with H2O (3 ˆ 2 mL), dried over MgSO4, and the residue was
separated by flash chromatography (silica gel Merck 60, hexane to hexane/CH2Cl2 mixtures) to give
13 (10 mg, 39%) and 15 (11 mg, 43%).

In the experiment with 13 under the same reaction conditions it was quantitatively recovered.

3.4. X-ray Diffraction

XRD data of 13 were obtained with a Bruker Kappa Apex II CCD diffractometer (Bruker
AXS Gmbh, Karlsruhe, Germany) using ϕ, ω scans of narrow (0.5˝) frames with Mo Kα radiation
(λ = 0.71073 Å) and a graphite monochromator. The structure of 13 was solved by direct methods
and refined by full-matrix least-squares method against all F2 in anisotropic approximation using
the SHELX-97 (Bruker AXS, Madison, WI, USA) programs set [37]. The H atoms positions were
calculated with the riding model. Absorption corrections were applied empirically using SADABS
programs [38]. Shortened intermolecular contacts were analyzed using the PLATON [39] and
MERCURY [40] programs.
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Compound 13 is orthorhombic, space group Pca21, a = 16.6153(6), b = 3.8775(1), c = 15.4168(6) Å,
V = 993.24(6) Å3, Z = 4, C10H4ClNOS2, Dcalc = 1.697 g¨ cm–3, µ = 0.770 mm–1, F(000) = 512, crystal
size 0.80 ˆ 0.20 ˆ 0.07 mm3, independent reflections 2254 (Rint. = 0.0404), wR2 = 0.0512, S = 1.09
for all reflections (R = 0.0196 for 2202 F > 4σ). Tables listing detailed crystallographic data, atomic
positional parameters, and bond lengths and angles are available as CCDC 1468963 from the Cambridge
Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

3.5. Cyclic Voltammetry

The CV measurements on compound 13 (~1.2 mM solutions in MeCN) were performed with a
PG 310 USB potentiostat (HEKA Elektronik, Germany) at 293 K in an argon atmosphere at a stationary
Pt spherical electrode (S = 0.08 cm2) with 0.1 M Et4NClO4 as a supporting electrolyte. A standard
electrochemical cell (solution volume was 5 mL) connected to the potentiostat with three-electrode
scheme was used. Peak potentials were quoted with reference to a saturated calomel electrode (sce).

4. Conclusions

In this work, a new general procedure for the selective synthesis of carbocycle-fused
1,2,3-dithiazoles based on the reaction of cyclic oximes with S2Cl2 and pyridine in MeCN was
established. With naphthalenone derivatives, a novel dithiazole rearrangement was discovered, i.e.,
isomerization of 15 into 13. The structure of 1,2,3-dithiazole 13 was confirmed by single-crystal XRD.

In most cases the hetero ring-closure was accompanied by chlorination. The presence of chlorine
atoms in the 1,2,3-dithiazoles synthesized most likely causes instability of their reduced forms.
Particularly, under the CV conditions and with compound 13, we speculate that hydrodechlorination
occurs at a low potential. In any case, no long-lived paramagnetic products were observed
by conventional EPR spectroscopy under stationary electrolysis of 13 in the potential range
´0.8 > E > ´1.8 V. In further syntheses of carbocycle-fused 1,2,3-dithiazoles as potential precursors
of persistent RAs (cf. [6,7]) using the established procedure the chlorination must be prevented by
appropriate substitution in starting oximes.

The effectiveness of the S2Cl2/pyridine system in the chemistry described in this work motivates
a special investigation of possible interaction/complexation between its components.
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