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It has long been known that coumarins (α-pyrones) and xanthones (γ-pyrones) together form
a large class of naturally occurring compounds exhibiting a wide range of biological activities.
However, the interest of the scientific community for these secondary metabolites, as well as for
their structural analogues, has never decreased since these “old compounds” are constantly generating
promising—and sometimes unexpected—therapeutic perspectives [1]. For instance, Vadimezan
[ASA404 or (5,6-dimethyl-9-oxo-9H-xanthen-4-yl)-acetic acid] was recently developed as a tumor
vascular-disrupting agent [2] whereas many coumarin derivatives are under investigation for their
anti-oxidant and anti-inflammatory properties [3].

In this special issue Yang et al. [4] investigated the blood-brain barrier permeability of 12 simple
coumarins found in dried roots of Angelicae pubescentis used in Traditional Chinese Medicine to
enrich blood, promote blood circulation and modulate the immune system. Okuyama et al. [5]
showed that auraptene, an O-geranyl coumarin generally identified in Citrus species, directly exerts
anti-inflammatory effects on mouse brain through suppression of inflammatory mediators derived
from astrocytes. Using the coumarin skeleton as a starting point to design potent structural analogues
Salem et al. [6] have synthetized new antioxidant derivatives exhibiting antitumor properties as well
as protective effects against DNA damages. Coumarins may also be used as interesting scaffolds for
alternative crop protections. This is the reason why Araniti et al. [7] explored the phytotoxic potential
and biological activity of three synthetic coumarin derivatives as new natural-like herbicides whereas,
in a related study, Garcia et al. [8] nicely described synergy and other interactions in evidence between
polymethoxyflavones obtained from Citrus by-products.

In relation with this class of secondary metabolites different example of analytical
developments are also given in this special issue. Indeed, in the aim of pharmacokinetics studies
Zeng et al. [9] validated a LC-MSn method allowing to quantify scopoletin in rat plasma whereas
Medeiros-Neves et al. [10] focused on the quantification of coumarins in an aqueous extract of
Pterocaulon balansae. During the latter study the main coumarin, 5,6-dimethoxy-7-(31-methyl-21,31-
dihydroxybutyloxy)coumarin, was described for the first time in P. balansae together with a
new compound, namely 5,6-dimethoxy-7-(21,31-epoxy-31-methylbutyloxy)coumarin. Through a
dereplication analysis, seven known Mammea coumarins were identified by Dang et al. [11] in a fraction
obtained from a Mammea neurophylla dichloromethane bark extract. Among them, examination of the
NMR dataset of pedilanthocoumarin B led to a structural revision. Additionally, careful inspection of
LC-DAD-MSn profiles allowed the authors to predict the presence of four new compounds, which were
further isolated and identified as two benzoyl substituted 4-phenylcoumarins (iso-pedilanthocoumarin
B and neurophyllol C) and two 4-(1-acetoxypropyl)coumarins cyclo F (ochrocarpins H and I).

As far as xanthones are concerned two research teams focused on prenylated derivatives and
their biological activities. Xia et al. [12] described twenty-three derivatives, including the new
cowaxanthones G and H, from the leaves of Garcinia cowa, and studied their ability to induce cell
cycle arrest, apoptosis, and autophagy in cancer cells. A chemical investigation of a methanol extract
obtained from Cudrania tricuspidata roots led Quang et al. [13] to isolate nine prenylated xanthones
and seven flavonoids. These prenylated xanthones showed stronger Protein Tyrosine Phosphatase 1B
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inhibitory effects than the flavonoids, suggesting that they may be promising targets for the future
discovery of novel inhibitors, some of them being noncompetitive. On the other hand, nonprenylated
xanthones were identified by Waltenberger et al. [14] in bitter Gentianaceae species as novel, non-toxic
vascular smooth muscle cells proliferation inhibitors, which might contribute to the development of
new therapeutic applications to combat restenosis. Finally, Le Pogam and Boustie [15] nicely reviewed
the last developments in related lichen studies since most generally xanthones from lichen sources
exhibit unique substitution patterns.

However, the interest in xanthones and coumarins is not restricted to biological activities since
coumarins, as an example, may constitute a molecular model of choice to study hydrogen bonding,
in the electronic excited state [16], or may also be associated with the photovoltaic performances of
specific dyes [17]. To explore the physical properties of coumarins and assess their potential use as
encapsulation vehicles for hydrophobic drugs, Ruiz et al. [18] analyzed the photophysical behavior and
rotational-relaxation dynamics of a model compound in nonionic micellar environments. Finally, an
optical data storage was successively performed by Gindre et al. [19], with various thin polymer films
containing coumarin-based derivatives, as an interesting alternative to magnetic hard drives and high
capacities flash memories.
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