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Abstract: Operation of an α-hemolysin nanopore transduction detector is found to be surprisingly
robust over a critical range of pH (6–9), including physiological pH = 7.4 and polymerase chain
reaction (PCR) pH = 8.4, and extreme chaotrope concentration, including 5 M urea. The engineered
transducer molecule that is captured in the standard α-hemolysin nanopore detector, to transform it
into a transduction detector, appears to play a central role in this stabilization process by stabilizing the
channel against gating during its capture. This enables the nanopore transduction detector to operate
as a single molecule “nanoscope” in a wide range of conditions, where tracking on molecular state is
possible in a variety of different environmental conditions. In the case of streptavidin biosensing,
results are shown for detector operation when in the presence of extreme (5 M) urea concentration.
Complications involving degenerate states are encountered at higher chaotrope concentrations, but
since the degeneracy is only of order two, this is easily absorbed into the classification task as in prior
work. This allows useful detector operation over a wide range of conditions relevant to biochemistry,
biomedical engineering, and biotechnology.

Keywords: channel current cheminformatics; nanopore detector; single-molecule biophysics;
stationary signal analysis; biosensor

1. Introduction

1.1. Channel Current Detectors

Early channel current detectors, known as Coulter Counters, had millimeter diameters (0.1 mm)
and were used to count cell concentrations and mixture compositions [1]. Information obtained
about the excluded cell volume was used in classifying blood cells as red or white, the ratio of which
provided important data for medical diagnostics. The 100 µm pores of Coulter were devised in the
early 1950s. It was not until the early 1970s that nanometer-scale pores were examined [2–4]. At that
time, Bean made a nanometer-scale channel from crystalline structures (mica) that had defect tracks
(from fission events). When etched with HF, the normally impervious mica is removed along the
defect-track in its crystalline structure. Depending on how this process is controlled, pores have
been obtained with diameters ranging down to 6 nm (50 nm diameter pores commercially available).
Although this technology has been used for observations on uncharged particles (polystyrene spheres
with 90 nm diameter, [3]), it does not work as well with charged molecules (like DNA). Another
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complication is that the etching method for pore construction inevitably leads to long tunnel-like
channels, which does not provide the best configuration for detector uses. Detection of biomolecules
with biologically-based nanometer-scale pores also showed promise at about this time with the work
by Hladky and Haydon [5]. They showed that a biological channel, the bacterial antibiotic gramicidin,
could self-assemble in a lipid bilayer to form a functional channel (with currents of order 1 pA).
This potentially solved two of the mica-channel problems: the lipid bilayers are very thin, 1–10 nm
across, and the protein-based, biologically functional, nanometer-scale pore seemed better suited
to passing charged biomolecules. Gramicidin was too small to detect most biomolecules, however,
since it could barely pass molecules the size of the water molecule. It was not until 1994 [6] that
a sufficiently large pore was studied, α-hemolysin. In the 1994 paper, Bezrukov et al. studied the
blockades of α-hemolysin resulting from a charge-neutral polymer: polyethylene glycol (PEG). Later
modifications to the gramicidin pore permitted its use as an antibody-modulated (on-off) biosensor,
while modifications to the α-hemolysin pore enabled its use as a metal biosensor, among other things.

Nanometer-scale pores are being developed in solid-state media [7,8] in hybrid media and with
refinements to the biologically-based nanopore device. This provides rich opportunities for the future
because at nanometer scale a wealth of new prospects arises, from assaying solutions, to recognizing
individual molecular motions. Moving to solid state media, however, is a major undertaking since
Nature, in the form of the α-hemolysin channel, has produced a very robust setting that is hard to
match [7–10]. Simulation work is helping to clarify the problems in the solid-state setting [11], as
well as offering insights into molecular interactions with the biological channels, including molecular
ratchets [12].

In [13], nanopore-based sequencing is done on copy number variants in part of the human genome
using the Oxford Nanopore Technologies MinION nanopore sequencer. Error rates for base-level
detection on DNA constructs are explored in [14], and a review on nanopore translation-detection
and hairpin-construct methods for DNA sequencing is given in [15]. DNA sequencing is a highly
competitive field, however, where rival DNA sequencing technologies, such as at Illumina Inc.,
are well established, so translation-based nanopore sequencing may be very specialized in actual
utility. Nonetheless, nanopore biosensing, including that based on short DNA-sequence detection
(such as for miRNA detection), might be a critical area of strength of the different types of nanopore
detector systems.

In the subsections that follow (Sections 1.1.1–1.1.3 and sections in Section 1.2), an introduction is
given on a collection of sub-topics particularly relevant to the transduction detection approach, where
the particular “transduction” mechanism indicated in this approach is further clarified by its various
implementation and signal analysis advantages.

1.1.1. Transduction vs. Translation

There are two ways to functionalize measurements of the flow (of something) through a “hole”:
(1) translocation sensing; and (2) transduction sensing. The translocation methods in the literature
are typically a form of a “Coulter Counter”, with a wide range of channel dimensions allowable, that
typically measures molecules non-specifically via pulses in the current flow through a channel as each
molecule translocates. The transduction biosensing method, on the other hand, requires nanopore sizes
that are much more restricted, to the 1–10 nm inner diameters that might capture, and not translocate,
most biomolecules. Transduction functionalization uses a channel flow modulator that also has a
specific binding moiety, the transducer molecule. In transduction, the transducer molecule is used to
measure molecular characteristics indirectly, by using a transducer/reporter molecule that binds to
certain molecules, with subsequent distinctive blockade by the bound, or unbound, molecule complex.
One such transducer, among many studied in [16–22], was a channel-captured dsDNA “gauge” that
was covalently bound to an antibody. The transducer was designed to provide a blockade shift
upon antigen binding to its exposed antibody binding sites. In turn, the dsDNA-antibody transducer
platform then provides a means for directly observing the single molecule antigen-binding affinities of



Molecules 2016, 21, 346 3 of 24

any antibody in single-molecule focused assays, in addition to detecting the presence of binding target
in biosensing applications.

1.1.2. Single-Molecule vs. Ensemble

When the extra-channel states correspond to bound or unbound, there are two protocols for
how to set up the Nanopore Transduction Detection (NTD) platform: (1) observe a sampling of
bound/unbound states, each sample only held for the length of time necessary for a high accuracy
classification; or (2) hold and observe a single bound/unbound system and track its history of
bound/unbound states. The single molecule binding history in (2) has significant utility in its own
right, especially for observation of critical conformational change information not observable by
any other methods (critical information for understanding antibodies, allosteric proteins, and many
enzymes). The ensemble measurement approach in (1), however, is able to benefit from numerous
further augmentations, and can be used with general transducer states, not just those that correspond
to a bound/unbound extra-channel states.

Fundamentally, the weaknesses of the standard ensemble-based binding analysis methods are
directly addressed with the single-molecule approach, even if only to do a more informed type of
ensemble analysis. The role of conformational change during binding, in particular, could potentially
be directly explored in this setting. This approach also offers advantages over other single-molecule
translation-based nanopore detection approaches in that the transduction-based apparatus introduces
two strong mechanisms for boosting sensitivity on single-molecule observation: (i) engineered
enhancement to the device sensitivity via the transduction molecule itself; and (ii) machine learning
based signal stabilization with highly sensitive state resolution. NTD used in conjunction with recently
developed pattern recognition informed sampling capabilities [23] greatly extends the usage of the
single-channel apparatus. For medicine and biology, NTD and machine learning methods may aid
in understanding multi-component interactions (with co-factors), and aid in designing co-factors
according to their ability to result in desired binding or modified state.

In ensemble single-molecule measurements (via serial detection process), the pattern recognition
informed (PRI) sampling on molecular populations provides a means to accelerate the accumulation
of kinetic information. PRI sampling over a population of molecules is also the basis for
introducing a number of gain factors. In the ensemble detection with PRI approach [23], in
particular, one can make use of antibody capture matrix and ELISA-like methods [16–18], to
introduce two-state NTD modulators that have concentration-gain (in an antibody capture matrix)
or concentration-with-enzyme-boost-gain (ELISA-like system, with production of NTD modulators
by enzyme cleavage instead of activated fluorophore). In the latter systems the NTD modulator can
have as “two-states”, cleaved and uncleaved binding moieties. UV- and enzyme-based cleavage
methods on immobilized probe-target can be designed to produce a high-electrophoretic-contrast,
non-immobilized, NTD modulator, that is strongly drawn to the channel to provide a “burst” NTD
detection signal [16–18,22].

1.1.3. Biomedicine Needs Biosensing with High Sensitivity in Presence of Interference

Clinical studies have shown an abundance of protein-based disease markers that accumulate
in the blood of patients suffering from chronic kidney disease. In the case of the Bioscience PXRF01
marker, the stage of kidney disease is linearly correlated (r = 83) indicating that the more severe
the disease, the greater the accumulation of the marker in the bloodstream of patients. The NTD
biosensing platform provides a tool for quantifying the relationship between PXRF01 and its biosystem
interactants with an unparalleled fidelity. With higher quantification of PXRF01 a more accurate
characterization of the disease biomarker and kidney disease progression can be established. Greater
sensitivity translates directly to earlier diagnosis and improved outcomes. The electrophoretic nature
of the biosensing platform also allows for significant advantage in dealing with interference agents,
whether in the blood sample itself, say, or due to contaminants, since the reporter molecule can be
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designed to have a charge that easily separates it from the interference agents (This is why blood can
be scraped off the dirty floor at a crime scene and still accurately report on the identity or identities of
those present.).

1.2. Nanopore Transduction Detection and Stochastic Carrier Wave Signal Analysis

The nanopore transduction molecule is engineered such that it can be individually captured in
the channel with blockade signal consisting of a telegraph-like signal with stationary signal, and thus,
statistics (often referred to as “stationary statistics”). This allows a system to be established where
the longer the observation window the stronger the classification performance on the transducer
molecule’s states, such as for bound and unbound states [24]. In a biosensing setting, NTD transducers
can be introduced such that upon binding of analyte to the transducer molecule the toggling signal
is greatly altered, to one with different transition timing and different blockade residence levels.
The change in the channel blockade pattern, e.g., change in the modulatory signals statistics, is
then identified using machine learning pattern recognition methods. The NTD approach has been
shown to offer extraordinary sensitivity [16–22], but it is unclear how well it works in practice in the
presence of interference agents (such as occur in blood) and with a wide range of buffers including
the physiological pH range (for enzyme analysis) and buffers with high chaotrope concentration
(for use in binding analysis). In this paper we demonstrate NTD signal stabilization is possible in
each of these cases, with successful device operation obtained over a wide range of buffer pH and
chaotrope concentration.

In Figure 1a nanopore transduction detector is shown, in a configuration where the target analyte
is streptavidin and biotin is used as the binding moiety (the fishing “lure”) at the transducer. In the
absence of a transducer molecule and its target analyte, an open-channel current flows through the
nanopore channel. When the appropriately charged transducer molecule is added, it is captured in the
nanopore and disrupts the blockade current in a unique and measurable way as a result of its transient
binding to the internal walls of the channel. In short, the transducer molecule “rattles” around inside
the nanopore, imprinting its transient channel-binding kinetics on the channel blockade current and
generating a unique signal: A signal that is notably altered when the transducer is also bound to its target.
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Figure 1. Schematic diagram of the Nanopore Transduction Detector [20]. (a) The nanopore detector
consists of a single pore in a lipid bilayer which is created by the oligomerization of the staphylococcal
alpha-hemolysin toxin in the left chamber, and a patch clamp amplifier capable of measuring pico
Ampere channel currents located in the upper right-hand corner; (b) A biotinylated DNA hairpin
molecule captured in the channel’s cis-vestibule, with streptavidin bound to the biotin linkage that is
attached to the loop of the DNA hairpin; (c) The biotinylated DNA hairpin molecule (Bt-8gc) of (b).
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1.2.1. Ubiquitous Transduction Channel-Modulator Capability via Laser Modulation

Biomolecules are in size-ranges that are well-sized for interaction with the α-hemolysin based
nanopore detector shown in Figure 1. Duplex DNA cannot translocate the channel, for example, being
captured at one end instead, but ssDNA can translocate. It is discussed in [25,26] that the end of
the DNA molecule can be read for nine base-pair DNA molecules with very high accuracy based
on the telegraph-like modulatory signals directly elicited during their channel interactions. DNA
hairpins with lengths greater than roughly twelve base-pairs no longer elicit channel modulations,
residing at a fixed-level blockade. If the high accuracy of the DNA terminus read can be extended
to DNA hairpins at longer lengths, then highly efficient Sanger-style DNA sequencing might be
possible on the Nanopore platform. In [16–19], a 20 base-pair hairpin with a magnetic bead attachment
was studied with this in mind. The 20 base-pair hairpin (bphp) with magnetic bead produced
a fixed level blockade that was similar to the blockade of the 20 bphp with no bead attachment
(see Figure 2). In the presence of appropriate laser modulations with a chopped beam, channel
blockade modulations resulted (Figure 2c). It was found that the modulatory signals were distinctive
in this “re-awakened” configuration. Regarded in a different sense, the captured 20 bphp provides
a terminus-dependent transform on the injected laser modulation that allows the terminus to be
identified as in the 9 bphp analysis, presumably with similar high accuracy given sufficient observation
time. Thus Sanger sequencing on the NTD platform appears possible with use of laser modulations
(but without dyes). Perhaps what is more interesting, however, is simply that a molecule producing
a fixed level blockade upon capture was successfully induced into a unique telegraph-like blockade
signal by use of laser modulations.
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Figure 2. (a) Channel current blockade signal where the blockade is produced by 9GC DNA hairpin
with 20 bp stem [19]; (b) Channel current blockade signal where the blockade is produced by 9GC
20 bp stem with magnetic bead attached; (c) Channel current blockade signal where the blockade is
produced by c9GC 20 bp stem with magnetic bead attached and driven by a laser beam chopped at
4 Hz. Each graph shows the level of current in picoamps over time in milliseconds.

Biomolecules in general, such as DNA, RNA, protein, and glycoprotein, typically provide
channel blockades at a fixed level. If their blockades can be induced into telegraph-like signals
via introduction of laser modulations, then the critical modulatory signal aspect of the transducer can
be made ubiquitous, allowing close inspection of any molecule, via its states, when interacting with
the nanopore.

1.2.2. Antibody Binding Studies

Although some protein surface features clearly elicit blockade signals that are modulatory, not all
surface features of interest will exhibit distinctive blockade signals when drawn to the channel and in
these instances antibody or aptamer based targeting of those features could be used instead, where the
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antibody or aptamer is linked to a channel modulator that then reports on the presence of the targeted
surface feature indirectly.

In [19] it is found that the antibody blockade signal alters shortly after introduction of antigen, as
Figure 3 shows upon addition of a moderately high concentration (100 µg/mL) of 200 kD multivalent
synthetic polypeptide (Y,E)-A-K. Presumably, these changes are the result of antibody binding to
antigen. The time before the blockade signal is altered is also interesting; it ranges from seconds to
minutes (not shown). This presumably is a reflection of antibody affinity.Molecules 2016, 21, 346 6 of 22 
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Figure 3. Antibody-Antigen binding—clear example from specific capture orientation [19]. Each trace
shows the first 750 ms of a three-minute recording, beginning with the blockade signal by an antibody
molecule that has inserted (some portion) into the α-hemolysin channel to produce a toggle signal
(A–C). Antigen is introduced at the beginning of frame (A). Changes to the toggle signal are discernible
in frame (D), indicating the binding event between the antibody and antigen has taken place.

2. Background

The background subsections that follow describe some implementations of the NTD Nanoscope,
and in each case it will be clear how the device utility is significantly enhanced if a larger operational
range can be established in pH, chaotrope concentration, and interference concentration (as will
then be shown Section 3). The NTD Nanoscope implementations discussed fall into four groups:
(Section 2.1) annealing-based detection with use of chaotropes with application to: pathogen
detection; miRNA detection and haplotyping; SNP detection and haplotyping; and Y-SNP based
local sequencing; (Section 2.2) protein post-translational modification assaying, such as for performing
glycoassays; (Section 2.3) enzyme studies; and (Section 2.4) high affinity/specificity (non-annealing)
based biosensing, such as with aptamers and antibodies.

2.1. Pathogen Detection, miRNA Detection, and miRNA Haplotyping

In clinical diagnostics, as well as in biodefense testing, patient blood samples can be drawn for
the purpose of assaying the DNA and glycoprotein contents. In the case of DNA there will be a
preponderance of the individual’s own genomic DNA in such a sample, but if there is infection then
trace amounts of the associated viral or bacterial DNA will be present as well. One of the questions
that then arises is how to detect unique elements of bacterial DNA sequence with very high sensitivity
and specificity. In [1] annealing-based detection is explored, where Y-shaped NTD transducer results
are shown for tests involving an eight base ssDNA target [22]. The method can be extended to other
lengths of targeted ssDNA, using annealing-based recognition. For longer lengths we can arrive at
interesting detection scenarios for pathogens or for miRNAs (some possibly pathogenic). The known
pathogen ssDNA targets could be longer, 15–25 bases say, to enable unique identifiers respective to a
particular pathogen. For miRNA detection probes could be designed for ssDNA target annealing that
is in the 7–15 base range.

MicroRNA detection follows a similar approach to the pathogen detection problem, but now
typically working with a much shorter length nucleic acid detection target, a miRNA sequence



Molecules 2016, 21, 346 7 of 24

based annealing target. In this setting, they often have similar “informed” analysis to pathogen
detection analysis.

The detection of SNPs via annealing is demonstrated with the Y-shaped DNA transduction
molecule that is minimally altered, and such that the SNP variant occurs in the Y-nexus region.
In preliminary work with Y-transducers [19,22] we demonstrate how single-base insertions or
modifications at the nexus of the Y-shaped molecule can provide clearly discernible changes in channel-blockade
signals. The design of the Y-transducer for SNP detection was similar to the process mentioned
in [19,22] for nanopore-detector directed (NADIR) searches for aptamers based on bound-state lifetime
measurements. The NTD method provides a viable prospect for SNP variant detection to very high
accuracy—possibly equaling the accuracy with which the NTD can discern DNA control hairpins that
only differ in terminal base-pair (greater than 99.999% for sufficiently long observation time).

Y-DNA modulator platforms for biosensing can also provide a simple linker platform for use
with antibody binding moieties, where a “linker” aptamer can be used that is covalently linked to the
common base of the antibody (IgG) molecule (using a DNA tagged antibody approach). Aptamer
tuning can also be enhanced in the nanopore setting using nanopore directed SELEX (referred to as
NADIR in [19]), where binding strength can be selected to be not too strong or weak according to
the desired tuning on the observed binding lifetimes, as seen in the state durations of the observed
state noise.

Linkage of ssDNA to antibody is commonly done in immuno-PCR preparations, so another path
with rapid deployment is to make use of a linkage technology that is already commoditized, e.g., a
good NTD signal can then be produced with immuno-PCR tagged antibodies that are designed to
anneal to another DNA molecule to form an NTD “Y-transducer”.

2.2. Glycoassayer, Posttranslational Assayer

Thyroid stimulating hormone (TSH) is present as a heterogeneous mixture of TSH molecules
with different amounts of glycation (and other modifications). The extent of TSH glycation is a critical
regulatory feedback mechanism. Tracking the heterogeneous populations of regulatory proteins
is required to further our understanding and diagnostic capabilities for a vast number of diseases.
Hemoglobin molecules are an example where specific, on-the-market, glycation diagnostics are in
use—here extensive glycation is often associated with disease, where the A1c hemoglobin glycation
test is typically what is performed in many over-the-counter blood monitors.

A nanopore-based glycoform assay could be performed on modified forms of the proteins
of interest, i.e., not just native, but deglycosylated, active-site “capped”, and other forms of the
protein of interest, to enable a careful functional mapping of all surface modifications. Pursuant
to this, the methodology could also be re-applied with digests of the protein of interest, to
further isolate the locations of post-translational modifications when used in conjunction with other
biochemistry methods.

Part of the complexity of glycoforms, and other modifications, of proteins such as hemoglobin and
TSH, is that these glycoforms are present as a heterogeneous mixture, and it is the relative populations
of the different glycoforms that may relate to clinical diagnosis or identification of disease. To this
end, a protein’s heterogeneous mixture of glycations and other modified forms could be directly
observed with the NTD Nanoscope setup, allowing direct access to the clinically relevant data of
interest, not simply the concentration of one glycoform. Furthermore, it is the transient, dynamic,
changes of the glycoform profile that is often the data of interest, such that a “real-time” profile of TSH
glycoform populations are of clinical relevance, and obtaining such real-time profiling of modified
forms (glycoforms, etc.) in physiological buffer conditions is an area of natural advantage for the
NTD approach.

In conjunction with protein digests and HPLC, nanopore detection of glycation may provide
a powerful new means to assay the post-translational modifications present for a given protein
(in whole or via its digests), including their changing molecular complexations. This has profound



Molecules 2016, 21, 346 8 of 24

significance for the understanding and treatment of a variety of diseases, including diabetes, where
post-translational modifications to hemoglobin are an important biomarker for disease diagnosis
and treatment.

2.3. Enzyme Studies: HIV Integrase

The NTD approach may provide an excellent method for examining enzymes, and other complex
biomolecules, particularly their activity in the presence of different co-factors. There are two ways
that these studies can be performed: (i) the enzyme is linked to the channel transducer, such that the
enzyme’s binding and conformational change activity may be directly observed and tracked; or (ii) the
enzyme’s substrate may be linked to the channel transducer and observation of enzyme activity on that
substrate may then be examined. Case (i) provides a means to perform DNA sequencing if the enzyme
is a nuclease, such as lambda exonuclease (discussed in Section 5.3). Case (ii) provides a means to do
screening, for example, against HIV integrase activity (for drug discovery on HIV integrase inhibitors).

An example of a transient interaction that has been examined involves interaction of HIV integrase
with its consensus DNA binding terminus [27]. One use of the nanoscope is as drug-discovery
assayer in settings where measurements are made of transient interactions, such as HIV transcriptase
interactions with DNA in the presence of interference agents or competitive inhibition molecules
(decoy aptamers, for example).

HIV integrase binding to viral-DNA appears to favor the high flexibility of a CA/TG dinucleotide
positioned precisely two base-pairs from the blunt terminus of the duplex viral DNA (and
experimentally verified with the nanoscope in the conformational analysis shown in [28]). The CA/TG
dinucleotide presence is a universal characteristic of retroviral genomes. Deletion of these base pairs
impedes the integration process and it is believed that the unusual flexibility imparted by this base-pair
on the terminus geometry is necessary for the binding to integrase. Once bound to integrase the viral
DNA molecule is modified by removal of the two residues at the 31-end together with subsequent
insertion into the host genome.

2.4. Streptavidin Toxin Biosensor

The transducer molecule in the NTD “Streptavidin Toxin Biosensor” configuration (shown in
Figure 1) consists of a bi-functional molecule: one end is captured in the nanopore channel while
the other end is outside the channel. This exterior-channel end is engineered to bond to a specific
target: the analyte being measured. When the outside portion is bound to the target, the molecular
changes (conformational and charge) and environmental changes (current flow obstruction geometry
and electro-osmotic flow) result in a change in the channel-binding kinetics of the portion that is
captured in the channel. This change of kinetics generates a change in the channel blockade current
which represents a signal unique to the target molecule.

Some of the transducer molecule results from [20] are shown in Figure 4, for a biotinylated
DNA-hairpin that is engineered to generate two unique signals depending on whether or not a
streptavidin molecule is bound.
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Figure 4. Biotinylated DNA hairpin transducer (Bt-8gc) in the presence of binding target (streptavidin)
and chaotrope (urea). (a) Observations of individual blockade events are shown in terms of their
blockade standard deviation (x-axis) and labeled by their observation time (y-axis) [20]. The standard
deviation provides a good discriminatory parameter in this instance since the transducer molecules
are engineered to have a notably higher standard deviation than typical noise or contaminant signals.
At T = 0 s, 1.0 µM Bt-8gc is introduced and event tracking is shown on the horizontal axis via the
individual blockade standard deviation values about their means. At T = 2000 s, 1.0 µM Streptavidin is
introduced. Immediately thereafter, there is a shift in blockade signal classes observed to a quiescent
blockade signal, as can be visually discerned. The new signal class is hypothesized to be due to
(Streptavidin)-(Bt-8gc) bound-complex captures; (b) As with the Left Panel on the same data, a marked
change in the Bt-8gc blockade observations is shown immediately upon introducing streptavidin at
T = 2000 s, but with the mean feature we clearly see two distinctive and equally frequented (racemic)
event categories. Introduction of chaotropic agents degrades first one, then both, of the event categories,
as 2.0 M urea is introduced at T = 4000 s and steadily increased to 3.5 M urea at T = 8100 s.

In the NTD platform, sensitivity increases with observation time [24] in contrast to translocation
technologies where the observation window is fixed to the time it takes for a molecule to move through
the channel. Part of the sensitivity and versatility of the NTD platform derives from the ability to couple
real-time adaptive signal processing algorithms to the complex blockade current signals generated by
the captured transducer molecule. If used with the appropriately designed NTD transducers, NTD can
provide excellent sensitivity and specificity and can be deployed in many applications where trace level
detection is desired. The monoclonal antibody-based NTD system, deployed as a biosensor platform,
possesses highly beneficial characteristics from multiple technologies: the specificity of monoclonal
antibody binding, the sensitivity of an engineered channel modulator to specific environmental change,
and the robustness of the electrophoresis platform in handling biological samples. In combination,
the NTD platform can provide trace level detection for early diagnosis of disease as well as quantify
the concentration of a target analyte or the presence and relative concentrations of multiple distinct
analytes in a single sample.

In [20] a 0.17 µM streptavidin sensitivity is demonstrated in the presence of a 0.5 µM concentration
of detection probes, with only a 100 s detection window. The detection probe is the biotinylated
DNA-hairpin transducer molecule (Bt-8gc) described in Figure 1. In repeated experiments, the
sensitivity limit ranges inversely to the concentration of detection probes (with PRI sampling) or
the duration of detection window. The stock Bt-8gc has 1 mM concentration, so a 1.0 mM probe
concentration is easily introduced (Note: The higher concentrations of transducer probes need not
be expensive on the nanopore platform because the working volume can be very small: cis chamber
volume is 70 µL, and could be reduced to 1.0 µL with use of microfluidics.). In [20] the selectivity
of the detector in the presence of interference agents, such as albumin and sucrose and a variety
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of antibodies (without specific binding to biotin or the channel) was also examined, and a control
transducer molecule with the same six-carbon linker arm from the DNA hairpin, but without the biotin
“fishing lure” binding site, was introduced, where it was shown that no interaction (via change of
blockade signal) was observed upon introduction of streptavidin, as expected.

3. Results

Results are shown for nanopore transduction detection based on biotin-streptavidin interactions
(very strong), and antibody-antigen interactions. Extensive results are shown to validate the
NTD Nanoscope results using standard methods from isoelectric focusing (IEF) gels and capillary
electrophoresis (CE). Further results for the Streptavidin-Biotin biosensor, than those mentioned in
Sections 1.2 and 2.4 are shown in Section 3.1, confirming the NTD Nanoscope binding of Bt-8gc to
streptavidin in urea with concentrations up to 5 M, where IEF Gel and CE validation results are found
to be in agreement. In Section 3.2 new results on antibody binding are provided, along with validation
results, building off the preliminary work mentioned in Section 1.2.2. The validation results show
antibody binding with biotin as antigen in urea concentrations up to 2 M, with validation by IEF Gels.

3.1. Biotin-Streptavidin Binding Experiments

3.1.1. The BT-8gc Transducer Retains its Viability in the Presence of Urea up to 5M Concentrations

In some instances, chaotropes (such as urea) are used to weaken the binding affinity, or DNA-DNA
annealing affinity, of molecules studied with the nanoscope, such that binding tests can be performed
with numerous on/off transitions in the lifetime of the experiment. In the case of DNA-DNA annealing,
the collective binding that occurs can remain sufficiently strong in the presence of chaotrope such that
it provides a clear contrast with non-collective binding interactions and can greatly improve signal
quality. For this reason, and others, understanding the response of the channel and transducers in
the presence of chaotropes is useful. The NTD approach will benefit most where the transducers
provide little change, or have just a few states, when in channel blockade with change in chaotrope
concentration. From high voltage capture strain prior studies it was found that the Bt-8gc blockades
exhibit two different capture blockade signals. This is hypothesized to be due to two states of the
transducer itself, probably due to two accessible loop “twists” conformations, one not normally
accessible without capture-strain. Two transducer states that are degenerate (being simply due
to hypothesized racemization on molecules with different loop conformations) is a manageable
complication with the automated pattern recognition, but clearly reveals how at the single DNA-hairpin
level of resolution we can see changes in molecular conformation (and terminus regions, as shown
previously). Thus, a racemization over capture states with two loop “twists” was hypothesized to occur
upon introduction of chaotropic agents (urea 2.0 M–5.0 M), and this result is confirmed in Figure 5
(A crude schematic for the twists is envisaged, from a top-down view of the hairpin loop, to look like
the yin-yang symbol boundary that bows in to the left at the top, then to the right at the bottom, and
the reverse for the other twist conformation.).
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Figure 5. Transducer blockade event in increasing urea concentration. Sufficiently strong Urea
concentration (5 M) results in racemization of the two loop capture-variants, while weaker urea
(<2 M) does not. The results show Bt-8gc measurements at 30 min intervals (1800 s on vertical axis) with
urea concentration 0, 2, and 3 M, 45 min at 4 M, and 60 min at 5 M, with signal blockade mean on the
x-axis, with results consistent with the two-state loop hypothesis, and consistent with the observation
of such in Figure 4 (see [20]) not due to zero or weak urea content but due to high strain due to mass
and charge effects upon binding to the large streptavidin molecule.

3.1.2. Observations of Biotin-Streptavidin Binding on the NTD Nanoscope

Preliminary results on streptavidin biosensing were shown in Section 2.4 for urea concentration
up to 3.5 M. The resolution of the bound/unbound Bt-8gc is greater than 99.99% accurate in less than
100 ms, with greater accuracy if longer observation time is used. The analysis uses the signal processing
pipeline described in the Experimental Methods section on channel current cheminformatics where a
150-component feature extraction is done on each blockade signal. Using just two “human-friendly”
features based on each signal’s maximum and minimum blockade values in that 100 ms observation
window, a surprisingly clear separation of the molecular classes is easily discerned, as well as the role of
urea in weakening interactions where bound states are reduced in observation frequency and unbound
states increased. Initially, at 0 M urea, two clusters are easily discerned by eye. One corresponds to the
Bt-8gc blockades, the other corresponds to the (Streptavidin)—(Bt-8gc) complex. Upon introduction
of urea, signals for Bt-8gc unbound start to shift the Bt-8gc cluster, where direct quantification of the
cluster results is directly accessible from the cheminformatics analysis.

3.1.3. Bt-8gc—Streptavidin Binding Validation Using Gel Isoelectric Focusing (IEF) (3–10 pH Range) in
Presence of Chaotropes

Complex formation between the biotinylated DNA hairpin (Bt-8gc) and streptavidin is shown on
the NTD Nanoscope (Sections 2.4 and 3.1.2)—this result is validated via isoelectric point shift analysis
with isoelectric focusing in Figure 6. The standard gel analysis cannot resolve presence of different
isoforms in a single “band” of gel, but Nanopore augmentation of gel electrophoretic methods, may
offer a means to resolve components within the bands.
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Electrophoretic methods provide a means to study the process of complex formation. Depending
on the affinity (thermodynamic constant value) and the kinetics of the reaction, different electrophoretic
techniques can be used. For highly stable complexes, the isoelectric focusing technique can be
applied [29,30]. This electrophoresis technique has the advantage of extremely high resolution that
allows maximally complete detection of existing heterogeneity in complex population, due to both
multi-valent interaction and initial heterogeneity of interacting species.

In Figure 7 we show the gel IEF results describing the interaction of streptavidin and biotinylated
hairpins. Due to very strong interaction between the streptavidin and biotin the complex is extremely
stable: it does not break apart for hours and IEF detects practically no presence of free streptavidin.
In Figure 7 the IEF spectra of streptavidin and streptavidin incubated with an excess of the biotinylated
hairpins Bt-8gc and Bt-9gc, are shown. For the streptavidin, the two major components are visible (with
their pIs at 7.1 and 7.5, approximately). After targeting with hairpin those streptavidin isoforms convert
to two new bands (pI 4.2 and pI 4.35). We hypothesize that there exists a one to one correspondence
between the two above pairs of major components (before and after the complexation takes place).
According to our theoretical calculation such a high pI shift can be achieved when all four binding
sites of the streptavidin molecule are targeted. Here we used the technique allowing for predicting
the electric charge vs. pH relationship for a protein molecule based on the amino acid composition,
or more generally, any biopolymer with known content of so-called ionogenic groups. The approach
has limitations connected with the dissociation scheme selected for the model and the exact values
of the dissociation, but typically serves as a reasonably good approximation for isoelectric point
calculation or protein titration curve behavior [29,31]. The latter are often used as tool for optimizing
various electrophoretic of chromatographic separations of intact or labeled proteins (with covalent
or non-covalent interaction) [32,33]. With an excess of hapten, heterogeneity does not become more
pronounced (although, by shorter incubation time or deficit or hairpin, some reaction products are
detectable in the middle acidic range—pH 5–6.5).
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Figure 7. Complexes examined for streptavidin and biotinylated hairpins (Bt-8gc and Bt-9gc).
Isoelectric focusing 3–10 pH range is implemented using a vertical system. Incubation time was
40min. Urea concentration in the sample buffer was 4 M (with no urea in the gel). Outer lanes:
pI markers (BioRad). Inner lanes from left: (1) Streptavidin (Southern biotech); (2) Biotinylated
8GC hairpin + Streptavidin; (3) Biotinylated 8GC hairpin + Streptavidin + 4 M urea incubation;
(4) Biotinylated 9GC hairpin + Streptavidin; (5) Biotinylated 9GC hairpin + Streptavidin + 4 M urea
incubation; (6) Streptavidin (Southern biotech); and (7) Streptavidin (Sigma). The notation at the
bottom of inner lanes (2–5) marks the complexes of streptavidin and the biotinylated DNA hairpins
(The well pronounced pI—shift of the protein-hairpin complex is due to the presence of strong acidic
moiety of DNA.).

One should expect that during the electrophoretic experiment, the reacting mixture becomes
quickly divided to single components, so the complex is subjected to decay. The decay above, still,
occurs rather slowly, as it can be seen in Figure 7. When the interaction is not as strong, the IEF
method may not detect the complex formation. In particular, we did not detect any product that may
correspond to a complex for anti-GFP Mab and its binding partner, GFP (data not shown).

3.1.4. Bt-8gc—Streptavidin Binding Validation Using CE in the Presence of Chaotropes

We also used capillary electrophoresis (CE), as an alternative to IEF gel electrophoresis, since
the CE processing time is much shorter, on the order of minutes. CE may be employed for analysis
of fast chemical reactions (fast decay, etc.) [34–36]. Similar to chromatographic separation, capillary
electrophoresis provides an opportunity to determine reaction kinetics [31,34–36] although the accuracy
of these calculations is not very high. The CE technique also has certain advantages due to its suitability
for study of complex formation at different pH and in presence of additives modulating the interaction
(salt ions and other charged compounds). Results of CE experiments on (streptavidin)–(biotinylated
hairpin) complexation have been obtained. The experiments aim to confirm complex formation, and its
relative concentration decrease, under chaotropic conditions. Complex formation (streptavidin-Bt-8gc)
is clearly exhibited as new peak appearance on electropherogram when the mixture of streptavidin
and DNA is analyzed. It becomes possible to separate the same components, previously detected by
gel IEF.

The standard sample introduction scheme for two interactions substances is performed as a
test: Streptavidin plug is introduced first (hydrodynamically), followed by the DNA plug. The two
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substances moving in the opposite directions interact very briefly, but sufficient to see side effects of
complex formation. The complex has lower mobility and it is eluted second, after unbound DNA. The
part of streptavidin which did not react with biotinylated DNA continues its moving towards anode
and thus does not pass though the detector. In capillary electrophoresis of streptavidin/biotinylated
hairpin (Bt-8gc) complex using sequential injection (Figure 8), a streptavidin sample plug is pressure
introduced first, following by the second one of DNA. The DNA plug passes though the protein
(streptavidin) and the interaction time is 2 s. By reducing the sample load and varying the DNA/protein
ratio it was possible to separate two streptavidin-DNA complexes. (The more acidic complex,
pI = 4.3 approximately, is eluted first). The existence of two major isoforms for complex is in
accordance with our previous results on gel IEF. (Injection time/pressure from the bottom to the
top: 5 s/0.5 psi (prot)–0.5 psa (DNA); 5 s/0.5 psi (prot)–0.3 psa (DNA); 5 s/0.2 psi (prot)–0.1 psa
(DNA). Run at 250 Kv/cm.
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Figure 8. Capillary electrophoresis of equilibrium mixture, streptavidin/biotinylated hairpin (Bt-8gc)
in presence of urea. Urea concentration increase suppresses the complex formation. Upper panel: 2.5 M
urea running buffer. Sample—equilibrium mixture, no urea. Middle panel: 2.5 M urea running buffer.
Sample—equilibrium mixture, 4 M urea. Left and right peaks on the two upper panels represent DNA
and streptavidin-DNA complex, accordingly. The concentration of complex decreases with chaotrope
concentration. In the case of 8 M urea concentration (lower panel) no complex formation is observed.
The markings on the x-axes are in minutes.

By adding urea in the running buffer, even in the absence of urea in the sample buffer, one
changes the electropherograms, beginning with indications of population shift, i.e., different proportion
between the complex and unbound hairpin. Further increase in urea concentration decreases the ratio
between the complex and free Bt-8gc (here the concentration of urea in running buffer does not have a
significant impact). Finally, very high urea concentration results in essential changes: the streptavidin
is apparently mostly in its denatured form, although some capability of binding biotin still remains.
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Urea concentration increase influences the elution time. Several different effects act simultaneously, in
particular, dielectric constant and viscosity change. In addition, there is a possibility of electroosmotic
flow modulation. The most pronounced effect, apparently, is the conformation changes induced by
urea; this explains considerable reduction in migration times both for denatured protein and DNA.

3.2. Biotin-mAb Binding Experiments

3.2.1. Observations of Biotin-mAb Binding on the NTD Nanoscope

In one series of experiments, mentioned above, we used free antibody molecule interacting with
the nanopore detector, where the antibody (anti-biotin) molecule is introduced to our nanopore device
to produce the characteristic two-state telegraph signal (Figure 9). The blockade signal for the antigen
is practically unaltered by excess antigen: even 100 fold excess of biotin does not change the blockade
signal considerably (Figure 9). The signal changes greatly in presence of urea, however, in a relatively
small concentration. Here the duration of any event to occupy upper state level becomes shorter and
the total probability value of upper level decreases with urea concentration rise.
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Figure 9. Robust NTD mAb-Bt-8gc (the mAb has biotin as antigen) binding signal under 100-fold biotin
excess shows minimal interference effect (signals top middle show before after), while introduction of
small amounts of chaotrope (<1 M urea) change the blockade signal significantly (bottom signal). Each
signal is shown in a pA range from 20 to 80. The window of observation time is 1 s.

3.2.2. Bt-8gc—mAb Binding Validation Using gel IEF (3–10) in presence of chaotropes

Complex formation between the biotinylated DNA hairpin (Bt-8gc) and mAb is shown on the
NTD Nanoscope and validated via electrophoretic mobility shift analysis with isoelectric focusing in
Figure 10.
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Figure 10. Biotinylated DNA hairpin (Bt-8gc) and mAb complex verification.

With addition of chaotropic agents, Bt-8gc—mAb interactions are weakened, which results in a
significant decrease in the relative concentration of the complex. We observe this in IEF experiments
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where the complexation in the system is seen between anti-biotin Mab and biotinylated hairpin in
Figure 10. With progressive increase of urea the presence of complex becomes completely undetectable,
as shown in Figure 11, where complex is no longer discerned at a urea concentration above 2 M.Molecules 2016, 21, 346 15 of 22 
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Figure 11. Urea suppresses complex formation between the Mab (anti-biotin) and biotinilated hairpin.
Mab IEF spectra in presence of HP-BT (Bt-8gc in newer notation)) are shown at 0, 1, 2 and 3 M urea.
The 1st and 2nd lines on each panel are Mab and Mab + HP-BT, correspondingly. Anode is on the left.
Isoelectric focusing in 3–10 pH gradient (horizontal system).

3.3. Alpha-Hemolysin Nanoscope Operational pH Range

Since the nanopore detector we described was implemented using an alpha-hemolysin protein
channel, the operational range of the detector is partly governed by the pH range over which the
channel geometry remains relatively unchanged (see Figure 12). At pH 8.0 the channel is very stable
with infrequent gating even when using higher voltages than 120 mV, or sampling frequencies above
10 Hz (with polarity switching on voltage). At pH 9.0 some gating does occur (a rare example is
shown in Figure 12), but a surprisingly large range of pH appears to be accessible if the occurrences of
channel gating can be ignored, or analyzed separately, or alleviated by introduction of the transducer
molecule. Such is easily managed with the automation software, thereby allowing us to operate in a
wide range of pH values, particularly those involving enzyme activity and protein-protein interactions.
One beneficial characteristic is that channel gating and other complications appear to be further
reduced when a transducer is captured. Evidently the captured, nearly channel-filling molecule, helps
to stabilize the channel in its main conformation. In practice, minor partial gating in the channel
under such conditions can be entirely absorbed into the pattern recognition task and be automatically
handled with the pattern recognition pipeline.
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Figure 12. Part of the time-trace is shown for Bt-8gc events observed in an experiment that ran for two
days. For T = 0 s to T = 3000 s the device is not at standard temperature and other conditions.
At T = 3000 to 7500 s the channel operates in its normal, exposed chamber, evaporative mode,
which leads to a concentration in the cis-chamber, including a concentration of salt (from 1.0 M KCl).
At T = 3000 s, the standard detector is established, aside from having its operational pH set at
9.0 instead of 8.0. At T = 7500 s the channel changes configuration, and the hairpin signals obtained are
now notably different in just the one attribute (mean). A brief return to a normal channel conductance
occurs around T = 14,000 s, with a return to gated configuration at T = 14,500 s. A final return to normal
channel conductance occurs around T = 18,000 s.

Once the channel is established there exists the possibility of variation in composition of the upper
electrode reservoir (according to the design we employed). Those changes allow for the possibility of
regulating the protein-ligand interaction, as described earlier. It has to be mentioned that with changes
in pH, viscosity, dielectric permeability etc., one can influence not only the current trough the nanopore
to some extent, but also the transport of the analyte of interest to the channel (or through the channel).
While the letter effect mostly depends on electrophoretic phenomena, the effect of electroosmotic
transport also has to be taken into account [37]. Additionally, during prolonged experiments, some
effects of buffer electrolysis could potentially start playing an effect [37–39]. The latter may influence
the local pH value inside the nanopore, especially when an experimental setup with different buffers
in electrode chambers is considered.

4. Experimental Section

4.1. Nanopore Experiments

Each experiment is conducted using one α-hemolysin channel inserted into a diphytanoyl-
phosphatidylcholine/hexadecane bilayer across a, typically, 20-micron-diameter horizontal Teflon
aperture. The α-hemolysin pore has a 2.0 nm width allowing a dsDNA molecule to be captured while
a ssDNA molecule translocates. The effective diameter of the bilayer ranges mainly between 5 and
25 µm (1 µm is the smallest examined). This value has some fluctuation depending on the condition
of the aperture, which station is used (each nanopore station, there are four, has its own multiple
aperture selections), and the bilayer applied on a day-to-day basis. Seventy-microliter chambers on
either side of the bilayer contain 1.0 M KCl buffered at pH 8.0 (10 mM HEPES/KOH) except in the case
of buffer experiments where the salt concentration, pH, or identity may be varied. Voltage is applied
across the bilayer between Ag-AgCl electrodes. DNA control probes are added to the cis chamber
at 10–20 nM final concentration. All experiments are maintained at room temperature (23 ˘ 0.1 ˝C),
using a Peltier device.
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4.2. Control Probe Design

Since the five DNA hairpins studied in the prototype experiment have been carefully characterized,
they are used in the antibody (and other) experiments as highly sensitive controls. The nine base-pair
hairpin molecules examined in the prototype experiment share an eight base-pair hairpin core sequence,
with addition of one of the four permutations of Watson–Crick base-pairs that may exist at the blunt
end terminus, i.e., 51-G|C-31, 51-C|G-31, 51-T|A-3', and 51-A|T-31. Denoted 9GC, 9CG, 9TA, and 9AT,
respectively. The full sequence for the 9CG hairpin is 51 CTTCGAACGTTTTCGTTCGAAG 31, where
the base-pairing region is underlined. The eight base-pair DNA hairpin is identical to the core nine
base-pair subsequence, except the terminal base-pair is 51-G|C-31. The prediction that each hairpin
would adopt one base-paired structure was tested and confirmed.

4.3. NTD-Aptamer Design

The Y-shaped NTD-aptamer molecule design we are currently using has a three-way DNA
nexus geometry: 5’-CTCCGTCGAC GAGTTTATAGAC TTTT GTCTATAAACTC GCAGTCATGC
TTTT GCATGACTGC GTCGACGGAG-3’. Two of the junctions’ arms terminate in a 4T-loop and the
remaining arm, of length 10 base-pairs, is usually designed to be blunt ended (sometimes shorter with
an overhang). The blunt ended arm has been designed such that when it is captured by the nanopore
it produces a toggling blockade. One of the arms of the Y-shaped aptamer (Y-aptamer) has a TATA
sequence, which is meant to be a binding target for TBP binding studies. In another, variant a DNA
aptamer is placed at one arm, instead of a 4dT loop, and similarly with an HIV integrase consensus
terminus sequence for use in studies of HIV integrase inhibitors. In general, any transcription factor
binding site or DNA enzyme could be studied (or verified) in this manner.

4.4. Gel Electrophoresis and Image Analysis

Gel electrophoreis was performed mostly in vertical (Invitrogen, Eugene, OR, USA) or horizontal
(Pharmacia, Uppsala, Sweden system. Alternatively, for IEF 11 cm IPG strips (Bio-Rad, Hercules, CA,
USA) were used. The slab gels were fixed in ethanol/acetic acid mixture (10%/10%), stained with
Comassie Blue or SyproRuby dye and further scanned at 100 dpi resolution using a Bio-Rad Molecular
Imager FX. The resulting images were analyzed using the PDQuest software (Bio-Rad, V7.1).

4.5. Capillary Electrophoresis (CE)

CE was carried out with a P/ACE MDQ apparatus (Beckman Coulter, Brea, CA, USA) equipped
with a UV detector. A 30 cm long, coated, low electro-osmotic flow, capillary with an inner diameter
of 75 µm and outer diameter of 360 µm was used. The sample buffers and the electrophoresis run
buffer were identical: 25 mM sodium tetraborate at pH. The capillary was rinsed with the run buffer
for 5 min prior to each run. Electrophoresis was carried out for a total of 10 min by an electric field
of 600 V/cm with a positive electrode at the injection end of the capillary. The temperature of the
capillary was maintained at 10 ˘ 0.1 ˝C. At the end of each run, the capillary was rinsed with the same
buffer at 10 psi for 2 min, followed by a rinse with deionized water for 5 min.

For sample injection, the inlet and outlet reservoirs are established with run buffer, and the
capillary is prefilled with the run buffer. Normally, pressure injection 0.2–1.0 psi was used, or
alternatively, sample injection was performed electro-kinetically.

4.6. Chemicals

Anti-biotin monoclonal antibodies obtained from Vector Laboratories (9100 (Hyb-8)) and from
Stem Cell Technologies (#01405(C6D5.1.1), Burlingame, CA, USA) were used for binding studies.
The antibodies, stored as supplied, were brought to a final dilution 1–4 µg/mL in the electrode
chamber. Ampholytes (pH 4–9), and CE buffers were purchased from Bio-Rad. GFP was obtained
from Molecular Probes (Eugene, OR, USA). Streptavidin was supplied by Sigma-Aldridge (St. Louis,
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MO, USA). Potassium chloride, HEPES and magnesium chloride were purchased from Sigma. Other
chemicals were from Fisher Scientific, Atlanta, GA, USA.

4.7. Methods for Channel Current Cheminformatics

A combination HMM/EM-projection processing followed by time-domain FSA processing [22]
allows for efficient extraction of kinetic feature information (e.g., the level duration distribution).
One advantage of the HMM/EM processing is to reduce level fluctuations, while maintaining the
position of the level transitions. The implementation uses HMM/EM parameterized with emission
probabilities as Gaussians, which, for HMM/EM-projection, is biased with variance increased by
approximately one standard deviations (see results shown). This method is referred to as HMM/EM
projection because, to first order, it does a good job of reducing sub-structure noise while still
maintaining the sub-structure transition timing. One benefit of this over purely time-domain FSA
approaches is that the tuning parameters to extract the kinetic information are now much fewer and
less sensitive (self-tuning possible in some cases).

The CCC processing is designed to rapidly extract useful information from noisy blockade signals
using feature extraction protocols, Hidden Markov Models (HMMs) and Support Vector Machines
(SVMs). For blockade signal acquisition and simple, time-domain, feature-extraction, a Finite State
Automaton (FSA) approach is used that is based on tuning a variety of threshold parameters. The utility
of a time-domain approach at the front-end of the signal analysis is that it permits precision control of
the acquisition as well as extraction of fast time-scale signal characteristics.

Classification of feature vectors obtained by the HMM (for each individual blockade event) is then
done using SVMs, an approach which automatically provides a decision hyperplane and a confidence
parameter (the distance from that hyperplane) on each classification. SVMs are fast, easily trained,
discriminators [22], for which strong discrimination is possible (without the over-fitting complications
common to neural net discriminators). Different tools may be employed at each stage of the signal
analysis in order to realize a robust (and noise resistant) tools for knowledge discovery, information
extraction, and classification. Statistical methods for signal rejection using SVMs are also be employed
in order to reject extremely noisy signals. Since the automated signal processing is based on a variety of
machine-learning methods, it is highly adaptable to any type of channel blockade signal. This enables
a new type of informatics (cheminformatics) based on channel current measurements, regardless of
whether those measurements derive from biologically based or a semiconductor based channels.

Machine learning software has been integrated into the nanopore detector for “real-time”
pattern-recognition informed (PRI) feedback [23]. The methods used to implement the PRI feedback
include distributed HMM and SVM implementations, which enable the 100 fold to 1000 fold processing
speedup that is needed.

5. Discussion

5.1. Validation of NTD Complexation Detection Using Standard Electrophoretic Techniques

We confirm the hypothesis that conventional electrophoretic methods (gel electrophoresis, IEF
and SDS-electrophoresis), as well as capillary electrophoresis, can serve as excellent tools in guiding
nanopore signal interpretation. With electrophoretic techniques, it has become possible to detect
the complex formation, the number of different states (for multivalent systems) and, sometimes, the
microheterogeneity of interacting molecules. Electrophoretic techniques are also an excellent tool for
experimental monitoring the population distribution between different states as the concentration of
chaotropic agent varies in the system. Since some traditional electrophoretic techniques require the
presence of ionic detergent (SDS), however, they have limited application in studying the process of
complex formation. With the validation results shown here we see how NTD methods, in turn, offer
a means to inform and validate conventional electrophoretic methods, as well as offer an SDS free
method for analyte separation according to molecular weight. In other words, nanopore detectors as
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specialty gels, where much of the gel representation of the information is recovered computationally,
thus the name NTD in-silico gels.

5.2. Nanopore Detectors as In-Silico Gels

The idea here is that nanopore detectors may offer the separation/identification utility of gels,
but under physiological buffer conditions and using non-destructive pattern recognition on blockade
events to do the clustering “in-silico”. Using the PEG-shift approach described in [22], for example, the
nanopore-based methods may be able to match the information content of drift-separation methods,
such as mobility shift gels, but this will not resolve the topology mapping of the isoelectric focusing
methods. Although a nanopore can be easily coupled to capillary electrophoresis geometries, for hybrid
separation/clustering using capillary/nanopore, there is still no simple way for a single nanopore
detector to “read” the focusing clusters without new plumbing being introduced, so will not be
discussed further here.

5.3. Nanopore Detector Tolerance of Chaotropes and High Salt

The α-hemolysin channel demonstrates a high tolerance to high salt concentration and the
presence of chaotropic agents, which is important to establish a platform for the study of binding
between other molecules under such conditions. By varying the composition of running buffer it
is possible to control the interaction of analyzed molecules with the nanopore or with each other.
We performed tests of the impact on binding affinity between streptavidin, or mAb, and biotin upon
introduction of chaotropic agents. This provides new opportunities in nanopore detector applications.

5.4. Purity Tests

The protein species examined were subjected to a careful purity tests in order to determine
the presence of contamination and existence of microheterogeneity (if any). The controls included
electrophoretic techniques: IEF and SDS electrophoresis in gel and microchip (Agilent). The IEF
analysis shows subtle differences in isoelectric point values, while no heterogeneity is revealed by SDS
electrophoresis. We observed microheterogeneity for the monoclonal antibodies (Mabs) we analyzed.
The different mAb’s exhibit non-similar IEF-spectra and different levels of contamination. In addition,
they differ by the degree of glycosylation (MB-9100 show much higher sugar content being stained
Pro-Q-Emerald stain). This difference possibly explains particular features of IEF spectra for these
Mabs and the IEF spectra changes in presence of urea.

To discriminate the contribution coming from the low MW impurities we tested a number of such
substances: amphoteric dyes, polypeptides and neutral compounds (PEG), in order to recognize such
contribution in the future when we are dealing with the signal processing. The electrophoretic mobility
tests are consistent with the binding results observed using the NTD method.

We successfully employed electrokinetic method for controlling the purity heterogeneity and
complex formation analysis. We anticipate further progress can be connected with future use of
mass-spectroscopy [40,41].

5.5. NTD Capabilities and Limitations

The NTD idea is a noise-state transduction detection method, and can even be used in
very-low-current nanopore transduction detection (NTD), where laser pulsing can be used to induce the
coherency modulation, if not already present, in the observed channel current noise that is monitored
for transducer state change. This is a generalized channel transduction detection setting insofar as
the stationary statistical profiles are obtained from the stationary noise fluctuations induced via laser
modulation of the channel’s environment (not the channel’s DC ionic current observations). In the
general device-enhancing setting, any introduction of system modulations that results in stationary
signals with stationary statistical profiles can be leveraged in a similar manner. One application of
note is to live whole-cell studies, where large fertilized sea urchin egg cells, for example, provide a
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very accessible and well-studied model biological system for complex biosystem analysis, where a
single sea urchin egg cell could be merged directly onto the operational NTD bilayer/aperture (with
transducer in place), and non-destructive live-cell cytosol assaying might be possible.

The NTD idea also relates to single-molecule analysis and characterization using the nanopore
transduction detection method and the stochastic carrier wave signal analysis method, whereby
real-time assaying of transient molecular complexes, such as glycoprotein complexes, and intricate
protein-protein interactions, such as STAT dimerization, can be done. Single-molecule based analysis,
performed sequentially on captured analytes, may allow NTD-glycoassays to be performed on
blood samples for a single test to provide detailed analysis of the individual’s globin glycosylations
(Section 5.2). The NTD setting can also be used in gene-circuit analysis using a biosystem extra element
theorem (EET) analysis method together with a method for non-destructive analysis of gene interaction
networks using NTD with a weakly binding reporter molecule.

By use of pre-processing with simple capture matrices, or microarrays co-opted for that
purpose (if nucleic acid involved), it also appears possible to perform detection on very low
concentration analytes, with application in broad-based pathogen exposure assays, miRNA detection
and haplotyping schemes, and SNP detection and haplotyping schemes, that were mentioned in the
Background, and when capture matrices do not suffice, such as with membrane bound analytes of
interest, the TERISA and TARISA methods can be used in pre-processing instead [22].

5.6. Processive DNA Enzyme with Laser/Dye info for Enhanced Fidelity for Very Long Reads

Lambda-exonuclease, with sufficient magnesium and other buffer conditions, will processively
remove nucleotides from the 3-prime strand of a dsDNA molecule. In one implementation of the
nanoscope for purposes of DNA sequencing, a nanopore transduction molecule can be introduced that
consists of a DNA hairpin channel modulator linked (covalently) to a lambda exonuclease molecule.
Upon introduction of a substrate of dsDNA and buffer conditions suitable for lambda-nuclease
interactions (buffer conditions where both nanopore channel and lambda-exonuclease are functional
are already known to exist), it is possible to measure the changes in channel blockade modulations
that occur during the exonuclease activity.

If working with a lambda-exonuclease molecule directly above the channel opening, with a linkage
to a captured channel modulator, by introducing duplex DNA substrate with appropriate co-factors
(magnesium, etc.) it may be possible to enable the enzymatic activity of the lambda-exonuclease based
channel modulator. With this arrangement (discussed further in [22]) we have an added coincidence
detection arrangement that may enable DNA sequencing to be directly performed at the single
molecule level: detection event 1 is via the transduction modulation accompanying the enzymatic
clipping activity on a particular base (or modified base); detection event 2 will be the modulation
of the channel current resulting from the passage of the clipped DNA base past the channel-with
DNA-hairpin configuration (preliminary tests, not published, with DNA hairpins and individual bases
show that these translocations can and do occur, are clearly observable, but not strongly distinguishable
by themselves, at least with the buffer conditions examined).

6. Conclusions

The engineered transducer molecule central to the transduction approach is shown to offer the
added benefit of channel stabilization, and thus overall device stabilization, when working with buffer
conditions involving extreme pH, chaotrope, or interference concentration. This enables the nanopore
transduction detector to operate as a single molecule “nanoscope” in a wide range of conditions, where
what is seen is not the molecule in a visual sense as with the microscope, but molecular state, where
tracking on molecular state is critical to a complete understanding of many allosteric proteins and
enzymes. This allows useful device operation in a wide range of conditions relevant to biochemistry,
biomedical engineering, and biotechnology.
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Binding affinity results upon introduction of chaotropic agents (2.0–3.5 M urea) show agreement
between nanopore transduction detection (NTD) and standard electrophoretic-separation methods,
including: (i) isoelectric focusing; and (ii) capillary zone electrophoresis.
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