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Abstract: Selected aspects of the biological activity of a series of six nitrate silver(I) complexes
with pyridine and (benz)imidazole derivatives were investigated. The present study evaluated the
antibacterial activities of the complexes against three Gram-negative strains: Pseudomonas aeruginosa
ATCC 15442, Escherichia coli ATCC 25922 and Proteus hauseri ATCC 13315. The results were compared
with those of silver nitrate, a silver sulfadiazine drug and appropriate ligands. The most significant
antibacterial properties were exerted by silver(I) complexes containing benzimidazole derivatives.
The cytotoxic activity of the complexes was examined against B16 (murine melanoma) and 10T1/2
(murine fibroblasts) cells. All of the tested silver(I) compounds were not toxic to fibroblast cells
in concentration inhibited cancer cell (B16) viability by 50%, which ranged between 2.44–28.65 µM.
The molecular and crystal structure of silver(I) complex of 2,6-di(hydroxymethyl)pyridine was
determined by single-crystal X-ray diffraction analysis. The most important features of the crystal
packing and intermolecular non-covalent interactions in the Ag(I) complex were quantified via
Hirshfeld surface analysis.

Keywords: silver(I) complexes; cytotoxicity; B16 melanoma cells; 10T1/2 fibroblasts; antibacterial
activity; Hirshfeld surface

1. Introduction

Due to the rapidly increasing phenomenon of drug resistance, the search for new and
effective antimicrobial agents is a worldwide concern. Benzimidazole and pyridine derivatives are
known to possess desirable antibacterial, antifungal, antiviral and antiproliferative properties [1–6].
Silver compounds are also well known for their antimicrobial properties and are widely used in
the treatment of wounds and burn infections [7–10]. The combination of benzimidazole or pyridine
derivatives with silver ions leads the production of compounds with novel biological properties which
can be an attractive alternative to existing treatments [11–15].
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Many silver compounds have been shown to have antimicrobial activity. Silver sulfadiazine (SSD
or AgSD) is the most popular silver drug used in wound therapy and medicinal devices [8,16,17].
Although silver sulfadiazine has been used for many years, the drug causes important adverse effects,
including blood dyscrasias, gastrointestinal reactions and allergic reactions [18,19]. Moreover, AgSD
delays wound healing due to its cytotoxicity towards fibroblasts and keratinocytes [20–22].

Although silver complexes also demonstrate significant antitumor activity, the body of research in
this area is still very poor compared with that devoted to other metals’ complexes. Nevertheless, a lot
of silver(I) complexes have been found to exhibit greater cytotoxic activity than that of cisplatin, a drug
used in cancer treatment, with relatively low toxicity to normal human cells. Ag(I) complexes show
selectivity toward various types of tumor cells, and this is dependent on the type of ligand linked to
the silver(I) ions. This dependency is probably connected with the stability of the complexes and the
hydrophilicity-lipophilicity of the complexes formed by the type of the ligand [23–27].

The present study describes the antibacterial activity and cytotoxic activity of a series of silver(I)
complexes (Table 1) [13,28,29]. Phosphate and hydroxymethylene derivatives of pyridine, imidazole,
and benzimidazole were chosen for the study. Derivatives of heterocyclic compounds show many
pharmacological properties: e.g., some pyridine derivatives (pyridine-3-carboxylic (nicotinic) acid
and its amide) play crucial roles in physiological functions, especially as part of the NAD/NADH
coenzyme. Importantly, nicotinic acid also acts as an anti-pellagra agent, ensuring good skin and
mucosa condition [30,31]. Another selected ligand is metronidazole, a well-known antibiotic drug
used to treat certain parasitic and bacterial infections [32].

Table 1. Empirical formulae of silver(I) complexes and structural formulae of ligands.

Ag(I) Complex Formula (No.) Ligand Structure Ref.

{[Ag(4-pmOpe)]NO3}n (1)
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13315. These microorganisms can cause urinary tract infections, diarrhea, pneumonia, and other
life-threatening diseases. The bacteria from this group are also responsible for diverse nosocomial
infections [33–35].

In addition, as the complexes are intended for direct application to the skin, it uses in vitro tests
conducted on normal (fibroblasts) and diseased (murine malignant melanoma) model cell lines derived
from murine skin to determine the cytotoxicity of the silver(I) complexes.

The study also presents the molecular and crystal structures of the silver(I) complex of
2,6-di(hydroxymethyl)pyridine.

2. Results and Discussion

2.1. Crystal and Molecular Structure of 3

X-ray crystallography analysis reveals that 3 crystallizes in monoclinic P21/c space group.
Basic information pertaining to crystal parameters and structure refinement is summarized in Table 2.
As illustrated in Figure 1 [36], the asymmetric unit of 3 contains one Ag(I) complex cation and one
nitrate anion, both located in general positions. The Ag1 is coordinated by two 2,6-di(CH2OH)py
(2,6-di(hydroxymethyl)-pyridine) ligands: one of them acts as a monodendate donor through the
pyridine nitrogen (N1) atom, in contrary to second one, which behaves as bidendate and interacts
with metal centre via the pyridine nitrogen (N2) atom and hydroxyl oxygen (O4) atom. Additionally,
one can consider two quite close contacts to Ag1: Ag1–O7A (from nitrate counter anion) as well as
Ag1–O3 (´x, 1 ´ y, ´z; from an adjacent complex molecule), both complement the coordination sphere
around the silver(I) cation. Thus, the coordination number of Ag1 is 5 (Figure 2a,b). The dihedral
angle between the two pyridine best planes is 6.18(7)˝, while the N1–Ag1–N2 is 171.66(4)˝. The bond
distances and angles for 2,6-di(CH2OH)py ligands in 3 are within the expected ranges when compared
with the structural results presented for free ligand [2,6-di(CH2OH)py] [37].

Table 2. Crystallographic data for 3.

Complex 3

Empirical formula C14H18AgN3O7
Formula weight 448.18
Crystal system Monoclinic

Space group P21/c
a (Å) 9.7304(1)
b (Å) 14.7348(2)
c (Å) 14.0158(2)
α (˝) 90.000
β (˝) 127.803(1)
γ (˝) 90.000

V (Å3) 1587.77(4)
Z 4

T (K) 100(2)
F(000) 904

Dx (g¨cm´3) 1.875
µ (mm´1) 1.32

Scan method ω scan
θ range (˝) 2.3–28.0

Measured reflections 27856
Unique reflections 3836

Observed reflections [I > 2σ(I)] 3729
Completeness to θmax (%) 100

No. of parameters/restraints 271/18
R [I > 2σ(I)] 0.0147
wR (all data) 0.0379

S 1.09
Largest diff. peak (e¨Å´3) 0.48
Largest diff. hole (e¨Å´3) ´0.30
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Figure 1. The molecular structure of the title Ag(I) complex (MERCURY [36] representation), with atom
labels and 50% probability displacement ellipsoids for non-H atoms. Only the major component (A) of
disordered oxygen atoms in the anion molecule (NO3
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Figure 2. A scheme of the different-type interactions observed in crystal structure of 3 (a) and
a formation of the centrosymmetric dimer (b). Bond distances to Ag1: Ag1–N1 = 2.187(1) Å,
Ag1–N1 = 2.198(1) Å, Ag1–O4 = 2.612(1) Å. Intermolecular short contacts to Ag1 (drawn as orange
dotted lines): Ag1–O7Ai = 2.87(1) Å and Ag1–O3iii = 2.960(1) Å; bond angles: N1–Ag1–N2 = 171.66(4)˝,
N2–Ag1–O4 = 71.06(4)˝. Blue dotted lines indicate intermolecular interactions (for details see Table 3).
H-atoms have been omitted for clarity (except of those involved in H-bonds in Figure 2a). Symmetry
codes: (i) ´x, y – 1/2, ´z; (ii) x + 1, y, z; (iii) ´x, 1 ´ y, ´z; (iv) ´x, y + ½, ´z + 1/2; (v) x ´ 1, y, z.

A systematic search of the Cambridge Structural Database [38] indicates that 2,6-di(CH2OH)py
ligand tends to be tridentate donor in transition metal [Co(II), Ni(II), Cu(II), Zn(II)) complexes [39–41],
albeit in only two single–crystal structures of Ag(I) complexes, reported in literature, the two hydroxyl
groups of the 2,6-di(CH2OH)py ligand remain uncoordinated [refcode XAKWOW [42]], either only one
CH2OH arm is engaged in coordinative interaction with the silver ion (refcode LIWWIY [43]). In the
former structure Ag[(sac)(2,6-di(CH2OH)py)] (where sac = saccharinate) structure the relatively short
Ag–N distance of 2.1490(15) Å was found. In the latter structure, the silver-donor bond lengths and
related angle [Ag–O=2.614(3) Å and Ag–N=2.180(3) Å, N–Ag–O=71.57(10)˝] correspond well with
those determined for 3 (see caption of Figure 2).
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By the use of coordinative Ag–O contacts, two adjacent complex cation molecules together with
two accompanying nitrate anions form a dimeric unit lying across centre of symmetry. Within such
dimers the pyridine rings are π-π stacked with a Cg1¨¨¨Cg2iii/Cg2¨¨¨Cg1iii distance of 3.914(1) Å and
corresponding interplanar distances of 3.489(1) Å/3.597(1) Å; Cg1 and Cg2 are the centroids of the
N1/C1–C5 and N2/C8–C12 rings, respectively (Figure 2b).

Furthermore, all four hydrogen groups act as proton donors in intermolecular O–H¨¨¨O hydrogen
bonds. The geometries of interactions, presented in Figure 2a, are summarized in Table 3. Finally, in the
crystal structure of the Ag(I) complex, 3, interacting molecules built a 3D hydrogen-bonded network.

Table 3. Hydrogen bonding geometry (Å, ˝) for 3.

D-H H¨¨¨A D¨¨¨A D-H¨¨¨A

O1-H1A¨¨¨O5Ai 0.81(2) 1.94(2) 2.709(5) 159(2)
O2-H2A¨¨¨O6Aii 0.78(2) 1.95(2) 2.721(5) 170(2)
O3-H3A¨¨¨O2Aiii 0.81(2) 1.89(2) 2.691(2) 169(2)
O4-H4A¨¨¨O1Aiv 0.82(2) 1.94(2) 2.726(2) 163(2)

Symmetry codes: (i) ´x, y ´ 1/2, ´z; (ii) x + 1, y, z; (iii) ´x, 1 ´ y, ´z; (iv) ´x, y + 1/2, ´z + 1/2.

To provide further insight into the packing and intermolecular contacts in the analyzed structure
of complex 3, the Hirshfeld surface analysis [44] was performed using CrystalExplorer [45] software.
The Hirshfeld surface is defined by the outer contour of the space which a molecule of interest
consumes in a crystalline environment [46]. A ratio dnorm (given by Equation (1)) encompassing the
distances of any surface point to the nearest atom outside (de) and inside (di) the surface and the van
der Waals radii of the atoms (rvdW

i and rvdW
e , respectively) enables the identification of the regions with

individual intermolecular interactions unique for the crystal structure [47,48]:

dnorm “
di ´ rvdW

i

rvdW
i

`
de ´ rvdW

e
rvdW

e
(1)

A red–white–blue color scheme is characteristic for the Hirshfeld surface projection with
dnorm function mapped onto it: red color highlights short contacts, white color is used for weak
contacts around the van der Waals separation, and blue color corresponds for a region to be free of
significant contacts.

The associated two-dimensional histograms being a combination of di vs. de, referred to as
“fingerprint plots”, are useful tool in identifying and comparing different kinds of intermolecular
interactions. Fingerprint plots are unique for a given crystal structure [49].

Figure 3 presents the Hirshfeld surface modelled over the cation molecule, [Ag(2,6-di(CH2OH)py)2]+

and corresponding two-dimensional fingerprint plots showing all types of contacts and these reduced to
selected contact types: Ag¨¨¨O/O¨¨¨Ag, O¨¨¨H/H¨¨¨O, C¨¨¨H/H¨¨¨C.

As expected, the H¨¨¨H contacts comprise 39% of the surface area due to the small van der Waals
radius of hydrogen and packing effects in molecular structures [50], likewise the H¨¨¨H distances
observed in 3 are typical without extremely short ones.

Furthermore, the O¨¨¨H/H¨¨¨O contacts play a dominate role with a significant contribution of
33.7%. It was found that CH2OH arms of the 2,6-di(CH2OH)py ligands are mostly involved in quite
strong O-H¨¨¨O hydrogen bonds (the shortest interactions are shown as long spikes) and weaker
C-H¨¨¨O interactions. Another type of weak C¨¨¨H/H¨¨¨C contacts give only 12.4% of the surface.
The aromatic π-π stacking interactions mainly represented by C¨¨¨C and C¨¨¨N contacts (4.4% and
1.4%, respectively) as well as N¨¨¨H/H¨¨¨N contacts (3.5%) make a small contribution to the Hirshfeld
surface comparable to the all interactions with metal Ag1 atom (4.2%). Among short contacts of Ag¨¨¨X
(X = O,N,C,H) dominate the Ag¨¨¨O ones (2.6%).
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Figure 3. Hirshfeld surface of Ag(I) complex-cation molecule with the geometrical function dnorm

mapped onto it (a colour scale from red to blue: ´0.75 Å–1.2 Å) and corresponding finger plots
indicating all types of contacts and these reduced to contact types as following Ag¨¨¨O/O¨¨¨Ag,
O¨¨¨H/H¨¨¨O, C¨¨¨H/H¨¨¨C [the distances from a surface point to the nearest interior/exterior atoms
(di{e) are given in Å].

2.2. Antibacterial Activity

The antibacterial properties were expressed as MIC (minimum inhibitory concentration) and MBC
(Minimum Bactericidal Concentration) values. The activity of silver compounds 1–6, were compared
with those of two commonly-used silver antimicrobial agents (AgNO3 and AgSD) andthe appropriate
free ligands (Figure 4). The studies indicate that hydroxymethylene and phosphate derivatives of
pyridine and benzimidazole did not exhibit any antibacterial activity up to 500 mg/L´1, while all the
tested silver complexes possess relatively good antimicrobial properties. Among them, complex 2
exhibited the highest antibacterial activity. It inhibited the growth of P. aeurignosa at a concentration
almost 4.5-fold lower than that of AgSD. In the case of E. coli and P. hauseri, the MIC value was
27 µM, which was also much lower than that observed for AgSD. Complexes 1 and 2 were previously
characterized as compounds showing good antibacterial and antifungal activity [28]. Compound 1
exhibited antimicrobial activity against E. coli ATCC 8739 and P. aeruginosa ATCC 27853 with MIC
values 37.6 µM for both strains. Also compound 2 inhibited the growth of mentioned bacteria, at
concentrations of 21.2 µM for E. coli ATCC 8739 and 5.3 µM for P. aeruginosa ATCC 27853 [28].

Satisfactory antibacterial properties were also displayed by complex 5, which inhibited the
growth of E. coli and P. aeruginosa at a concentration 2.6-fold lower than that determined for AgSD.
Its MIC value against P. hauseri was almost four-fold lower than that of reference AgSD. In the case of
P. aeruginosa, complex 5 demonstrated good antimicrobial activity and inhibited the growth of bacteria
at a concentration almost three-fold lower than that of AgSD. The MBC values (Table 4) obtained for the
tested complexes also confirmed that, among the analyzed group, complexes 2 and 5 demonstrated the
highest antibacterial activity and were more active than the reference compounds (AgNO3 and AgSD).
To summarise, complexes 2 and 5 containing a benzimidazole ring in their structure demonstrated
much higher activity than that containing pyridine. Moreover, mentioned compounds were more
effective than AgSD and AgNO3 toward the selected tested Gram-negative pathogens.
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Figure 4. Antibacterial activity of the complexes 1–6, given as MIC (minimum inhibitory concentration)
values in µmol/L´1. MIC values of the free ligands, i.e., 4-pmOpe, 2-bimOpe, 2,6-di(CH2OH)py,
4-CH2OHpy, 2-CH2OHbim, are >500 mg/L´1. AgSD: silver sulfadiazine. The all experiments were
performed in triplicate (SD = 0). * Complex 6 [13].

Table 4. MBC (minimum bactericidal concentration) values (µM) of the tested compounds.

Compound E. coli ATCC 25992 P. hauseri ATCC 13315 P. aeruginosa ATCC 15442

1 145 120 72
2 54 41 27
3 67 112 67
4 77 77 52
5 21 43 21

6 [13] 98 117 117
AgNO3 177 177 59
AgSD 84 140 56

Our previous studies also indicated that silver(I) complex 6, containing metronidazole and nitrate
counter-ion, exhibited satisfactory antimicrobial properties against tested Gram-negative bacteria.
Antimicrobial activity of 6 was lower or comparable with those presented by AgNO3 [13].

Silver N-heterocyclic carbene complexes are widely described in the literature as effective
antibacterial, antifungal, and antiviral agents [1]. Haque et al. synthesized dinuclear silver
complexes with N-heterocyclic carbene, which possessed good antibacterial activity. The authors
also demonstrated that compounds containing benzimidazole moiety exhibited significantly higher
activity than complexes with imidazole [51]. The 4-vinylbenzyl-substituted benzimidazol-2-ylidene
silver complex effectively inhibited the growth of Gram-positive and Gram-negative bacteria
and demonstrated good antifungal activity against yeast [52]. Moreover, newly synthesized
silver complexes can constitute an excellent alternative for the treatment of infections caused by
antibiotic-resistant bacteria. Silver compounds containing 4,5,6,7-tetrachlorobenzimidazole showed
high antibacterial activity against methicillin-resistant Staphylococcus aureus strains or silver-resistant
Escherichia coli [53].

2.3. Cytotoxic Activity

Firstly, the in vitro cytotoxic activity of silver complexes 1–6 and free ligands towards murine
melanoma (B16) cell lines was determined and compared with that of AgNO3, AgSD (silver
sulfadiazine) and cis-DDP (cisplatin). The IC50 values (µM), i.e., the concentrations of compounds
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that cause 50% reduction of cellular viability, are given in Figure 5. The percentage of viable B16 cells
treated with the silver(I) complexes and referenced compounds is given in Figure S1. The results show
meanvalue ˘ SD of three repetitions.
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Figure 5. Response of B16 cell lines to silver complexes 1–6, AgNO3, AgSD (silver sulfadiazine) and
cis-DDP (cisplatin). Values presented are IC50 (µM) ˘ SD for three independent experiments.

The IC50 values of complexes 1–6 range from 244 to 2865 µM. Complexes 4 and 5 demonstrate the
highest cytotoxicity against B16 cells, with respective IC50 values of 2.44 and 7.05 µM. The activity of
complex 4 is four times greater than that of AgNO3 and eight times greater than AgSD. Complex 5
demonstrates slightly greater cytotoxicity than AgNO3 and about twice as much as AgSD. Moreover,
complex 5 exhibits IC50 value in the same range as cisplatin, whose IC50 value is 7.87 µM, whereas
complex 4 is three-fold higher in IC50 value compared to cisplatin. Though complexes 4 and 5 contain
different heterocyclic rings, i.e., pyridine and benzimidazole, they both include the hydroxymethylene
groups, the presence of which may determine the activity of the complexes.

However, the cytotoxic activity of the free ligands is very low (>200 µM), their presence is crucial
for activity of the complex as a whole. It is hard to conclude how the ligands influence the cytotoxic
activity of the complexes, the barrier is the lack of a defined mechanism of action of Ag(I) complexes.
It has been previously proposed that the activity of the silver complexes is not only dependent on the
metal ions but is connected with the presence of the metal together with the ligands [54,55].

Secondary, in order to evaluate the effect of silver(I) complexes 1–6 and referenced silver
compounds (AgNO3 and AgSD) on non-cancerous cells, we also examined their cytotoxicity on
murine fibroblasts cells, 10T1/2. The percentage of survival 10T1/2 cells was measured just for
concentrations, in which 50% of murine melanoma cells (B16) remain viable (IC50 values). The results
(Figure 6) are very promising, because the percentage of survival of non-cancerous cells (10T1/2)
ranges from 90% to 100%. This means that all tested silver compounds are not toxic to fibroblast cells in
concentration inhibited cancer cell viability by 50%. The tested silver(I) complexes could be potential
anticancer agents.

The limited amount of research concerning the cytotoxicity of silver(I) complexes towards
mentioned cell lines (B16 and 10T1/2) exists. Cytotoxicity studies of silver(I) complexes of substituted
(2-aminophenyl)phosphines have shown them to be active against B16 cells in the range of comparable
to cisplatin (IC50 0.9 µM) [56]. Similarly, the other group of silver(I) complexes containing chiral
tertiary phosphine ligands has been examined towards B16 cells and their IC50 values ranged from 1.3
to 5.0 µM [27].
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3. Materials and Methods 

3.1. Synthesis of the Complexes 1–6 

The syntheses of complexes 1–6 were performed according to procedures reported previously 
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3.2. X-ray Single-Crystal Structure Determination 

The X-ray measurement of 1 was performed on an Agilent SuperNova diffractometer (Agilent 
Technologies, Yarnton, England) with an Atlas detector using MoKα radiation and ω scan at 100 K. 
Multi-scan absorption [59] correction was applied to correct the measured X-ray intensities. The 
structure was solved and refined using SHELXL-2013 [60]. During the refinement the extinction 
correction was also required. All non-hydrogen atoms were refined anisotropically. H atoms bonded 
to oxygen atoms were located in a difference map and refined with the O–H distance restrained to a 
common value of 0.84 Å. Other (C)–H atoms were positioned geometrically and refined using a 
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Three oxygen atoms (O5, O6, O7) in nitrate group were found to be disordered and refined with 
the final site-occupation factors for the two alternative positions to kA:kB = 0.69(3):0.31(3). Moreover, 
geometrical similarity constraints were applied to all N–O bonds within the disordered anion 
molecule, using the SADI instruction. 
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Figure 6. Percentage of survival 10T1/2 cells treated with complexes 1–6, AgNO3 and AgSD, in
concentrations that correspond with IC50 values for B16 cells. Statistical analyses were done using
GraphPad Prism 6 and one-way ANOVA with Bonferroni’s multiple comparisons test. p < 0.05 was
considered as statistically significant one. Data were showed as mean with SD of three independent
experiments. **** p < 0.0001.

3. Materials and Methods

3.1. Synthesis of the Complexes 1–6

The syntheses of complexes 1–6 were performed according to procedures reported previously [13,28,29].
The reference compounds: AgNO3 (POCH, Gliwice, Poland), silver sulfadiazine AgSD (Sigma-Aldrich
Sp. z.o.o, Poznań, Poland), and cisplatin (Sigma-Aldrich Sp. z.o.o); the ligands: 2,6-di(CH2OH)py,
4-CH2OHpy, 2-CH2OHbim (Sigma-Aldrich Sp. z.o.o), MTZ (Sigma-Aldrich Sp. z.o.o) were all used as
supplied. The ligands: 4-pmOpe and 2-bimOpe was synthesized according to previously described
procedures [57,58].

3.2. X-ray Single-Crystal Structure Determination

The X-ray measurement of 1 was performed on an Agilent SuperNova diffractometer (Agilent
Technologies, Yarnton, England) with an Atlas detector using MoKα radiation and ω scan at
100 K. Multi-scan absorption [59] correction was applied to correct the measured X-ray intensities.
The structure was solved and refined using SHELXL-2013 [60]. During the refinement the extinction
correction was also required. All non-hydrogen atoms were refined anisotropically. H atoms bonded
to oxygen atoms were located in a difference map and refined with the O–H distance restrained to
a common value of 0.84 Å. Other (C)–H atoms were positioned geometrically and refined using a riding
model with C–H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(methyl C).

Three oxygen atoms (O5, O6, O7) in nitrate group were found to be disordered and refined with
the final site-occupation factors for the two alternative positions to kA:kB = 0.69(3):0.31(3). Moreover,
geometrical similarity constraints were applied to all N–O bonds within the disordered anion molecule,
using the SADI instruction.

CCDC1405058 contains the supplementary crystallographic data for this paper. These data can be
obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC,
12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).
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3.3. Antibacterial Activity Studies

The antimicrobial susceptibility testing of synthesized complexes, free ligands, and references
compounds (AgNO3 and AgSD) was performed against three Gram-negative strains: Eschericha coli
ATCC 25922, Proteus hauseri ATCC 13315, and Pseudomanos aeruginosa ATCC 15442. The minimum
inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined by
a modified broth microdilution method according to the recommendation of Clinical and Laboratory
Standards Institute (CLSI M07-A8). In the experiments the Mueller-Hinton broth was used, the final
organism density was about 5 ˆ 105 CFU/mL and the tests were performed 20 h at 37 ˝C. The studied
compounds were dissolved in water (1, 3, 4, 6, and the ligands [except 2-CH2OHbim]) or in DMSO
(2, 5, and 2-CH2OHbim), and the appropriate amounts were added to samples (to biotic controls was
added pure solvent). The compounds were tested in concentration ranging from 0 mg/L to 100 mg/L,
except free ligands which were tested up to 500 mg/L.

3.4. Cytotoxic Activity. MTT Assays

The B16 (murine melanoma) cells and C3H10T1/2 (mouse fibroblast) cells [61] were seeded
7 ˆ 103 (B16) and 3 ˆ 104 (10T1/2) per well/24 well plate into a medium containing DMEM
GlutaMAX (Thermo Fisher Scientific, Waltham, MA USA), 10% bovine serum (Lonza, San Diego,
CA, USA) added, and Antibiotic Antimicotic Solution 1:100 (Sigma-Aldrich). The plates were stored
in a humidified incubator at 37 ˝C, 5% CO2. After 24 h, the cells were treated with the following
compounds: compounds 1–6, free ligands, AgNO3, and AgSD (except control cells—wells without
tested compound). Silver complexes 1, 3, 4, 6, and AgNO3 were dissolved in water. Complexes 2, 5,
and AgSD are DMSO-soluble. Next, all chemicals were diluted into water to make a concentration 1,
0.1, 0.01 mg/mL and as a working solution were added to the medium. After 72 h of incubation, the
cells were washed and incubated with 0.25 mg/mL MTT (Sigma-Aldrich) solution and were incubated
for another 3 h. Isopropanol was added to dissolve the formazan crystals. Absorbance at 540 and
690 nm was read using Epoch Software version 2.01.14 (Bio-Tek, Winooski, VT, USA).

4. Conclusions

Antibacterial and cytotoxic activity of a series of silver(I) complexes of phosphate and
hydroxymethylene derivatives of pyridine and (benz)imidazole was determined. Crystal and
molecular structure of silver(I) complex with 2,6-di(hydroxymethyl)pyridine (3) was completed herein.

The complexes containing benzimidazole derivatives, 2 and 5, were the most active against
Gram-negative strains: Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 25922, and
Proteus hauseri ATCC 13315. Their antibacterial potency was higher than that of referenced drug
AgSD (silver sulfadiazine) and AgNO3. Moreover the complex 2 exhibited antibacterial activity at
concentrations that were not toxic to the eukaryotic cells.

The in vitro cytotoxicity has been assessed against the cancerous B16 (murine melanoma) and
non-cancerous 10T1/2 (murine fibroblasts) cell lines. Two of the tested silver(I) complexes containing
hydroxymethylene groups, i.e., 4 and 5, displayed greater cytotoxic activity against B16 cells (murine
melanoma) than that of AgNO3, AgSD, and cisplatin. All the complexes 1–6 were found to have
relatively low toxicity to non-cancerous 10T1/2 cells (murine fibroblasts). The percentage of survival
of 10T1/2 cells treated with the mentioned compounds in concentrations equal to IC50 values for B16
cells, was in the range of 90%–100%. Results are favourable. Any potential anticancer agents should be
non-toxic for healthy cells and toxic towards cancer.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
2/87/s1.
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