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Abstract: Series of 4-(4-substituted benzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-
3-thiols were synthesized and their structures were confirmed. The synthesized Schiff bases were used
as photostabilizers for polystyrene against photodegradation. Polystyrene polymeric films containing
synthesized Schiff bases (0.5% by weight) were irradiated (λmax = 365 nm and light intensity =
6.43 × 10−9 ein·dm−3·s−1) at room temperature. The photostabilization effect of 1,2,4-triazole-
3-thiols Schiff bases was determined using various methods. All the additives used enhanced the
photostability of polystyrene films against irradiation compared with the result obtained in the
absence of Schiff base. The Schiff bases can act as photostabilizers for polystyrene through the direct
absorption of UV radiation and/or radical scavengers.

Keywords: photostabilization; UV light; polystyrene; 1,2,4-triazole-3-thiol; functional group index;
Schiff bases

1. Introduction

Polystyrene (PS) is an aromatic synthetic polymer that is produced in millions of tons every year.
It was reported that 55 million tons of polystyrene was produced in 2013 [1]. It is a widely used
plastic produced from polymerization of styrene. Various types of polystyrene are known that mainly
depend on the positions of phenyl groups along the polymeric chain [2–4]. Polystyrene is naturally
colorless and transparent and can be used in the manufacture of containers, bottles, electronics, and
insulation [2].

One of the main problems associated with the use of polymeric materials, either synthetic
or semisynthetic, is their photodegradation [5]. Polystyrene undergoes photodegradation when
exposed to harsh environments such as high temperatures and sunlight [6]. Polystyrene is not
biodegradable, meaning that it will undergo very slow degradation which may require many years [7].
Photodegradation of polystyrene can lead to chain scission, cross-linking, and discoloration [8].
Therefore, polystyrene polymeric materials should be stabilized against photodegradation and
photo-oxidation to prevent and/or reduce the effect weathering conditions. In addition, stabilization
would maximize the long-term use of polystyrene to increase its economic viability. Various
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additives have been used to enhance the photostability of polymeric films such as plasticizers [9],
heterocycles [10–13], aromatics [14–16], and organometallics [17–19]. Such photostabilizers in most
cases can act as direct UV absorbers, radical scavengers, excited state quenchers and/or peroxide
decomposers [8].

Recently, we have reported successful polymeric films photostabilization processes by the use
of various additives at low concentrations [20–25] as part of our continuing interest in the field of
polymeric materials [26–30]. Now, we report the photostabilization of polystyrene films in the presence
of 1,2,4-triazole-3-thiol ring system Schiff bases.

2. Results and Discussion

2.1. Synthesis of Schiff Bases 1–4

4-(4-Substituted benzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiols 1–4
were synthesized in 68%–79% yields (Table 1) from reaction of 4-amino-5-(3,4,5-trimethoxyphenyl)-4H-
1,2,4-triazole-3-thiol and various aromatic aldehydes (4-methylbenzaldehyde, 4-nitrobenzaldehyde,
4-methoxybenzaldehyde, and 4-(dimethylamino)benzaldehyde) in anhydrous ethanol in the presence
of few drops of hydrochloric acid as a catalyst under reflux for 4 h (Scheme 1).

Table 1. Physical properties and some FT-IR spectral data for Schiff bases 1–4.

Schiff Base R Color m.p. (◦C) Yield (%)
FR-IR (υ, cm−1)

NH CH=N C=S

1 Me yellow 265–268 71 3122 1599 1244
2 NO2 orange 219–222 79 3257 1589 1240
3 OMe yellow 238–240 68 3120 1606 1244
4 NMe2 orange 221–224 75 3120 1614 1240
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The structures of Schiff bases 1−4 have been confirmed by the IR and 1H-NMR spectral data. The 
FT-IR spectra showed characteristics stretching vibration bands for the CH=N bonds that resonate 
within the 1589–1614 cm−1 region. Also, they showed absorption bands at the 1240–1244 cm−1 region 
corresponding to the C=S bonds. Moreover, the FT-IR spectra of 1−4 showed the absence of the NH2 
streching bands for aminotriazole or the C=O bands for aromatic aldehydes [31]. Some of the most 
common and abundant absorption bands for Schiff bases 1−4 are represented in Table 1. 

The 1H-NMR spectra for 1−4 confirmed the presence of two different types of aromatic protons. 
They show two doublets (two protons each; J = 8.1–8.4 Hz) that resonated within the 7.73–8.30 ppm 
region, corresponding the aromatic protons from the aldehyde moeity. They also showed singlet 
signals (two protons) that are corresponding to the other aromatic protons (7.20–7.24 ppm), from the 
amine moeity. Also, they show singlet signals that resonate in the 9.56–9.13 ppm region due to the 
CH proton. This is a clear indication for the formation of the Schiff bases 1−4. However, the SH proton 
was only apparent in compound 4 and resonates as an exchangeable singlet signal at 14.09 ppm. The 
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3-thiols 1–4.

2.2. Characterization of Schiff Bases 1–4

The structures of Schiff bases 1–4 have been confirmed by the IR and 1H-NMR spectral data.
The FT-IR spectra showed characteristics stretching vibration bands for the CH=N bonds that resonate
within the 1589–1614 cm−1 region. Also, they showed absorption bands at the 1240–1244 cm−1 region
corresponding to the C=S bonds. Moreover, the FT-IR spectra of 1–4 showed the absence of the NH2

streching bands for aminotriazole or the C=O bands for aromatic aldehydes [31]. Some of the most
common and abundant absorption bands for Schiff bases 1–4 are represented in Table 1.

The 1H-NMR spectra for 1–4 confirmed the presence of two different types of aromatic protons.
They show two doublets (two protons each; J = 8.1–8.4 Hz) that resonated within the 7.73–8.30 ppm
region, corresponding the aromatic protons from the aldehyde moeity. They also showed singlet
signals (two protons) that are corresponding to the other aromatic protons (7.20–7.24 ppm), from
the amine moeity. Also, they show singlet signals that resonate in the 9.56–9.13 ppm region due to
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the CH proton. This is a clear indication for the formation of the Schiff bases 1–4. However, the SH
proton was only apparent in compound 4 and resonates as an exchangeable singlet signal at 14.09 ppm.
The 1H-NMR spectral data for 1–4 are shown in Table 2.

Table 2. 1H-NMR spectral data for Schiff bases 1–4.

Compound 1H-NMR (300 MHz: DMSO-d6, δ, ppm, J in Hz)

1 9.56 (s, 1H, CH), 7.84 (d, J = 8.1 Hz, 2H, Ar), 7.39 (d, J = 8.1 Hz, 2H, Ar), 7.24 (s, 2H, Ar),
3.76 (s, 6H, 2 OMe), 3.74 (s, 3H, OMe), 2.41 (s, 3H, Me)

2 9.69 (s, 1H, CH), 8.30 (d, J = 8.2 Hz, 2H, Ar), 8.02 (d, J = 8.2 Hz, 2H, Ar), 7.20 (s, 2H, Ar),
3.80 (s, 6H, 2 OMe), 3.75 (s, 3H, OMe)

3 9.44 (s, 1H, CH), 7.90 (d, J = 8.4 Hz, 2H, Ar), 7.23 (s, 2H, Ar), 7.12 (d, J = 8.4 Hz, 2H, Ar),
3.85 (s, 3H, OMe), 3.76 (s, 6H, 2OMe), 3.71 (s, 3H, OMe)

4 14.09 (s, exch., 1H, SH), 9.13 (s, 1H, CH), 7.73 (d, J = 8.2 Hz, 2H, Ar), 7.24 (s, 2H, Ar),
6.81 (d, J = 8.2 Hz, 1H, Ar), 3.76 (s, 6H, 2OMe), 3.71 (s, 3H, OMe), 3.04 (s, 6H, NMe2)

2.3. Measuring Photostabilization of Polystyrene Films by IR Spectroscopy

Ultraviolet radiation has harmful effects on polystyrene that lead to chemical changes within
the polymeric chains. As a result, the polymeric materials could lose their mechanical properties and
become discolored [32]. Photo-oxidation of polystyrene leads to the formation of several functional
groups [33,34]. It has been reported that irradiation of polystyrene in the presence of oxygen can lead to
the production of carbonyl and hydroxyl group moieties, for example, as shown in Figure 1 [35]. Initial
degradation of PS leads to a polystyrene radical [–CH2CH(Ph)]. Such radicals can abstract a proton
from other polymeric chains to produce various other radicals [–CH2C(Ph)–CH2–, –CH2C(Ph)–CH3

and –CH2CHC(H)–CH(Ph)–]. Theses radicals react with oxygen to produce the corresponding peroxy
radicals [8]. Therefore, the changes in the IR spectrum of polystyrene due to irradiation can be used as
a measure of photodegradation within the polymeric materials. The FT-IR spectra for PS films before
and after irradiation (250 h) by UV light (λmax = 365 nm) are represented in Figures 2 and 3, respectively.
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Compounds 1–4 (0.5% by weight) were mixed with PS to produce the polymeric films (40 µm
thickness). The efficiency of the additives as photostabilizers for the photostabilization of PS films
was investigated under irradiation for 250 h. The PS films were irradiated for 250 h and the carbonyl
(ICO) and hydroxyl (IOH) indices were monitored using an IR spectrophotometer. The IR absorption
bands that appeared at ca. 1720 and 3400 cm−1 can be assigned to the carbonyl and hydroxyl
groups, respectively [36]. The increases in both ICO and IOH indexes, compared to the reference peak
(1328 cm−1) can be used as an indicator for PS photodegradation. It should be noted that IC=O does
not starts from zero because some photodegradation takes place during the preparation the PS films.
The changes in the IC=O and IOH indices on irradiation of PS in the presence of Schiff bases 1–4 are
represented in Figures 4 and 5, respectively.
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As demonstrated through our findings, all the additives used stabilized the PS film against
photodegradation. The changes in both the ICO and IOH indices were lower for the PS films containing
the additives 1–4 compared to the ones for the PS (blank). Compound 1 was the most efficient additive
for the photostabilization of PS film.

2.4. Measuring Photostabilization of Polystyrene Films by Weight Loss

Photodegradation of PS produces low molecular weight fragments along with volatiles and leads
to weight loss [37]. The efficiency of additive (0.5% by weight) photostabilizer for PS was determined
in terms of PS weight loss under irradiation for 250 h. The effect of irradiation on the weight loss of
PS films is represented in Figure 6. The PS film weight loss increases gradually with the irradiation
time. Evidently, the weight loss was low for the PS films containing compounds 1–4 compared to that
obtained for the PS film (blank) in the absence of such additives. The weight loss was lowest when
compound 1 was used as the additive.
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2.5. Measuring Photostabilization of Polystyrene Films by Variation in Molecular Weight

The variation of PS molecular weight during photolysis was investigated. Figure 7 shows the
relative changes in the average molecular weight (MV) for PS films (40 µm thickness) in the presence
and absence of additives 1–4 (0.5% by weight). The decrease in MV for the PS films was sharp
during the first 50 h and less noticeable thereafter. Photodegradation of PS films leads to a reduction in
viscosity due to the formation of degraded polymeric chains of low molecular weight [38]. All additives
were efficient against the photodegradation of PS films, compared to the PS films (blank) without
additives. Compound 1 was once again the most efficient at photostabilizing the PS films.
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The measurements of the initial viscosity average molecular weight (MV,O) and a specific
irradiation time (MV,t) will allow the calculation of the average number of the chain scissions (S)
as shown in Equation (1) [38].

S = MV,O/MV,t − 1 (1)

Figure 8 shows the effect of irradiation time on the S values. Irradiation of PS (blank) showed
a higher degree cross-linking and/or branching compared to the PS films in the presence of
additives 1–4. There was a sharp increase in the value of S for control PS between 150 and 250 h.
Also, significant insoluble residues being formed during the irradiation process are an indication for
polymeric chains crosslinking. On the other hand, the increase in the S value for PS containing Schiff
base 1 was negligible compared to the others and low proportion of insoluble polymeric materials
were observed.

The degree of deterioration (α) for PS films provides a measure for the rapid break of randomly
distributed weak bonds at the initial stage of photodegradation. Equation (2) can be used to calculate
the α value that depends on the viscosity average molecular weight (MV), chain scissions (S), and
molecular weight (m).

α = m × S/MV (2)
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The degree of polymerization (DP) is the number of monomeric units in a homopolymer. It can
be calculated using Equation (3) based on the average molecular weight (Mn) and molecular weight of
the monomer unit (M0) [38,39].

DPn = Xn = Mn/M0 (3)

Figure 10 shows the effect of irradiation on the reciprocal degree of polymerization (1/Pt).
The curve indicates a sharp increase in 1/Pt with irradiation time for PS film (blank) compared to the
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ones obtained in the presence of additives 1–4. The changes in 1/Pt were very low when compound 1
(0.5% by weight) was mixed with the PS.
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2.6. Photostabilization of Polystyrene Films Suggested Mechanisms

Schiff bases contain heterocycles and aryl moieties, in the presence of a chromophore (POO·),
that could stabilize the PS samples by acting as radical scavengers. A complexation between the
additive and the chromophore could be achieved in an excited state in which the energy can be
transferred. The resonance within the aryl moieties could stabilize the unreactive charge transfer
complexes to a level that is harmless to the polymeric chains (Scheme 2).
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Heterocyclic and aryl moieties of the additives embedded within the polystyrene polymeric
chains can absorb UV light directly [8]. Schiff bases 1–4 have both aryl and triazole ring systems that
can act as UV absorbers. They can absorb the harmful UV light and convert it into heat that is harmless
to polystyrene (Scheme 3).
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3. Experimental Section

3.1. General

Chemicals and reagents were obtained from BDH Chemicals (Poole, UK) and Sigma-Aldrich
Chemical Company (Gillingham, UK). Melting points were recorded on a hot stage Gallenkamp
melting point apparatus. The 1H-NMR spectra (300 MHz) were recorded on Bruker Ultrashield
(Bruker, Coventry, UK) in DMSO-d6 with tetramethylsilane as an internal standard.

3.2. Synthesis of Schiff Bases 1–4

A mixture of 4-amino-5-(3,4,5-trimethoxiyphenyl)-1,2,4-triazole-2-thiol [40] (0.2 g, 0.7 mmol)
and appropriate aromatic aldehyde (0.07 mmol) in absolute ethanol (10 mL) containing one drop
of concentrated hydrochloric acid was refluxed for 4 h. The solid obtained on cooling was filtered,
washed with hot ethanol, and dried to give Schiff bases 1–4 in 68%–79% yields.

3.3. Films Preparation

A mixture of polystyrene and Schiff bases was dissolved in chloroform and the films were
prepared using the evaporation technique at 25 ◦C. A Digital Vernier Caliper 2610A micrometer (Vogel
GmbH, Kevelaer, Germany) was used to fix the thickness of PS films as 40 µm.
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3.4. Accelerated Testing Technique

The PS films were irradiated with UV light (λmax = 365 nm and light intensity = 6.43 ×
10−9 ein·dm−3·s−1) at room temperature using an accelerated weather-meter QUV tester (Philips,
Saarbrücken, Germany).

3.5. Photodegradation of PS Films by IR Spectrophotometer

The FTIR spectra (4000–400 cm−1) were recorded on FTIR 8300 Spectrophotometer (Shimadzu,
Tokyo, Japan) for the PS films. The carbonyl and hydroxyl group indices (Is) can be calculated using
Equation (4) [41]. The value of Is depends on the peak absorbance (As) of C=O or OH group and the
reference peak absorbance (Ar) at 1328 cm−1.

Is = As/Ar (4)

3.6. Measuring the Photodegradation by Weight Loss

The weight loss percentage of PS films in photodegradation process was calculated using from
the weight of PS sample before (W1) and after irradiation (W2) using Equation (5) [42].

Weight loss % = [(W1 − W2)/W1] × 100 (5)

3.7. Photodegradation of PS Films by Viscometery Method

The average molecular weight (Mα
V) of PS films was measured using Mark–Houwink relation,

Equation (6), in which α and K are constants [41,43]. Mα
V is directly proportional to the intrinsic

viscosity, [η], of PS film.
[η] = KMα

V (6)

Also, the average molecular weight (MV) can be calculated using Equation (7).

[η] = 4.17 × 10−4 MV
0.66 (7)

4. Conclusions

Four Schiff bases with 4H-1,2,4-triazole-3-thiol ring systems have been synthesized and
characterized. Polystyrene films containing Schiff bases at a concentration of 0.5% were found to
more stable on irradiation compared to polystyrene without the additives. Such additives can be
used for long-term polystyrene photostabilization. The additives could act as UV absorbers and/or
radical scavengers.
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