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Abstract: Essential oils from fresh Piperaceae leaves were obtained by hydrodistillation and
analyzed by gas chromatography mass spectrometry (GC–MS), and a total of 68 components were
identified. Principal components analysis results showed a chemical variability between species, with
sesquiterpene compounds predominating in the majority of species analyzed. The composition of the
essential oil of Piper mosenii was described for the first time. The cytotoxicity of the essential oils was
evaluated in peritoneal macrophages and the oils of P. rivinoides, P. arboretum, and P. aduncum exhibited
the highest values, with cytotoxic concentration at 50% (CC50) > 200 µg/mL. Both P. diospyrifolium
and P. aduncum displayed activity against Leishmania amazonensis, and were more selective for the
parasite than for the macrophages, with a selectivity index (SI) of 2.35 and >5.52, respectively. These
SI values were greater than the 1 for the standard drug pentamidine. The antileishmanial activity
of the essential oils of P. diospyrifolium and P. aduncum was described for the first time. P. rivinoides,
P. cernuum, and P. diospyrifolium displayed moderate activity against the Mycobacterium tuberculosis
H37Rv bacillus, with a minimum inhibitory concentration (MIC) of 125 µg/mL. These results are
relevant and suggests their potential for therapeutic purposes. Nevertheless, further studies are
required to explain the exact mechanism of action of these essential oils.
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1. Introduction

The Piperaceae family comprises around 3600 species [1], which are distributed in tropical and
subtropical regions in the northern and southern hemispheres. The family includes herbaceous plants,
shrubs, and (less frequently) trees, and is distributed across eight genera. The Piper genus the most
widely represented, with around 2000 species [2].

Species of Piper L. have previously been chemically investigated, resulting in the isolation
of various substances with biological properties such as alkaloids, propenyl phenols, chalcones,
dihydrochalcones, flavanones, flavones, amides, lignans, terpenes, and neolignans [3–5].

Biological properties of essential oils and extracts from plants of the genus Piper, including
antibacterial [6–8], trypanocidal [9,10], antileishmanial [11,12], anti-inflammatory [13], antifungal [14,15],
anti-Mycobacterium [16,17] and antioxidant [18–20] activities have been described. Considering
these previously documented activities, the essential oil from Piper species shows potential for
the development of new drugs for the treatment of neglected diseases such as leishmaniasis and
tuberculosis, due to the resistance of the microorganisms involved. The major side effects of currently
used drugs should also be considered.

Tuberculosis (TB) has been one of the most significant causes of suffering and death since the
19th century. The spread of the disease coincided with industrialization and the rapid and disorderly
expansion of urban spaces. It is estimated that 9.6 million new TB cases occurred around the world
in 2014. Of these, 5.4 million affected men, 3.2 million affected women, and 1.0 million cases
involved children [21]. Leishmaniasis is among the most significant neglected diseases. World Health
Organization data shows that it affects 350 million people in 88 countries, 72 of which are developing
nations. Over the past decade, new endemic areas have emerged and the number of cases of the
disease has increased [22].

The present study investigated the chemical composition and antileishmanial, cytotoxic, and
anti-Mycobacterium tuberculosis activities of essential oils obtained from the leaves of Piper species.

2. Results and Discussion

2.1. Identification and Quantification of Essential Oil from Piper Species

A total of 68 components were identified from different species using GC–MS analysis. The
compound identification percentage was over than 84% (Table 1). The composition (%) was obtained
from the ratio between the integration of the total area of the chromatogram and the partial area of each
peak. While chemical composition and essential oil content differed among species, the monoterpene
and sesquiterpene compounds and (E)-caryophyllene were present in all the oils, with values ranging
from 1.7% to 12.6%. The major compounds included α-thujene, α-pinene, β-pinene, limonene,
β-phellandrene, safrole, δ-elemene, β-elemene, γ-elemene, α-humulene, dehydro-aromadendrene,
trans-cadina-1(6), 4-diene, γ-gurjunene, bicyclogermacrene, (Z)-α-bisabolene, δ-cadinene, spathulenol,
caryophyllene oxide, humulene epoxide II, epi-1-cubenol, epi-α-muurolol and α-muurolol. The
essential oil composition of P. mosenii was described for the first time.

Table 2 shows the component percentages and the number of compounds. Of these, 15 were
monoterpene and 53 were sesquiterpene in nature. The results show that the essential oil of this species
was rich in sesquiterpene-type compounds. The essential oils of P. xylosteoides and P. mikanianum,
unlike the other species, contained large amounts of monoterpene compounds.
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Table 1. Chemical composition of essential oil from Piper species.

Peak Compounds RIa P. riv P. mos P. cer P. dio P. arb P. adu P. gau P. xyl P. mik

RI % RI % RI % RI % RI % RI % RI % RI % RI %

Monoterpene Hydrocarbons

1 α-Thujene 930 - - 931 1.9 - - - - - - - - - - 934 7.9 934 6.0
2 α-Pinene 939 932 4.4 - - 933 11.4 933 6.7 - - - - - - - - 946 1.1
3 β-Pinene 983 976 3.7 976 3.8 976 7.9 975 1.2 - - - - - - - - - -
4 Myrcene 990 - - - - - - - - - - - - - - 992 2.8 - -
5 α-Phellandrene 1002 1005 1.1 - - - - - - - - - - - - 1006 3.8 - -
6 δ-3-Carene 1011 - - - - - - - - - - - - 1012 5.9 - - - -
7 ρ-Cymene 1024 - - 1023 1.5 - - - - - - - - 1026 1.2 - - - -
8 o-Cymene 1026 - - - - 1022 1.2 - - - - - - - - - - - -
9 Limonene 1029 - - - - - - 1029 6.7 - - - - - - - - 1027 1.8
10 β-Phellandrene 1029 - - - - - - - - - - - - - - 1033 22.6 - -
11 Sylvestrene 1030 1026 1.2 - - - - - - - - - - - - - - - -
12 (Z)-β-Ocimene 1037 - - - - - - 1036 1.5 - - 1038 7.0 - - - - - -
13 (E)-β-Ocimene 1050 - - - - - - - - - - 1051 13.9 - - - - - -

Oxygenated Monoterpenes

14 Linalool 1096 - - - - - - - - 1100 1.7 1101 1.3 - - 1101 1.2 - -
15 Safrole 1287 - - - - - - - - - - 1288 6.2 - - - - 1309 72.4

Sesquiterpene Hydrocarbons

16 δ-EIemene 1338 - - - - - - - - 1335 5.6 - - - - 1337 6.6 - -
17 α-Copaene 1376 - - - - - - 1373 5.4 - - - - - - - - - -
18 β-Elemene 1390 1388 1.6 - - 1391 10.1 1390 3.0 1388 2.1 - - 1390 3.5 1389 1.6 - -
19 α-Gurjunene 1409 - - 1404 1.3 - - - - - - - - - - - - - -
20 (E)-Caryophyllene 1419 1415 6.6 1417 8.6 1415 6.9 1416 7.4 1415 12.6 1414 2.6 1414 1.7 1416 7.0 1416 2.4
21 β-Gurjunene 1433 - - - - - - - - - - 1433 2.3 - - - - - -
22 γ-Elemene 1436 - - - - - - - - - - - - 1432 5.4 - - - -
23 α-Guaiene 1439 - - 1433 1.8 - - 1435 2.5 - - - - - - - - - -
24 α-Humulene 1452 1457 10.0 1452 11.3 1446 1.0 1448 1.6 1447 3.7 1449 4.9 1448 2.2 - - - -
25 allo-Aromadendrene 1460 - - 1456 2.1 - - - - - - 1455 1.1 1456 2.3 - - - -
26 Dehydro-aromadendrene 1462 1477 7.8 - - - - - - - - - - - - - - - -
27 trans-Cadina-1(6),4-diene 1476 - - 1473 1.7 - - - - 1476 9.6 1475 1.1 - - - - - -
28 γ-Gurjunene 1477 - - - - - - 1478 6.9 - - - - 1476 2.9 1477 4.7 - -
29 γ-Muurolene 1479 - - 1476 1.4 - - - - - - - - - - - - - -
30 γ-Himachalene 1482 - - 1481 1.5 - - 1481 1.5 - - - - - - - - - -
31 Germacrene D 1485 - - - - - - - - - - - - 1489 1.7 - - 1486 1.2
32 Aristolochene 1488 1481 1.8 - - - - - - - - - - - - - - - -
33 β-Selinene 1490 - - - - - - 1489 2.0 - - - - - - - - - -
34 δ-Selinene 1492 - - - - 1489 4.1 - - - - - - - - - - - -
35 epi-Cubebol 1494 - - - - - - - - 1490 4.5 - - - - - - - -
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Table 1. Cont.

Peak Compounds RIa P. riv P. mos P. cer P. dio P. arb P. adu P. gau P. xyl P. mik

RI % RI % RI % RI % RI % RI % RI % RI % RI %

Sesquiterpene Hydrocarbons

36 α-Selinene 1498 - - - - - - 1496 3.4 - - - - - - - - - -
37 Bicyclogermacrene 1500 1495 11.8 1493 7.4 - - 1501 2.3 - - 1497 20.9 1493 4.4 1494 7.2 1493 3.1
38 α-Muurolene 1500 - - - - 1497 1.7 - - - - - - - - - - - -
39 (Z)-α-Bisabolene 1507 1506 10.9 - - - - - - - - - - 1497 2.5 - - - -
40 Germacrene A 1509 - - - - 1499 3.4 1503 2.0 - - - - 1501 2.6 - - - -
41 α-Bulnesene 1509 - - - - - - - - - - - - - - - - 1510 1.4
42 γ-Cadinene 1513 - - 1510 2.1 - - - - 1510 2.6 1514 5.5 - - - - - -
43 Cubebol 1515 - - - - 1510 2.0 - - - - - - 1510 1.5 - - - -
44 trans-Calamenene 1522 - - 1520 2.3 - - - - - - - - - - - - - -
45 β-Sesquiphellandrene 1522 1521 4.2 - - - - - - - - - - - - 1516 1.1 - -
46 δ-Cadinene 1523 - - - - - - 1520 1.8 1520 2.0 1522 3.8 1565 45.3 1520 2.1 - -
47 Germacrene B 1561 - - - - - - 1553 6.7 1549 2.5 - - - - 1550 1.4 - -
48 (E)-Nerolidol 1563 - - - - 1566 1.8 - - 1565 1.5 - - - - 1568 8.5 1565 1.9

Oxygenated Sesquiterpenes

49 Palustrol 1568 - - 1560 1.3 - - - - - - - - - - - - - -
50 Spathulenol 1578 1574 5.1 - - 1575 11.5 - - 1574 7.9 1575 5.3 1575 1.4 - - - -
51 trans-Sesquisabinene hydrate 1579 1578 3.5 - - - - - - - - - - - - - - - -
52 Caryophyllene oxide 1583 - - 1579 12.1 1578 5.1 1576 2.5 1577 5.9 - - - - - - - -
53 Globulol 1590 - - 1581 4.8 - - - - - - - - - - - - - -
54 Viridiflorol 1592 - - 1590 5.8 1594 1.1 1586 2.6 - - - - - - - - - -
55 Rosifoliol 1600 - - - - - - - - - - 1596 1.4 - - - - - -
56 Ledol 1602 1598 3.6 1599 3.1 - - - - - - - - - - - - - -
57 Humulene epoxide II 1608 - - 1607 6.3 - - - - 1601 1.5 1603 1.6 - - - - - -
58 10-epi-γ-Eudesmol 1623 - - - - - - - - 1611 1.6 - - - - - - - -
59 1-epi-Cubenol 1628 - - - - - - 1624 3.1 1628 10.4 1623 1.3 - - 1626 2.7 - -
60 α-Acorenol 1633 1629 1.1 1628 1.5 - - - - - - - - - - - - - -
61 epi-α-Cadinol 1640 1637 2.2 - - - - 1637 2.6 1631 1.7 1637 3.5 1637 1.6 - - - -
62 allo-Aromadendrene epoxide 1641 - - - - - - - - 1634 1.5 - - - - - - - -
63 epi-α-Muurolol 1642 - - - - 1639 6.2 - - 1638 3.6 - - - - 1637 1.7 - -
64 α-Muurolol 1646 1643 1.2 1643 5.8 - - - - 1642 1.2 - - - - - -
65 α-Cadinol 1654 1651 3.1 1651 2.8 1650 4.1 - - 1651 5.4 1651 2.0 1646 3.3 1650 2.0 - -
66 Selin-11-en-4-α-ol 1659 - - - - - - 1656 17.7 1663 1.5 - - 1662 1.2 - - - -
67 Shyobunol 1689 - - - - - - - - - - 1684 2.0 1683 1.2 - - - -
68 Longifolol 1714 - - - - 1714 1.2 - - - - - - 1713 1.2 - - - -

Total identified 85.2 86.4 86.5 91.1 89.4 88.9 93.0 84.9 91.3

Methods of Identification: RI—Retention index calculated using C7–C30 n-alkane standard solution in an HP-5 MS UI Agilent (30 m × 0.250 mm × 0.25 µm) column. RIa—Relative
retention index found in literature in capillary column HP-5 and comparison of the retention indices and/or mass spectra from literature [23]. -: Not detected. Identification based on
comparison with Wiley library mass spectra. %—values of areas. Compounds listed in order of elution by column. P. riv: Piper rivinoides Kunth; P. mos: Piper mosenii C. DC.; P. cer:
Piper cernuum Vell.; P. dio: Piper diospyrifolium Kunth; P. arb: Piper arboretum Aubl.; P. adu: Piper aduncum L.; P. gau: Piper gaudichaudianum Kunth; P. xyl: Piper xylosteoides (Kunth) Steud.;
P. mik: Piper mikanianum (Kunt).
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Table 2. Percentage of constituents per species group and number of compounds.

Group Monoterpenes
Hydrocarbons

Oxygenated
Monoterpenes

Sesquiterpene
Hydrocarbons

Oxygenated
Sesquiterpenes

No. Compounds 13 2 33 20

P. riv 10.4 0 54.7 20.1
P. mos 7.2 0 41.5 37.7
P. cer 20.5 0 31.0 35.0
P. dio 16.1 0 46.5 28.5
P. arb 0 1.7 46.7 41.0
P. adu 20.9 7.5 42.2 18.3
P. gau 7.1 0 76.0 9.9
P. xyl 37.1 1.2 40.2 6.4
P. mik 8.9 72.4 10.0 0

For the abbreviation for the Piper species see Table 1.

The essential oil of the Piper duckei and Piper demeraranum leaves were also obtained by
hydrodistillation (4 h) and analyzed by GC–MS. A total of 25 compounds were identified, and the
results showed that these species are also rich in sesquiterpenes [24]. Analysis of the essential oil
composition of the leaves of Piper vicosanum, with an extraction time of 4 h, identified the sesquiterpenes
γ-elemene (14.16%) and α-alaskene (13.44%) and the monoterpene limonene (10.09%) as the majority
substances [25]. The α-alaskene substance was not found in any of the nine species analyzed in the
present study.

The difference in the chemical composition of the oils among the Piper species may be due
to several factors, including genetic differences, circadian rhythms, seasonality, temperature, water
availability, ultraviolet radiation, stage of development, time of collection, nutrients, soil characteristics,
altitude, mechanical stimuli, and attack by herbivores or pathogens [26,27].

2.2. Principal Component Analysis (PCA)

The 68 compounds detected in the essential oils were subjected to PCA. Variance of 43.18% and
31.05% were detected in the horizontal and vertical axes, respectively, with a variance of approximately
74% among the components of the species (Figure 1).
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The most chemically similar species P. cernuum, P. aduncum, P. diospyrifolium, P. rivinoides, and
P. gaudichaudianum, with sesquiterpene hydrocarbon compounds the most prevalent. Unlike the other
species, P. xylosteoides and P. mikanianum contained a large quantity of monoterpenes. P. xylosteoides was
the richest in monoterpene hydrocarbons, while P. mikanianum was richest in oxygenated monoterpenes.
P. arboretum and P. mosenii differed from the others as they had a greater composition of oxygenated
sesquiterpene components. Various studies have demonstrated a preference of the Piper species to
synthesize sesquiterpenes [28–31].

2.3. Leishmanicidal and Cytotoxicity Activities

Initially, the present study analyzed the cytotoxic activity of essential oils. Different CC50 (cytotoxic
concentration at 50%) values were observed among species (Table 3), with the oils of P. rivinoides,
P. arboretum and P. aduncum less toxic (CC50 values > 200 µg/mL). The essential oil of the aerial
parts of Piper auritum had CC50 values of 106.4 ± 3.4 µg/mL against peritoneal macrophages from
BALB/c mice [32]. Piper hispidum had a CC50 value of 35.5 µg/mL against peritoneal macrophages
from BALB/c mice and CC50 > 100 against Vero cells [33]. The present study found higher values,
which may be due to differences in the chemical composition of the oils and due to different assay
conditions used.

Table 3. Cytotoxicity and leishmanicidal activities of essential oils from Piper species.

Essential Oils
L. amazonensis IC50/µg/mL BALB/c Mice Macrophages

CC50/µg/mL
SI = CC50/IC50 Axenic

AmastigotesPromastigotes Axenic Amastigotes

P. riv 10.9 ± 2.7 >200 >200 -
P. mos 17.4 ± 5.0 >200 117 ± 3.0 -
P. cer 27.1 ± 0.9 >200 118.6 ± 5.4 -
P. dio 13.5 ± 0.4 76.1 ± 9.0 179.1 ± 1.0 2.35
P. arb 15.2 ± 2.4 >200 >200 -
P. adu 25.9 ± 1.3 36.2 ± 2.9 >200 >5.52
P. gau 93.5 ± 1.6 - 87.3 ± 0.04 -
P. xyl >100 - >100 -
P. mik >100 - >100 -

Pentamidine 2.84 ± 0.09 4.3 ± 1.2 5.03 ± 1.25 1.16

Values represent the mean ± standard deviation of three independent experiments. CC50: cytotoxic
concentration at 50%; IC50: inhibitory concentration at 50%; SI: selectivity index (CC50/IC50 in axenic
amastigotes). For abbreviations for Piper species see Table 1.

The oils analyzed presented activity against promastigotes, with those of P. rivinoides, P. mosenii,
P. cernuum, P. diospyrifolium, P. arboretum, and P. aduncum displaying the highest values, varying from
10.9 ± 2.7 µg/mL–27.1 ± 0.9 µg/mL. The oils of P. diospyrifolium and P. aduncum inhibited the growth
of axenic amastigote forms, with IC50 (inhibitory concentration at 50%) values of 76.1± 9.0 µg/mL and
36.2 ± 2.9 µg/mL, respectively. Both these essential oils were more selective for the parasite than for
macrophages, with a selectivity index (SI) of 2.35 for Piper diospyrifolium and SI > 5.52 for Piper aduncum.
These SI values were greater than the one for the standard drug pentamidine. Here, the leishmanicidal
activity of the essential oils of Piper diospyrifolium and Piper aduncum is described for the first time.

Studies carried out with the essential oil of Piper hispidum identified an IC50 of 3.4 µg/mL against
amastigote forms of Leishmania amazonensis [33]. The leishmanicidal activity of the essential oils is
due to the presence of terpenoids, which have demonstrated antiparasitic activity against a range of
species of Leishmania [34].

The leishmanicidal action of a number Piper species has been evaluated, with the essential oils
of the leaves of Piper demeraranum and Piper duckei presenting an IC50 of 86.0 ± 2.4 µg/mL and
46.0 ± 1.3 µg/mL, respectively, against promastigote forms of Leishmania amazonensis [24]. The action
of the essential oil of Piper cubeba against promastigote forms of Leishmania amazonensis were evaluated,
although the oil was not active at the various concentrations tested. The authors suggested this
was because the oil exhibited mainly monoterpene compounds, which corresponded to 90% of the
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oil [35]. Therefore, we can consider that the presence of more sesquiterpene compounds contributes to
leishmanicidal activity. In the present study, the most active essential oils comprised a large number
of sesquiterpenes, while the essential oils of P. xylosteoides and P. mikanianum, which contained more
monoterpene compounds, did not demonstrate leishmanicidal activity.

These results are relevant and promising for in vitro tests. Nevertheless, further studies are
required to explain the mechanism of action.

2.4. Anti-M. tuberculosis Activity

Natural products and their derivatives have been found to display inhibitory activity against the
growth of M. tuberculosis, while some have been selected as prototype molecules for the development
of new antituberculosis agents [36,37].

Evaluation of the anti-M. tuberculosis activity of the essential oils of Piperaceae identified minimum
inhibitory concentration (MIC) values equal to or greater than 125 µg/mL (Table 4). The essential
oils of Piper rivinoides, Piper cernuum, and Piper diospyrifolium can therefore be considered to possess
moderate activity. MIC values <100 µg/mL are ideal candidates against M. tuberculosis, while values
of 100–200 µg/mL are considered moderate candidates [38].

Table 4. Anti-M. tuberculosis H37Rv activity and cytotoxicity of Piperaceae essential oils.

Essential Oils M. tuberculosis H37Rv
MIC (µg/mL)

BALB/c Mice Macrophages
CC50/µg/mL SI = CC50/MIC

P. riv 125 > 200 >1.6
P. mos 250 117 ± 3.0 -
P. cer 125 118.6 ± 5.4 -
P. dio 125 179.1 ± 1.0 -
P. arb >250 >200 -
P. adu >250 >200 -
P. gau >250 >100 -
P. xyl >250 >100 -
P. mik >250 87.3 ± 0.04 -

Isoniazid 0.06 NA -

Values represent the mean ± standard deviation of three independent experiments. MIC: minimum inhibitory
concentration; CC50: cytotoxic concentration in 50% off cells; SI: selectivity index (CC50/MIC). For the
abbreviations of the Piper species see Table 1. NA: not analyzed.

After determining the MIC of the oils, the Selectivity index (SI) was calculated. Only the essential
oil of Piper rivinoides had an SI greater than 1, with a value of 1.6. To increase this value, the main
components of the oil can be fractionated and/or isolated, as it has been established that the high
lipophilicity of terpenes, which are rich in mycolic acid (lipophilic), is probably the main factor in their
penetration of the cell wall of the mycobacteria [39].

Previous evaluation of the antimycobacterial action of the essential oils of P. auritum and
P. bogotense obtained MIC values of 400 ± 220 and 130 ± 95 µg/mL [38], respectively. These results
were superior to those of the present study. Research into essential oils is important for the treatment of
tuberculosis, as this pathogen preferably settles in the lungs, where it remains active and can trigger the
symptoms of the disease. Some studies have already initiated the use of essential oils in an inhalation
form in anti-TB treatment [40]; following inhalation, the essential oil moves into the bronchi and then
reaches the alveoli of the patient, spreading into the pulmonary capillaries, where it can exert local
and systemic effects.
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3. Materials and Methods

3.1. Plant Materials

The specimens of Piper rivinoides Kunth, Piper mosenii C. DC., Piper cernuum Vell.,
Piper diospyrifolium Kunth, Piper arboretum Aubl., Piper aduncum L., Piper gaudichaudianum Kunth,
Piper xylosteoides (Kunth) Steud. and Piper mikanianum (Kunth) Steudelwere collected between April
and October 2014 in Antonina and Cerro Azul, in the state of Paraná, and Atalanta, in the state of
Santa Catarina, Brazil (Table 5). The plants were identified by the botanist José Tadeu Weidlich Motta,
and a voucher specimen was deposited at the Herbarium of the Municipal Botanical Museum Curitiba.
The essential oil was extracted from fresh leaves.

Table 5. General data of native species of Piperaceae family collected for extraction in the municipalities
of Antonina and Cerro Azul in Parana and Atalanta in Santa Catarina, 2014.

Scientific Name
No.

Herbarium *
Municipality Localization **

Collection Date
Latitude Longitude Altitude (m)

Piper rivinoides Kunth 396414 Antonina, PR S 25◦29.693′ W 49◦00.844′ 000 2 April 2014
Piper mosenii C. DC. 396409 Antonina, PR S 25◦29.693′ W 49◦00.844′ 000 2 April 2014
Piper cernuum Vell. 396416 Antonina, PR S 25◦29.693′ W 49◦00.844′ 000 2 April 2014
Piper diospyrifolium Kunth 396413 Antonina, PR S 25◦29.693′ W 49◦00.844′ 000 2 April 2014
Piper arboretum Aubl. 396412 Antonina, PR S 25◦29.693′ W 49◦00.844′ 000 2 April 2014
Piper aduncum L. 396411 Cerro Azul, PR S 24◦45.863′ W 49◦16.368′ 528 5 April 2014
Piper gaudichaudianum Kunth 396403 Antonina, PR S 25◦29.693′ W 49◦00.844′ 000 24 September 2014
Piper xylosteoides (Kunth) Steud. 396405 Cerro Azul, PR S 24◦45.863′ W 49◦16.368′ 528 1 October 14
Piper mikanianum (Kunth) Steudel 396408 Atalanta, SC S 25◦29.830′ W 49◦00.919′ 640 8 October 14

* Specimen number referring to voucher specimen identified, as found in the MBM Herbarium in Curitiba,
Parana. ** Coordinates of species collection, with an average error of 15 m around the collection point.

3.2. Extraction of Essential Oil

Essential oils were obtained from fresh leaves (600 g) by hydrodistillation in a Clevenger apparatus
for 4 h with 600 mL of water. At the end of each distillation, the oils were collected, centrifuged at
5000 rpm for 2 min, transferred to glass, and stored at a temperature of −4 ◦C.

3.3. GC–MS Analysis

The analysis of the essential oil was carried out in a gas chromatograph (Agilent 7890 B, Agilent
Technologies, Santa Clara, CA, USA) coupled to a mass spectrum (Agilent 5977 A) equipped with
an Agilent HP-5 MS UI capillary column (30 m × 0.250 mm × 0.25 µm). To carry out the analysis,
the essential oils were diluted to 5% in dichloromethane and injected under the following conditions:
injector temperature of 220 ◦C, injection volume 1 µL at a ratio of 1:20 (split mode), initial column
temperature of 60 ◦C heated gradually to 180 ◦C at a 2 ◦C/min rate, heated to 220 ◦C at a 10 ◦C/min rate,
and then to 300 ◦C at 40 ◦C/min. The carrier gas (helium) flow was set at 1 mL·min−1. The temperatures
of the transfer line, ion source, and quadrupole were 250, 230, and 150 ◦C, respectively. The mass
spectra were obtained at a range of 40–450 (m/z) in scan mode with a solvent delay time of 3 min.
The compounds were identified based on comparison of their retention indices (RI) obtained using
various n-alkanes (C7–C30). The electron ionization (EI)-mass spectra were compared with Wiley
library spectra and according to Adams [23].

3.4. Principal Components Analysis (PCA)

Clustering analysis of species was performed with the unweighted pair-group method using
arithmetic average (UPGMA) algorithm based on squared Euclidean distances. Prior to the calculation
of these distances, the data was standardized to obtain a mean of zero and a variance of one. Principal
components analysis was then applied using the primary data as the covariance matrix [41,42]. These
analyses were performed using the Statistica software package, version 12.0 (StatSoft, Tulsa, OK, USA).
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3.5. Cytotoxicity

BALB/c mice macrophages were obtained by peritoneal lavage with a cold RPMI medium
(Sigma-Aldrich, St. Louis, MO, USA). The macrophages were placed in RPMI culture medium
(pH 7.2, supplemented with 10% fetal bovine serum) in 96-well plates at a ratio of 2 × 106 cells/well
and incubated with essential oils (0–250 µg/mL) for 72 h at 37 ◦C under 5% CO2. After removing
the supernatant, viable cells were quantified by adding 22 µL of resazurin solution per well
(500 µM) in phosphate-buffered saline (PBS). Fluorescence was measured using a Spectra Max M2
spectrofluorometer (Molecular Devices, Silicon Valley, CA, USA) under excitation and at emission
wavelengths of 560 nm and 590 nm, respectively. The percentage of viable cells relative to the control
cells was calculated. The tests were carried out in triplicate. The concentration effect curves were fitted
with nonlinear regression using Graph Pad Prism 5.0 (Graph Pad Software, San Diego, CA, USA), and
the CC50 values were determined.

3.6. Antipromastigote Activity

Promastigotes of L. amazonensis (MHOM/BR/77/LTB0016) were maintained in flasks at 26 ◦C in
Schneider’s medium (Sigma-Aldrich Corp., St. Louis, MO, USA) supplemented with 10% fetal bovine
serum. Tests were performed in 96-well plates with an initial inoculum of 1.0 × 106 parasites/mL
incubated with essential oils (0–200 µg/mL) for 72 h at 26 ◦C. After incubation, antileishmanial activity
was evaluated by adding 22 µL of resazurin solution per well (500 µM, Sigma-Aldrich). After 4 h,
fluorescence was measured using a Spectra Max M2 spectrofluorometer (Molecular Devices) under
excitation and at emission wavelengths of 560 nm and 590 nm, respectively. The tests were carried out
in triplicate. The concentration effect curves were fitted using nonlinear regression with Graph Pad
Prism 5.0, and the IC50 values were determined.

3.7. Axenic Amastigotes

L. amazonensis axenic amastigotes were obtained as previously described [43]. Briefly, stationary
phase L. amazonensis promastigotes were washed in cold PBS and incubated in Schneider’s medium
(Sigma-Aldrich), pH 5.5, supplemented with 20% fetal bovine serum and maintained at 32 ◦C for
5 days to induce differentiation. Subcultures were obtained at one-week intervals under the same
conditions. For antiamastigote assays, axenic amastigotes (5.0× 106/mL) were incubated with essential
oils (0–200 µg/mL) for 72 h. After incubation, activity was evaluated by adding 22 µL of resazurin
solution (500 µM) to each well. After 4 h, fluorescence was measured using a Spectra Max M2
spectrofluorometer (Molecular Devices) under excitation and at emission wavelengths of 560 nm and
590 nm, respectively. The tests were carried out in triplicate. The concentration effect curves were
fitted using nonlinear regression with Graph Pad Prism 5.0, and the IC50 values were determined.

3.8. Anti-Mycobacterium tuberculosis Activity Assay

The anti-M. tuberculosis activities of essential oils from leaves of Piper species as evaluated by
colorimetric resazurin microtiter assay (REMA) plate method [44]. Briefly, 200 µL of sterile distilled
water was distributed in the outer wells of the microplate (Falcon 3072, Becton Dickinson, Lincoln Park,
NJ, USA); the essential oils were diluted in dimethylsulfoxide (DMSO, Amresco, Solon, OH, USA)
and serial twofold dilutions from 250 to 1.9 µg/mL were carried out in Middlebrook 7H9 broth (Difco
Laboratories, Detroit, MI, USA) supplemented with oleic acid, bovine albumin, dextrose, and catalase
(OADC) Enrichment (BBL/Becton-Dickinson, Sparks, MD, USA). Isoniazid (Difco Laboratories, Detroit,
MI, USA) was used as the reference drug at concentrations ranging from 0.007 to 1.0 µg/mL. One
hundred microliters of each bacterial inoculum (M. tuberculosis H37Rv (ATCC 27294)), standardized
at 1 McFarland turbidity and diluted to 1:20 in OADC-supplemented Middlebrook 7H9 broth, was
inoculated into the wells. The plates were covered with lids and their edges were sealed with
polyethylene tape. The plates were placed in a plastic box and incubated in a normal atmosphere for
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7 days at 35 ◦C. The MIC readings were carried out after the addition of 30 µL of freshly prepared
0.01% resazurin solution (Acros, Morris Plains, NJ, USA) to each well, and the plates were incubated
for 24–48 h at 35 ◦C. A color change from blue to pink indicated mycobacterial growth, and the MIC
was the lowest extract concentration that prevented the color change. Medium, drug sterility, and
bacterial growth with and without 2.5% (v/v) DMSO controls were included in all tests. The tests were
carried out in triplicate.

4. Conclusions

The essential oils obtained from nine Piper species are composed of monoterpenes and
sesquiterpenes, and the differences in their composition can be attributed to genetic differences
and climatic and soil factors. The chemical composition of the essential oil of Piper mosenii is described
here for the first time. The essential oils of Piper diospyrifolium and Piper aduncum were most active
against L. amazonensis and the oil of Piper rivinoides, Piper cernuum, and Piper diospyrifolium were most
active against Mycobacterium tuberculosis. These results are relevant and suggest their potential for
therapeutic purposes. Nevertheless, further studies are required to explain the exact mechanism of
action these essential oils.
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