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Abstract: Novel 4-(4-substituted phenyl)-5-(3,4,5-trimethoxy/3,4-dimethoxy)-benzoyl-3,4-
dihydropyrimidine-2(1H)-one/thione derivatives (DHP 1–9) were designed, synthesized,
characterized and evaluated for antitumor activity against cancer stem cells. The compounds were
synthesized in one pot. Enaminones E1 and E2 were reacted with substituted benzaldehydes and
urea/thiourea in the presence of glacial acetic acid. The synthesized compounds were characterized
by spectral analysis. The compounds were screened in vitro against colon cancer cell line (LOVO)
colon cancer stem cells. Most of the compounds were found to be active against side population
cancer stem cells with an inhibition of >50% at a 10 µM concentration. Compounds DHP-1, DHP-7
and DHP-9 were found to be inactive. Compound DHP-5 exhibited an in vitro anti-proliferative
effect and arrested cancer cells at the Gap 2 phase (G2) checkpoint and demonstrated an inhibitory
effect on tumor growth for a LOVO xenograft in a nude mouse experiment.
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1. Introduction

Compounds, which have potential anticancer activity, are often screened out in drug discovery
programs for cancer research [1] due to the presence of cells which have the capability to regrow
in vivo, called cancer stem cells (CSCs). Thus, the antitumor activity of the compounds in vivo is not
adequate for the treatment of cancer in preclinical models. Tumors are maintained by a self-growing
CSC population [2]. Research has confirmed the presence of cancer stem cells in leukemia [3], as well as
in tumors of the breast [4], brain [5], lung [6] and colon [7]. In cancer relapse, CSCs must have resisted
the primary drug action [8]. Literature has reported that aldehyde dehydrogenase 1 (ALDH-1) is a
more potent marker of breast CSCs [9–11] and ALDH-1–positive cells are resistant to Epirubicin and
Paclitaxel [12]. Adult stem cells can be predicted by a side population (SP) phenotype. A SP is confined
to the tumorigenic part of the breast cancer cell line MCF-7 [13,14]. Normal chemotherapy could lead
to augmentation of CSCs in treated patients [15,16]. Thus, there remains an urgent need to discover
new drugs to effectively eliminate both proliferating cells and CSCs in order to treat cancer [17].

Multicomponent reactions (MCR) are important in the discovery of new lead compounds.
The acid-catalyzed cyclocondensation reaction of a diketone with benzaldehyde and urea was reported
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in 1893 by Pietro Biginelli. The product obtained was identified as a dihydropyridimidine-2-one.
Dihydropyrimidines presented a varied range of biological activities, e.g., calcium channel blockers,
α-adrenoceptor selective antagonists and anti-mitotics [18]. Furthermore, (S)-Monastrol (1) has been
identified as a novel molecule for the development of potentially new anticancer drugs [19]. Monastrol
causes specific and reversible inhibition of kinesin Eg5. Oxo-Monastrol and its thio-analogues
have been investigated for their anti-proliferative activity. The 4-methoxy derivative 2 and
3-methoxy-4-hydoxy derivative 3 of Monastrol have been synthesized as anticancer agents [20].
The 3,4-methylenedioxy derivative of Monastrol, Piperastrol (4), was found to be three times more
potent than Monastrol [21]. Pyrimidinone peptoid hybrids have been reported as active against SKBr-3
breast cancer cells [22]. Improved efficiency was reported in cell-based assays by optimization of
the Monastrol-based dihydropyrimidine (DHPM) analogue R-Monastrol-97 (5) [23]. The 3,4-difluoro
derivative R-fluorestrol (6) was also reported to be a potent anticancer compound. Compound 7,
derived from Monastrol-97, has been reported to be active in anticancer screens. Deaths of over 80%
of cancer cells were observed after 72 h of treatment with the Biginelli adducts Enastron (8) and
dimethyl Enastron (9) [24]. These compounds showed minute toxic effects against healthy fibroblast
cells. Amide-derived Biginelli adducts exhibited moderate anti-proliferative activity against HepG2
epithelial carcinoma. Compounds 10 and 11 showed IC50 values of (190 µg/mL) against HeLa
hepatocellular carcinoma cells [25]. Additionally, cinnamoyl derivatives of dihydropyrimidine have
been reported as potent anticancer agents [26]. Examples of dihydropyrimidines demonstrating
anticancer activities are presented in Figure 1.
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Figure 1. Dihydropyrimidine derivatives demonstrating anticancer activity. 

There is a need for structural optimization of dihydropyrimidine derivatives with the aim of 
modifying the profile of current lead molecules. In an effort to discover novel dihydropyrimidine 
derivatives with potent anticancer activity against cancer stem cells, modulation of the Monastrol-97 
structure was carried out as illustrated in Figure 2. 

Figure 1. Dihydropyrimidine derivatives demonstrating anticancer activity.

There is a need for structural optimization of dihydropyrimidine derivatives with the aim of
modifying the profile of current lead molecules. In an effort to discover novel dihydropyrimidine
derivatives with potent anticancer activity against cancer stem cells, modulation of the Monastrol-97
structure was carried out as illustrated in Figure 2.
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These dihydropyrimidine derivatives were then evaluated for antitumor activity.

2. Results and Discussion

Enaminones E1 and E2 were reacted with substituted benzaldehydes and urea/thiourea in the
presence of acetic acid to yield dihydropyrimidinone/thione derivatives (DHP 1–9). The purity of the
compounds was confirmed by elemental analysis and thin-layer chromatography. The compounds
were characterized using spectroscopic methods. In the 1H-NMR spectra, the signals of the individual
protons of the compounds were verified on the basis of multiplicity, chemical shifts and the coupling
constant. All the compounds showed the D2O exchangeable broad singlet at 8.8–9.8 ppm and 9.5–10.5
ppm corresponding to the two NH protons. Analytical and spectral data for the compounds were in
good agreement with the expected structures of the synthesized derivatives. The physicochemical
properties of all compounds are given in Table 1.

Table 1. Physical data of the synthesized dihydropyrimidinone/thione compounds (DHP 1–9).
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The newly synthesized compounds (DHP 1–9) were evaluated for side population percent
inhibition on colon cancer cell line (LOVO) at a 10 µM concentration (Figure 3, Table 2).

Table 2. Side population inhibition on LOVO colon cancer cells (%) at 10 µM concentration.

Compounds * Side Population (%) at 10 µM # Side Population Inhibition (%) at 10 µM

DHP-1 4.90 ± 0.2 0
DHP-2 1.72 ± 0.1 64.7
DHP-3 1.76 ± 0.3 64
DHP-4 1.44 ± 0.5 70.5
DHP-5 2.01 ± 0.7 58.82
DHP-6 1.47 ± 0.6 70
DHP-7 4.90 ± 0.3 0
DHP-8 2.4 ± 0.1 50
DHP-9 4.90 ± 0.1 0

* Side population% as mean ± SD of three independent experiments; # Inhibition% = 100 − (SP% of treated
cells/SP% of untreated cells) × 100.
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The structure-activity relationships of the compounds were studied. From the compounds (DHP 1–9),
four compounds were found to be very effective, namely DHP-4, DHP-6, DHP-2 and DHP-3, when
the side population inhibition percentage was measured at a 10 µM concentration. Compounds DHP-5
and DHP-8 were moderately active as indicated by a low value of the side population inhibition
percentage. Most of the dihydropyrimidine compounds (DHP 1–9) presented significant activity
against side population inhibition percentage. It was noted that most of the compounds having a
methoxy group at R1 were active. Compounds with an oxygen atom at R2 were also active. Compound
DHP-6, with a hydrogen at R1 and a sulfur atom at R2, displayed significant activity. Compound
DHP-4 was found to be the most active compound of the series.

A side population analysis of tumor-derived cells of LOVO xenografts that were untreated, treated
with the side population inhibitor reference drug Verapamil 200 µM, and with compound DHP-5
(50 µM) confirmed that DHP-5 had a more potent inhibitory effect on the side population cancer stem
cells than the reference drug Verapamil (Figure 5).
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xenograft that were untreated, treated with side population inhibitor reference drug Verapamil (200 µM)
and with DHP-5 (50 µM).

The tumor growth of LOVO (colon cancer xenografts) was recorded in untreated mice groups
and in DHP-5–treated (50 mg/kg) mice groups. A potent anti-tumor effect was demonstrated by a
shrinking of tumors in the animals which were treated by compound DHP-5. A remarkable anti-tumor
effect of compound DHP-5 was demonstrated on tumors of colon cancer xenografts (Figure 6).
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3. Material and Methods

3.1. Experimental

All solvents were obtained from Merck (Kenilworth, NJ, USA). The homogeneity of the
compounds was checked by TLC performed on silica gel G; An iodine chamber was used for
visualization of TLC spots. The FT-IR spectra were recorded in KBr pellets on a Spectrum BX Perkin
Elmer FT-IR spectrophotometer (Perkin Elmer, Hopkinton, MA, USA). Melting points were determined
on a Gallenkamp melting point apparatus (Gallenkamp, Loughborough, UK), and are uncorrected.
NMR spectra were scanned in DMSO-d6 on a Bruker NMR spectrophotometer (Bruker, Billerica, MA,
USA) operating at 500 MHz for 1H and 125.76 MHz for 13C at the Research Center, College of Pharmacy,
King Saud University, Saudi Arabia. Chemical shifts δ are expressed in parts per million (ppm) relative
to TMS as an internal standard and D2O was added to confirm the exchangeable protons. Coupling
constants (J) are in Hertz. The molecular masses of compounds were determined by UPLC/TQMS and
all tested compounds yielded data consistent with a purity of ≥95%, as measured by HPLC (Agilent
1260 affinity). The elemental analyses (C, H, N (±0.4%); and S (±0.3%)) were performed on a CHN
Elementar (Analysensysteme GmbH, Langenselbold, Germany).

The synthesis of dihydropyrimidine derivatives was carried out in single step as shown in Scheme 1.
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142.3, 144.6, 151.8, 152.9, 153.0, 191.0; MS: m/z = 368.46 [M]+; Analysis: C20H20N2O5 for, calcd. C 65.21, 
H 5.47, N 7.60%; found C 65.45, H 5.48, N 7.62%. 

4-(4-Chlorophenyl)-5-(3,4,5-trimethoxybenzoyl)-3,4-dihydropyrimidin-2(1H)-one (DPH-2): Yield: 75%; m.p.: 
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128.9, 129.8, 131.6, 152.3, 134.2, 139.8, 140.2, 140.3, 142.5, 143.5, 151.6, 152.9, 153.0, 153.2, 191.0, 192.5, 
193.0; MS: m/z = 402.8 [M]+, 403.8 [M + 1]+; Analysis: C20H19N2O5Cl for, calcd. C 59.63, H 4.75, N 6.95%; 
found C 59.45, H 4.73, N 6.97%. 

Scheme 1. Synthetic route of compounds (DHP 1–9).

3.2. General Synthesis of 4-(Substituted phenyl)-5-(3,4,5-trimethoxybenzoyl/3,4-dimethoxybenzoyl)-3,4-
dihydropyrimidin-2(1H)-ones DHP 1–9

A solution of enaminone E1/E2 (0.01 mol), substituted benzaldehyde (0.01 mol), urea/thiourea
(0.01 mol) and glacial acetic acid (10 mL) was heated under reflux for 3 h. The precipitates (DHP 1–9)
thus formed were collected by filtration, washed with water and recrystallized from acetic acid.

4-Phenyl-5-(3,4,5-trimethoxybenzoyl)-3,4-dihydropyrimidin-2(1H)-one (DPH-1): Yield: 70%; m.p.: 153–155 ◦C;
IR (KBr): 3412 (N-H), 2938 (ArC-H), 1700 (C=O), 1636 (C=O), 1618 (C=C), 1126 (C-O); 1H-NMR
(500 MHz, DMSO-d6); δ = 3.80 (9H, s, 3× -OCH3), 5.40 (1H, d, J = 2.5 Hz, H-4), 6.73–7.36 (7H, m, Ar-H),
7.88 (1H, d, J = 2.5 Hz, =CH), 9.50 (1H, bs, NH, D2O exchg.), 10.00 (1H, bs, NH, D2O exchg.); 13C-NMR
(125.76 MHz, DMSO-d6): δ = 54.0, 56.4, 56.5, 56.7, 60.5, 106.2, 112.4, 126.9, 127.8, 128.9, 134.4, 140.3,
142.3, 144.6, 151.8, 152.9, 153.0, 191.0; MS: m/z = 368.46 [M]+; Analysis: C20H20N2O5 for, calcd. C 65.21,
H 5.47, N 7.60%; found C 65.45, H 5.48, N 7.62%.

4-(4-Chlorophenyl)-5-(3,4,5-trimethoxybenzoyl)-3,4-dihydropyrimidin-2(1H)-one (DPH-2): Yield: 75%; m.p.:
138–140 ◦C; IR (KBr): 3412 (N-H), 2938 (ArC-H), 1686 (C=O), 1654 (C=O), 1618 (C=C), 1123 (C-O);
1H-NMR (500 MHz, DMSO-d6); δ = 3.79 (9H, s, 3× -OCH3), 5.39 (1H, d, J = 3.0 Hz, H-4), 6.74–7.43
(6H, m, Ar-H), 7.91 (1H, d, J = 2.5 Hz, =CH), 9.50 (1H, bs, NH, D2O exchg.), 10.00 (1H, bs, NH, D2O
exchg.); 13C-NMR (125.76 MHz, DMSO-d6): δ = 53.6, 56.4, 56.5, 56.7, 60.5, 60.7, 106.2, 108.2, 112.0, 128.4,
128.9, 128.9, 129.8, 131.6, 152.3, 134.2, 139.8, 140.2, 140.3, 142.5, 143.5, 151.6, 152.9, 153.0, 153.2, 191.0,
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192.5, 193.0; MS: m/z = 402.8 [M]+, 403.8 [M + 1]+; Analysis: C20H19N2O5Cl for, calcd. C 59.63, H 4.75,
N 6.95%; found C 59.45, H 4.73, N 6.97%.

4-(4-Nitrophenyl)-5-(3,4,5-trimethoxybenzoyl)-3,4-dihydropyrimidin-2(1H)-one (DPH-3): Yield: 65%; m.p.:
158–160 ◦C; IR (KBr): 3421 (N-H), 2936 (ArC-H), 1685 (C=O), 1654 (C=O), 1618 (C=C), 1125 (C-O);
1H-NMR (500 MHz, DMSO-d6); δ = 3.77 (9H, s, 3× -OCH3), 5.53 (1H, d, J = 2.5 Hz, H-4), 6.74–7.40 (6H,
m, Ar-H), 8.20 (1H, d, J = 2.5 Hz, =CH), 9.47 (1H, bs, NH, D2O exchg.), 10.20 (1H, bs, NH, D2O exchg.);
13C-NMR (125.76 MHz, DMSO-d6): δ = 53.8, 56.5, 56.5, 56.7, 60.2, 60.5, 60.7, 65.3, 106.2, 124.7, 128.4,
131.0, 134.1, 138.2, 140.4, 143.0, 147.2, 151.4, 151.7, 153.0, 153.0, 153.2, 190.9; MS: m/z = 413.47 [M]+;
Analysis: C20H19N3O7 for, calcd. C 58.11, H 4.63, N 10.16%; found C 58.32, H 4.62, N 10.19%.

4-(3,4-Dimethoxyphenyl)-5-(3,4,5-trimethoxybenzoyl)-3,4-dihydropyrimidin-2(1H)-one (DPH-4): Yield: 72%;
m.p.: 165–167 ◦C; IR (KBr): 3367 (N-H), 2937 (ArC-H), 1700 (C=O), 1624 (C=O), 1578 (C=C), 1123 (C-O);
1H-NMR (500 MHz, DMSO-d6); δ = 3.81 (15H, s, 5× -OCH3), 5.36 (1H, d, J = 2.5 Hz, H-4), 6.75–7.28 (5H,
m, Ar-H), 7.81 (1H, d, J = 2.5 Hz, =CH), 9.24 (1H, bs, NH, D2O exchg.), 9.84 (1H, bs, NH, D2O exchg.);
13C-NMR (125.76 MHz, DMSO-d6): δ = 53.5, 55.9, 56.0, 56.3, 56.4, 56.5, 56.7, 60.5, 60.7, 65.3, 106.1, 106.2,
108.2, 109.9, 111.0, 112.2, 116.4, 118.8, 120.3, 126.5, 130.1, 131.8, 134.4, 135.1, 136.9, 139.3, 140.1, 142.1,
147.6, 148.6, 149.6, 151.7, 152.9, 153.0, 154.6, 193.3; MS: m/z = 428.26 [M]+; Analysis: C22H24N2O7 for,
calcd. C 61.67, H 5.65, N 6.54%; found C 61.45, H 5.66, N 6.56%.

4-(4-Ethoxyphenyl)-5-(3,4,5-trimethoxybenzoyl)-3,4-dihydropyrimidin-2(1H)-one (DPH-5): Yield: 60%; m.p.:
168–170 ◦C; IR (KBr): 3411 (N-H), 2938 (ArC-H), 1696 (C=O), 1648 (C=O), 1618 (C=C), 1126 (C-O);
1H-NMR (500 MHz, DMSO-d6); δ = 1.31 (3H, t, J = 7.0 Hz, -CH3), 3.80 (9H, s, 3× -OCH3), 4.20 (2H, q,
J = 2.0 Hz, -OCH2), 5.32 (1H, d, J = 2.5 Hz, H-4), 6.75–7.25 (6H, m, Ar-H), 7.79 (1H, d, J = 2.5 Hz, =CH),
8.81 (1H, bs, NH, D2O exchg.), 9.50 (1H, bs, NH, D2O exchg.); 13C-NMR (125.76 MHz, DMSO-d6):
δ = 15.1, 53.3, 56.5, 60.5, 63.4, 106.1, 112.7, 114.7, 128.1, 140.2, 153.0, 192.0; MS: m/z = 412.28 [M]+;
Analysis: C22H24N2O6 for, calcd. C 64.07, H 5.87, N 6.79%; found C 64.25, H 5.88, N 6.76%.

(3,4-Dimethoxyphenyl)(4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methanone (DHP-6): Yield: 65%;
m.p.: 248–250 ◦C; IR (KBr): 3413 (N-H), 2955 (ArC-H), 1653 (C=O), 1636 (C=O), 1595 (C=C), 1199 (C-O);
1H-NMR (500 MHz, DMSO-d6); δ = 3.81 (6H, s, 2× -OCH3), 5.45 (1H, d, J = 3.0 Hz, H-4), 6.97–7.28 (7H,
m, Ar-H), 7.34 (1H, d, J = 3.0 Hz, =CH), 9.70 (1H, bs, NH, D2O exchg.), 10.40 (1H, bs, NH, D2O exchg.);
13C-NMR (125.76 MHz, DMSO-d6): δ = 54.2, 56.6, 56.1, 56.3, 111.1, 111.2, 111.7, 112.2, 113.6, 122.7, 127.1,
128.2, 129.1, 130.8, 136.7, 143.4, 149.1, 149.3, 152.2, 153.8, 162.7, 174.3, 191.0, 193.5; MS: m/z = 355.0
[M + 1]+; Analysis: C19H18N2O3S for, calcd. C 64.39, H 5.12, N 7.90, S 9.05%; found C 64.54, H 5.11,
N 7.92, S 9.04%.

(3,4-Dimethoxyphenyl)(4-chlorophenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methanone (DHP-7): Yield:
65%; m.p.: 243–245 ◦C; IR (KBr): 3413 (N-H), 2933 (ArC-H), 1670 (C=O), 1647 (C=O), 1616 (C=C),
1195 (C-O); 1H-NMR (500 MHz, DMSO-d6); δ = 3.78 (6H, s, 2× -OCH3), 5.45 (1H, d, J = 3.0 Hz, H-4),
6.98–7.45 (7H, m, Ar-H), 7.96 (1H, d, J = 3.0 Hz, =CH), 9.76 (1H, bs, NH, D2O exchg.), 10.49 (1H, bs,
NH, D2O exchg.); 13C-NMR (125.76 MHz, DMSO-d6): δ = 53.7, 56.0, 56.1, 111.1, 111.7, 113.2, 122.7,
129.0, 129.1, 130.7, 132.8, 137.0, 142.3, 149.1, 152.2, 162.7, 174.3, 190.9; MS: m/z = 387.99 [M]+; Analysis:
C19H17N2O3ClS for, calcd. C 58.68, H 4.41, N 7.20, S 8.25%; found C 58.85, H 4.43, N 7.23, S 8.24%.

(3,4-Dimethoxyphenyl)(4-nitrophenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methanone (DHP-8): Yield:
68%; m.p.: 258–260 ◦C; IR (KBr): 3412 (N-H), 2933 (ArC-H), 1676 (C=O), 1654 (C=O), 1615 (C=C),
1141 (C-O); 1H-NMR (500 MHz, DMSO-d6); δ = 3.82 (6H, s, 2× -OCH3), 5.58 (1H, d, J = 3.0 Hz, H-4),
7.0–7.95 (7H, m, Ar-H), 8.26 (1H, d, J = 2.5 Hz, =CH), 9.85 (1H, bs, NH, D2O exchg.), 10.59 (1H, bs, NH,
D2O exchg.); 13C-NMR (125.76 MHz, DMSO-d6): δ = 53.9, 56.0, 56.1, 111.1, 111.7, 112.6, 122.8, 124.4,
128.5, 130.6, 137.5, 147.4, 149.1, 150.3, 152.3, 162.7, 174.5, 190.8; MS: m/z = 402.23 [M + 3]+; Analysis:
C19H17N3O5S for, calcd. C 57.13, H 4.29, N 10.52, S 8.03%; found C 57.23, H 4.28, N 10.55, S 8.01%.
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(3,4-Dimethoxyphenyl)(3,4-dimethoxyphenyl-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)methanone (DHP-9):
Yield: 70%; m.p.: 228–230 ◦C; IR (KBr): 3410 (N-H), 2932 (ArC-H), 1684 (C=O), 1654 (C=O), 1611 (C=C),
1134 (C-O); 1H-NMR (500 MHz, DMSO-d6); δ = 3.81 (12H, s, 4× -OCH3), 5.40 (1H, d, J = 3.0 Hz, H-4),
6.82–7.21 (6H, m, Ar-H), 7.96 (1H, d, J = 2.5 Hz, =CH), 9.68 (1H, bs, NH, D2O exchg.), 10.38 (1H, bs,
NH, D2O exchg.); 13C-NMR (125.76 MHz, DMSO-d6): δ = 43.7, 55.9, 56.0, 56.0, 56.1, 111.1, 111.7, 112.3,
113.5, 119.0, 122.7, 130.8, 135.7, 136.6, 148.9, 149.1, 149.1, 152.2, 162.7, 174.1, 191.0; MS: m/z = 413.6
[M − 1]+; Analysis: C21H22N2O5S for, calcd. C 60.85, H 5.35, N 6.76, S 7.74%; found C 61.05, H 5.36,
N 6.78, S 7.73%.

3.3. Cell line and Tissue Culture

LOVO colon cancer cells were purchased from the American Type Culture Collection. LOVO cells
were cultured in RPMI. The medium was supplemented with 10% FBS (Cambrex Bio Science, Franklin
Lakes, NJ, USA), 100 IU/mL of Penicillin and 100 mg/mL of Streptomycin. Cell viability was assessed
by trypan blue exclusion analysis. Cell numbers were determined by using a hemacytometer.

3.4. Flow Cytometric Analysis of Cellular DNA Content

Cells (2 × 106) were fixed in 1 mL of ethanol (70%) for 60 min at room temperature. Harvested
cells were resuspended in 1 mL of sodium citrate (50 mM) containing 250 µg RNase A and incubated at
50 ◦C for 60 min Next, cells were resuspended in the same buffer containing 4 µg of propidium iodide
(PI) and incubated for 30 min before being analyzed by flow cytometry (Becton Dickinson, San Jose,
CA, USA). The percentage of cells in various cell cycle phases was determined by using Cell Quest Pro
software (version 5.1, Becton Dickinson, East Rutherford, NJ, USA).

3.5. Side Population Staining by DYECYCLE Violet Stain

For DCV staining, cells were pelleted and suspended in DMEM cell culture medium at a
concentration of 1 × 106 cells/mL. DCV (Invitrogen Molecular Probes®, Eugene, OR, USA) was
added at a final staining concentration of 10 µM, as this concentration gave optimal separation between
SP and non SP cells. PI staining was used to exclude dead cells. Functionally, to gate only side
population cells, Verapamil 200 µM or Emtricitabine (FTC, 10 µg/mL) was used. All analyses were
performed on a FACS LSRII (BD Biosciences, San Jose, CA, USA). Debris and cell clusters were
excluded during side-scatter and forward-scatter analyses.

3.6. Antitumor Activity in Mice

Nude mice (Jackson Laboratories, Bar Harbor, ME, USA), six to seven weeks old, weighing 20 g,
were obtained from the Animal Care and Use Committee of the King Faisal Specialist Hospital and
Research Centre, Riyadh, KSA. All of the animals were acclimatized to laboratory conditions for
one week before experiments. The animals were maintained under standard conditions, housed in
a pathogen-free environment, and fed adequately. Each treatment and vehicle group consisted of
six animals. The breeding, care and sacrifice of the animals were performed in accordance with the
protocols approved by the Animal Care and Use Committee of the King Faisal Specialist Hospital and
Research Centre. The mice were injected with 4 × 106 cells of LOVO subcutaneously in the right flank,
and tumor size was measured weekly using a caliper. When the tumor reached approximately 400 mm3

diameter, the mice were divided into control, treated groups, the treatment including administration of
DHP-5 (50 mg/kg) via intraperitoneal injection daily for 14 days. The general toxicity of the treatment
was determined by measuring the total body weight of the treated and control mice.

4. Conclusions

In conclusion, we focused on the synthesis of dihydropyrimidine derivatives (DHP 1–9).
The synthesized compounds were screened in vitro against LOVO colon cancer cells. DHP-4 was
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found to be the most active compound of the series in its side population inhibition percentage at
10 µM. The anti-tumor effect of compound DHP-5 was demonstrated on tumors of colon cancer
xenografts. Compound DHP-5 was found to be a more potent inhibitor of side population cells than
the reference drug Verapamil. Compound DHP-5 exhibited an in vitro anti-proliferative effect and
arrested cancer cells at the G2 checkpoint. Furthermore, treatment with compound DHP-5 enabled
blocking of the self-renewal ability of breast cancer cells in a dose-dependent manner. Compound
DHP-5 induced apoptosis and blocked cell proliferation in vitro and presented superior efficacy
compared to the reference drug Doxorubicin in advanced animal models of colon cancer without any
sign of general toxicity.
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