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Abstract: A novel thiophene-containing compound, 2-acetyl-3-amino-5-[(2-oxopropyl)sulfanyl]-4-
cyanothiophene (4) was synthesized by reaction of malononitrile with CS2 in the presence of K2CO3

under reflux in DMF and the subsequent reaction with chloroacetone followed by cyclization. This
compound has been characterized by means of FT-IR, 1H-NMR, 13C-NMR, and mass spectrometry as
well as elemental analysis. In addition, the molecular structures of compound 4 was determined by
X-ray crystallography. The geometry of the molecule is stabilized by an intramolecular interaction
between N1–H1¨ ¨ ¨O1 to form S6 graf set ring motif. In the crystal, molecules are linked via
N1–H2¨ ¨ ¨O1 and C7–H7A¨ ¨ ¨N2 interactions to form a three-dimensional network. Molecular
structure and other spectroscopic properties of compound 4 were calculated using DFT B3LYP/6-31G
(d,p) method. Results revealed a good agreement between the optimized geometric parameters
and the observed X-ray structure. Furthermore, and by employing the natural bond orbital (NBO)
method, the intramolecular charge transfer (ICT) interactions along with natural atomic charges at
different sites, were calculated; results indicated strong nÑπ* ICT from LP(1)N5ÑBD*(2)C15-C16
(63.23 kcal/mol). In addition, the stabilization energy E(2) of the LP(2)O3Ñ BD*(1)N5-H6 ICT
(6.63 kcal/mol) indicated the presence of intramolecular N-H¨ ¨ ¨OH bonding. Similarly, calculations
of the electronic spectra of compound 4 using, TD-DFT revealed a good agreement with the
experimental data. Finally, compound 4 was evaluated for its in vitro cytotoxic effect against PC-3
and HeLa cell lines, as an anticancer agent, and found to be nontoxic.

Keywords: 2-acetyl-3-amino-5-[(2-oxopropyl)sulfanyl]-4-cyanothiophene; X-ray diffraction; DFT;
molecular structure; cytotoxicity
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1. Introduction

Pharmaceutical drugs based on bioactive natural products or small synthetic molecules are
still the backbone of cancer therapy, with main cellular targets including tubulin, DNA, and several
protein kinases [1–3]. Therefore, synthesis of new small organic compounds with selective activity
against cancerous cells is the center of attention of anticancer drug development. For example,
thiophene privileged structures possess a wide range of biological activities, such as antidepressant [4],
analgesic [5], anti-inflammatory [6], anticonvulsant [7–10], and antimicrobial properties [11].
The currently available active antiepileptic drugs (AEDs), such as brotizolam [12], etizolam [13], and
tiagabine [9], contain the thiophene skeleton in their structures. Similarity, sodium phethenylate [9]
exhibits high activity due to the presence of a thiophene ring. Furthermore, organic molecules
incorporating thiosemicarbazones and hydrazones possess anticonvulsant activity [13–16].

In view of the wide interest in the activity profile of thiophenes and in the search for new
therapeutic agents, and in continuation of our recent work on the synthesis and bioactivity of thiophene
derivatives [17,18], we describe herein the synthesis, characterization, X-ray structure determination of a
novel thiophene-containing compound, 2-acetyl-3-amino-5-[(2-oxopropyl)sulfanyl]-4-cyanothiophene (4).
The cytotoxicity of the newly prepared compound was investigated in vitro against PC-3 and HeLa cell
lines, as a potential anticancer agent. In addition, DFT/B3LYP calculations were performed to study the
molecular structural characteristics of the molecule along with its electronic and spectroscopic properties.
Similarly, TD-DFT calculations were employed to predict and assign the electronic spectra of the studied
compound. Furthermore, NBO calculations were performed to predict the natural atomic charges and to
study different intramolecular charge transfer (ICT) interactions in the system.

2. Results and Discussion

2.1. Synthesis of Compound 4

Compound 4 was synthesized in 78% yield according to the route depicted in Scheme 1. Reaction
of malononitrile with CS2 in the presence of K2CO3 under reflux in DMF afforded the intermediate 2,
which upon reaction with chloroacetone afforded the intermediate 3 which cyclized to the new and
novel compound 4. The newly synthesized compound was characterized by elemental analysis and a
number of spectroscopic techniques such as IR, MS and NMR. These data, detailed in the experimental
section, are consistent with the proposed structure. The mass spectrum of compound 4 exhibited the
correct molecular ion peak which is in good agreement with the calculated value. In the 1H-NMR
spectrum of the prepared compound, we employed DEPT experiments to distinguish between the
different types of hydrogens present in the molecule. Finally, single-crystal X-ray diffraction was
utilized to confirm the structure of 4.
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2.2. Crystal Structure of Compound 4

The crystal structure of compound 4 is composed of a planar thiophene ring (S1-C2-C3-C4-C5)
with an acetyl (O1/C6-C7), a primary amine (N1), (2-oxopropyl)sulfanyl (S2/O2/C9-C11), and a nitrile
(N2/C8) substituent, attached to C2, C3, C4, and C5 atoms of planar thiophene ring, respectively, as
shown in Figure 1. Crystal and experimental data are listed in Table 1, whereas selected geometrical
parameters are given in Table 2.
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Figure 1. The ORTEP diagram of the final X-ray model of compound 4 with displacement ellipsoids
drawn at 30% probability level. H-atoms were placed, and not included in refinement.

Table 1. The crystal and experimental data of compound 4.

Empirical formula C10H10N2O2S2
Formula weight 254.32
Temperature 293 (2) K
Wave length 0.71073 Å
Crystal system Orthorhombic
space group Pmna

Unit cell dimensions

a = 10.6077(7) Å
b = 7.0209(5) Å
c = 15.9646(10) Å
α = β = σ = 90˝

Volume 1188.97(14) Å´3

Z 4
Calculated density 1.421 mg/m´3

Absorption coefficient 0.434 mm´1

F(000) 528
Crystal size 0.33 ˆ 0.27 ˆ 0.23 mm
Theta range for data collection 2.31˝ to 27.50˝

Limiting indices ´12 ď h ď 13, ´9 ď k ď 8, ´20 ď l ď 17
Reflections collected/unique 7832/1477 [R(int) = 0.0266]
Data completeness up to theta 27.50˝ 100%
Absorption correction Semi-empirical from equivalents
Max. and min. transmission 0.9068 and 0.8701
Refinement method Full-matrix least-squares on F´2

Data/restraints/parameters 1477/0/0.8701
Goodness-of-fit on F´2 1.048
Final R indices [I > 2sigma(I)] R1 = 0.0441, wR2 = 0.1151
R indices (all data) R1 = 0.0534, wR2 = 0.1248
Largest diff. peak and hole 0.270 and ´0.344 e¨A´3
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Table 2. Experimental and calculated geometric parameters of compound 4 using DFT B3LYP/6-31G
(d,p) method.

Parameter a Calc. Exp Parameter Calc. Exp.

R(1-15) 1.769 1.732 A(1-18-2) 125.2 123.9
R(1-18) 1.737 1.702 A(1-18-17) 111.4 112.1
R(2-18) 1.754 1.735 A(18-2-21) 100.6 100.8
R(2-21) 1.831 1.791 A(2-18-17) 123.3 124.0
R(3-19) 1.240 1.224 A(2-21-22) 110.5 109.5
R(4-23) 1.213 1.203 A(2-21-23) 109.0 110.9
R(5-16) 1.346 1.332 A(2-21-26) 110.5 109.5
R(8-20) 1.166 1.122 A(3-19-9) 120.4 120.5
R(9-19) 1.518 1.504 A(3-19-15) 120.4 120.5
R(12-23) 1.515 1.470 A(4-23-12) 122.9 123.4
R(15-16) 1.400 1.411 A(4-23-21) 121.2 120.8
R(15-19) 1.444 1.424 A(5-16-15) 124.1 124.9
R(16-17) 1.444 1.430 A(5-16-17) 123.6 124.5
R(17-18) 1.390 1.375 A(8-20-17) 176.9 179.4
R(17-20) 1.419 1.426 A(9-19-15) 119.1 118.9
R(21-23) 1.527 1.492 A(12-23-21) 115.9 115.8

A(15-1-18) 92.3 92.4 A(16-15-19) 124.8 125.3
A(1-15-16) 110.6 111.3 A(15-16-17) 112.3 110.6
A(1-15-19) 124.6 123.4 A(16-17-18) 113.4 113.6

a Atoms’ numbering according to Figure 3.

The geometry of the molecule is further stabilized by an intramolecular O1–H1¨ ¨ ¨N1 interaction.
In the crystal, molecules are linked via N1–H2¨ ¨ ¨O1 and C7–H7A¨ ¨ ¨N2 interactions to form a three
dimensional network, as presented in Figure 2 and Table 3.
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Table 3. Hydrogen bonding data for compound 4.

D H A D-H H¨ ¨ ¨A D¨ ¨ ¨A D-H¨ ¨ ¨A

N1 H1 O1 0.84(4) 2.13(4) 2.765(4) 132(4)
N1 H2 O1 a 0.89(4) 2.03(4) 2.916(4) 179(3)
C7 H7A N2 b 0.8600 2.5400 3.359(5) 158.00

Symmetry codes: a ½ + x, ½ ´ y, ½ ´ z, b ´1 + x, ´1 + y, ´1 + z.

2.3. Optimized Molecular Geometry

Presented in Table 2 are the optimized bond lengths and bond angles for compound 4, obtained
using the B3LYP method with 6-31G (d,p) basis set, whereas the optimized structure is shown
in Figure 3; the studied compound possesses a C1 point group. In addition, results revealed a
good agreement between the calculated geometric parameters (bond distances and bond angles) of
compound 4 with those obtained from the crystallographic information file (CIF). In general, most of
bond distances are overestimated except for the C15-C16 bond which is slightly underestimated by
0.011Å. Furthermore, the maximum deviations of the calculated bond length and bond angle values
from the experimental data are 0.045 Å (C12-C23) and 2.5˝ (N82-C20-C17), respectively. On the other
hand, the calculated intramolecular O—H distance is 1.983 Å (exp. 2.116 Å) indicated the presence of
intramolecular H-bonding interaction between the carbonyl O-atom, and one of the amine protons.
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2.4. Natural Atomic Charge

Atomic charges may have an effect on many properties of molecular systems, such as dipole
moment, molecular polarizability, and electronic structure. The calculated natural atomic charges
(NAC) at the different atomic sites of compound 4 are presented in Table 4. Results reveal that the
O and N atoms of the studied molecule have electronegative natural charges. Of these atomic sites,
the N-atom of the amino group was found to be the most electronegative whereas the N-atom of the
nitrile group showed the lowest NAC value. In contrast, the S-atoms are electropositive. Furthermore,
the natural charge of the ring S-atom is more positive than the one outside the ring. Additionally, all
H-atoms are electropositive, where the amino group protons (H6 and H7) are more electropositive than
the others. The natural charge values at H6 and H7 are 0.4562 and 0.4287, respectively. Results show
that H6 has different natural charge value than H7. The higher NAC value at H6 could be attributed to
the intramolecular N-H¨ ¨ ¨OH-bonding interaction.
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Table 4. The natural atomic charges calculated at the B3LYP/6-31G (d,p).

Atom a NAC Atom NAC

S1 0.4539 H14 0.2587
S2 0.4278 C15 ´0.3936
O3 ´0.6092 C16 0.2516
O4 ´0.5191 C17 ´0.2642
N5 ´0.8023 C18 ´0.3495
H6 0.4562 C19 0.5238
H7 0.4287 C20 0.2624
N8 ´0.2969 C21 ´0.7120
C9 ´0.7706 H22 0.2746

H10 0.2659 C23 0.5892
H11 0.2511 H24 0.2511
C12 ´0.7809 H25 0.2587
H13 0.2701 H26 0.2746

a Atoms’ numbering according to Figure 3.

2.5. Molecular Electrostatic Potential

Electrostatic potential maps (MEP) are useful three-dimensional diagrams that can be used to
visualize charge distributions and charge related properties of molecules. These maps are used
to predict the reactive sites for electrophilic and nucleophilic attacks, and are useful in biological
recognition and hydrogen bonding interactions studies [19,20]. In addition, they provide information
on the charge distribution and charge related properties of molecules. The MEP of compound 4
calculated, using B3LYP method with 6-31G (d,p) basis set, is shown in Figure 4. Figure reveals that
negative regions (red) are mainly localized over the O and N- atoms which are the most reactive sites
for an electrophilic attack, whereas the maximum positive regions (blue) are localized over the ring
S-atom, and the H-atoms which are the most reactive sites for a nucleophilic attack.
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2.6. Nonlinear Optical Properties

Nonlinear optical materials were employed as key materials for photonic communications
and have been extensively used in industry and medicine [21,22]. Organic compounds with high
polarizability (α0) and low HOMO-LUMO energy gap (∆E) are good candidates for nonlinear optical
materials. These quantum chemical parameters are obtained from DFT calculations. The α0 and ∆E
values of compound 4 are calculated to be 165.67 Bohr3 and 4.0883 eV, respectively, and its polarizability
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is 6 times higher than urea. Similarly, the hyperpolarizability (β), is a property related to nonlinear
optical properties of molecular systems. The calculated hyperpolarizability (β) values were 901.16 and
69.91 A.U for compound 4 and urea, respectively. Results indicate that compound 4 has about 13 time
higher β than urea. In addition, the compound has a lower energy gap (∆E) compared to urea. Based
on these results, compound 4 is considered as a better NLO material than the reference molecule used
in the literature [23].

2.7. Frontier Molecular Orbitals

Energy and electron densities of the frontier molecular orbitals (FMOs) are very useful for
physicists and chemists [24]. Energies of the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) as well as their energy gap reflect the chemical reactivity of
the molecule. Moreover, the HOMO-LUMO energy gap has been used to prove the bioactivity
from intramolecular charge transfer (ICT) [25,26]. The EHOMO and ELUMO of compound 4 are
calculated using the B3LYP/6-31G (d,p) method. The HOMO and LUMO pictures are shown in
Figure 5 and the EHOMO and ELUMO are calculated to be ´5.8845 eV and ´1.7962 eV, respectively.
The HOMO-LUMO energy gap (∆E) represents the lowest energy electronic transition and for
compound 4, the HOMO-LUMO energy gap is 4.0883 eV; this electron transition belongs mainly
to πÑπ* excitations.

The accurate electronic transitions of the molecule were calculated using the time-dependent
density functional theory (TD-DFT). The spin allowed singlet-singlet electronic transitions calculated
using the TD-DFT method are listed in Table S1 (Supplementary Material), whereas the calculated
electronic spectrum is displayed in Figure 6. Results reveal that compound 4 exhibits five intense
electronic transition bands at 336.9, 285.8, 257.9, 230.3, 219.5, and 176.2 nm. The longest wavelength
electronic transition band, at 336.9 nm (exp. 374 nm), has a moderate intensity (f = 0.1493) and is
assigned to HÑL (78%) excitation.
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2.8. Natural Bond Orbital (NBO) Analysis

Natural bond orbital (NBO) calculations were accomplished to understand the various interactions
between the filled NBOs of one bond and the vacant orbitals of another, which is a measure of the
intramolecular delocalization of electrons. Presented in Table 5 are stabilization energies E(2), obtained
from NBO calculations for the most significant intramolecular charge transfer interactions. The larger
the E(2) value, the more intensive the interaction between electron donor and electron acceptor NBOs
is, i.e. the greater the extent of conjugation of the whole system [27]. The energy of these interactions
could be estimated by the second-order perturbation theory [28]. The ICT interactions formed by
electron delocalization from πÑπ*, nÑσ*, and nÑπ* cause stabilization of the system by 31.02,
22.82, and 63.23 kcal/mol, respectively, which is due to BD (2) C15-C16ÑBD*(2) O3-C19, LP (2)
O4ÑBD*(1) C21-C23, and LP (1) N5ÑBD*(2) C15-C16 ICT interactions, respectively. These results
indicate the presence of strong electron delocalization from LP (1) N5 to the neighboring C15–C16
π*-NBO. Additionally, NBO calculations predicted πÑπ* electron delocalization from the nitrile group
π-system to the neighboring π*-NBO of the C10–C11 bond. Moreover, the ICT LP (2) O3Ñ BD*(1)
N5-H6 stabilization energy E(2) calculated to be 6.63 kcal/mol is a strong evidence about the presence
of an intramolecular N-H¨ ¨ ¨OH-bonding interaction.

Table 5. The second order perturbation energies E(2) (kcal/mol) of the most important charge transfer
interactions (donor-acceptor) of compound 4 a using B3LYP method.

Donor NBO (i) Acceptor NBO (j) E(2) kcal/mol

BD(2)C15-C16 BD*(2)O3-C19 31.02
BD(2)C15-C16 BD*(2)C17-C18 11.99
BD(2)C17-C18 BD*(3)N8-C20 18.60
BD(2)C17-C18 BD*(2)C15-C16 18.69
BD(3)N8-C20 BD*(2)C17-C18 9.01

LP(2)S1 BD*(2)C15-C16 13.30
LP(2)S1 BD*(2)C17-C18 24.70
LP(2)S2 BD*(2)C17-C18 23.97
LP(2)O3 BD*(1)N5-H6 6.63
LP(2)O3 BD*(1)C 9-C19 19.04
LP(2)O3 BD*(1)C15-C19 15.68
LP(2)O4 BD*(1)C12-C23 20.65
LP(2)O4 BD*(1)C21-C23 22.82
LP(1)N5 BD*(2)C15-C16 63.23
LP(1)N8 BD*(1)C17-C20 12.82

a Atoms’ numbering according to Figure 3.
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2.9. NMR Spectra

The isotropic magnetic shielding (IMS) values calculated using the GIAO approach at the
6-31G (d,p) level were used to predict the 13C- and 1H-NMR chemical shifts (δcalc) for compound
4; results were in agreement with the experimental NMR data (δexp) in CDCl3. The experimental
and theoretical 1H- and 13C-NMR chemical shifts of the studied compound are presented in Table S2
(Supplementary Material). According to the results, the calculated chemical shifts were in compliance
with the experimental findings. As shown in Figure 7, the agreement between experimental and
calculated chemical shifts is better for 13C (R2 = 0.994) than 1H (R2 = 0.807) [29]. Protons are most likely
more affected by the solute intermolecular (solute–solvent) interactions than carbons [22]. Moreover,
the presence of N-H¨ ¨ ¨O interaction makes the chemical shift of the H6 strongly deviated from
the experimental data. Such intramolecular interaction has no importance in solution where the
intermolecular solute-solvent interactions are dominant. If the chemical shift of this proton is omitted
from the correlation, a better correlation coefficient will be obtained (R2 = 0.917).
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2.10. Biological Activity Evaluation

Compound 4 was evaluated for its in vitro cytotoxic activity against PC-3 and HeLa cell lines;
results are presented in Table 6. Results reveal that compound 4 is non-cytotoxic against PC-3 and
HeLa cell lines, as a potential anticancer agent, when tested against standard drugs doxorubicin
(IC50 = 0.912 ˘ 0.12 µM) and soxorubicin (IC50 = 0.306 ˘ 0.155 µM) as tested standards, respectively,
and showed >30% inhibition of PC-3 and HeLa cancer cell lines. This would suggest that compound 4
acts by intercalation of DNA and disruption of topoisomerase II. Furthermore, results also reveal that
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compound 4 is much less potent than reference drugs. This could be attributed to structural reasons;
perhaps the investigated compound is a less efficient intercalating agent than the reference drugs.

Table 6. Results of cytotoxicity assays of compound 4.

Compound Cytotoxic Activity (PC-3 Cell line)
IC50 ˘ SEM [µM]

Cytotoxic Activity (Hella Cell line)
IC50 ˘ SEM [µM]

4 >30 >30
Standard Doxorubicin 0.912 ˘ 0.12 Soxorubicin 0.306 ˘ 0.155

3. Materials and Methods

3.1. General Information

Chemicals used throughout this work were purchased from various suppliers, including
Sigma-Aldrich (Milwaukee, WI, USA) and Fluka (St. Louis, MO, USA) and were used without
further purification, unless otherwise stated. Melting points were measured on a Gallenkamp melting
point apparatus in open glass capillaries and are uncorrected. IR spectrum was recorded as KBr pellets
on a Nicolet 6700 FT-IR spectrophotometer (Madison, WI, USA). NMR spectra were obtained with
the aid of a Bruker Avance AV-600 NMR spectrometer (Hamburg, Germany). 1H- (600 MHz) and
13C-NMR (150 MHz) were obtained in deuterated dimethyl sulfoxide (DMSO-d6). Chemical shifts
are expressed in δ units whereas coupling constant (J) values are given in Hertz (Hz). Mass spectra
were acquired with a Jeol, JMS-600 H instrument (Tokyo, Japan). Elemental analysis was carried out
on an Perkin Elmer 2400 Elemental Analyzer (Akron, OH, USA), CHN mode and results agreed with
the calculated percentages to within the experimental error (˘0.4%). Single-crystal X-ray diffraction
measurements were performed using a Bruker SMART APEX II CCD diffractometer (Karlsruhe,
Germany). In acetonitrile, the electronic absorption spectrum of compound 4 was measured with a
Perkin Elmer, Lambda 35, UV/Vis spectrophotometer (Northbrook, IL, USA), and exhibited bands at
262, 289, 365, and 374 nm.

3.2. Preparation of 2-Acetyl-3-amino-5-[(2-oxopropyl)sulfanyl]-4-cyanothiophene (4)

Compound 4 was prepared according to the following procedure: a mixture of malononitrile (1)
(0.066 g, 1 mmol) and anhydrous potassium carbonate (10 g) in DMF (30 mL) was stirred vigorously at
room temperature for 5 min and then carbon disulfide (0.076 g, 1 mmol) was added with continuous
stirring for 30 min. The resulting reaction mixture was cooled in an ice bath, and chloroacetone (0.16 g,
2 mmol) was added with stirring for 15 min. The cooling bath was subsequently removed and the
mixture was stirred for 5 h. The solid product 4, precipitated with the addition of dil. HCl, was
collected by filtration, washed with water, and dried. Compound 4 was recrystallized from MeOH
to afford colorless crystals. Yield: 78%; m.p. 299–301 ˝C; IR (KBr, cm´1) νmax = 1637 (C=O) cm´1;
1H-NMR (600 MHz, DMSO-d6): δ 7.51 (brs, 2H, NH2), 4.42 (s, 2H, CH2), 2.26 (s, 3H, CH3), 2.24 (s, 3H,
CH3); 13C-NMR (150 MHz, DMSO-d6): δ 201.2, 188.4, 156.0, 153.9, 142.8, 112.6, 108.7, 99.6, 45.8, 28.7,
28.4; DEPT-135 NMR (600 MHz, DMSO-d6): δ 45.8, 28.7, 28.4; MS m/z (%): 254 [M+, 100%]; anal. calcd.
for C10H10N2O2S2: C, 47.23; H, 3.96; N, 11.01; S, 25.22; found: C, 47.03; H, 3.88; N, 11.09; S, 25.12.

3.3. Crystal Structure Determination

Slow evaporation of a methanol solution of pure compound 4 yielded colorless crystals. A crystal
of dimensions 0.33 ˆ 0.27 ˆ 0.23 mm was selected for X-ray diffraction analysis. Data were collected
on a Bruker APEX-II diffractometer, equipped with CCD detector and graphite monochromatic MoKα

radiation, (τ = 0 71073 A) at 293 (2) K. Cell refinement and data reduction were performed with
Bruker SAINT whereas crystal structure was solved with the aid of a SHELXS-97 program [30,31]
(Table 1). The final refinement was carried out by full-matrix least-squares techniques with anisotropic
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thermal data for non-hydrogen atoms on F2. All hydrogen atoms were placed in calculated positions.
The crystal structure 4 (Figure 1) was finally refined with R factor of 5.06% for 1477 unique reflections.
Molecules were found to be packed in crystal lattice through intermolecular hydrogen bonding
(Figure 3, Table 3).

CCDC 1041341 contains the supplementary crystallographic data for this paper. These data can
be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC,
12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk)".
This text may be included in the experimental section or as a suitably referenced endnote.

3.4. Computational Details

All quantum chemical calculations pertaining to compound 4 were performed by applying
DFT method, with the B3LYP functional and 6-31G (d,p) basis set using Gaussian 03 software [32].
The input file was taken from the CIF obtained from the current single crystal X-ray measurement.
The geometry was optimized by minimizing energies with respect to all geometrical parameters
without imposing any molecular symmetry constraints. GaussView4.1 [33] and Chemcraft [34]
programs were employed to draw the structure of the optimized geometry, and to study the
frontier molecular orbitals. The molecular electrostatic potential (MEP) was drawn with the aid of a
GaussView4.1 program (Semichem Inc., Wallingford, CT, USA) at the B3LYP/6-31G (d,p) optimized
structure. Frequency calculations showed the absence of any imaginary frequency modes which
confirmed that the optimized structure is an energy minimum. Additionally, the electronic spectra of
the studied compound were calculated by the TD-DFT method, whereas the gauge including atomic
orbital (GIAO) method was used for the NMR calculations. 1H- and 13C-NMR isotropic shielding
tensors, referenced to the TMS calculations, were carried out at the same level of theory. The natural
bond orbital analyses were performed using the NBO calculations as implemented in the Gaussian 03
package at the DFT/B3LYP level [35].

3.5. Cytotoxicity Activity by Using MTT Assay

Cytotoxicity activity of compound 4 was evaluated in 96-well flat-bottomed microplates by using
the standard MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyl-tetrazolium bromide, MP) colorimetric
assay. For this purpose, the human prostate cancer cell line, PC3, and human cervical cancer cells, HeLa
were cultured in Dulbecco’s Modified Eagle Medium, supplemented with 10% of fetal bovine serum
(FBS, PAA), 100 IU/mL of penicillin and 100 µg/mL of streptomycin in 75 cm2 flasks, and kept in 5%
CO2 incubator at 37 ˝C. Exponentially growing cells were harvested, counted with hemocytometer, and
diluted with a particular medium with 5% FBS. Cell culture with the concentration of 1 ˆ 105 cells/mL
was prepared and introduced (100 µL/well) into 96-well plates. After overnight incubation, the
medium was removed and 200 µL of fresh medium was added with different concentrations of
compounds (1–30 µM). Stock solution, 20 mM of compounds were prepared in 100% DMSO and final
concentration of DMSO at 30 µM is 0.15%. After 48 h, 200 µL MTT (0.5 mg/mL) was added to each
well and incubated further for 4 h. Subsequently, 100 µL of DMSO was added to each well. The extent
of MTT reduction to formazan within cells was calculated by measuring the absorbance at 570 nm
using a micro plate reader (Spectra Max plus, Molecular Devices, CA, USA). Cytotoxicity was recorded
as the concentration causing 50% growth inhibition (IC50) for PC3 and HeLa cancer cells. The percent
inhibition was calculated by using the following formula:

% Inhibition “ 100´ppmean of O.D. of test compound´mean of O.D. of negative controlq{
pmean of O.D of positive control´mean of O.D. of negative controlqˆ 100q

(1)

Results (% inhibition) were processed by using Soft-Max Pro software (Molecular Devices,
Sunnyvale, CA, USA).
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4. Conclusions

The synthesis and characterization of the novel compound 2-acetyl-3-amino-5-[(2-oxopropyl)
sulfanyl]-4-cyanothiophene (4) was successfully achieved in high yield. Structure of the newly
synthesized compound was confirmed by single-crystal X-ray diffraction analysis, in addition to
various spectroscopic techniques and by elemental analysis. The molecular structure of the studied
compound has been optimized using the DFT/B3LYP method and 6-311G (d,p) basis set; calculated
bond distances and bond angles showed good agreement with our reported X-ray crystal structure.
The molecular electrostatic potential picture of the studied compound has been calculated using the
same level of theory. The α0 and HOMO-LUMO energy gap (∆E) values indicated that compound 4 is
a better NLO material than urea. Finally, compound 4 was found to be non-toxic against PC-3 and
HeLa cell lines, however it is less potent than reference drugs.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/
21/2/214/s1.
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