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Abstract: As one of the main active ingredients from Radix Astragali (RA), orally dosed astragaloside
IV (AST) is easily transformed to sapogenin-cycloastragenol (CAG) by deglycosylation in the
gastrointestinal tract. Because the potential adverse effects of AST and CAG remain unclear, the
present study in this article was carried out to investigate the inhibition effects of AST and CAG
on UDP-glucuronosyltransferases (UGTs) to explore potential clinical toxicity. An in vitro UGTs
incubation mixture was employed to study the inhibition of AST and CAG towards UGT isoforms.
Concentrations of 100 µM for each compound were used to initially screen the inhibitory efficiency.
Deglycosylation of AST to CAG could strongly increase the inhibitory effects towards almost all of the
tested UGT isoforms, with an IC50 of 0.84 µM and 11.28 µM for UGT1A8 and UGT2B7, respectively.
Ulteriorly, the inhibition type and kinetics of CAG towards UGT1A8 and UGT2B7 were evaluated
depending on the initial screening results. Data fitting using Dixon and Lineweaver–Burk plots
demonstrated that CAG competitively inhibited UGT1A8 and noncompetitively inhibited UGT2B7.
From the second plot drawn with the slopes from the Lineweaver–Burk plot versus the concentrations
of CAG, the inhibition constant (Ki) was calculated to be 0.034 µM and 20.98 µM for the inhibition
of UGT1A8 and UGT2B7, respectively. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility;
1 > [I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), it was successfully predicted here
that an in vivo herb–drug interaction between AST/CAG and drugs mainly undergoing UGT1A8- or
UGT2B7-catalyzed metabolism might occur when the plasma concentration of CAG is above 0.034 µM
and 20.98 µM, respectively.
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1. Introduction

Radix Astragali (RA), originating from the dried root of Astragalus membranceus (Fisch.) Bge.
and A. membranceus (Fisch.) Bge. Var. mongholicus (Bge.) Hsiao [1], is popular in clinical practice
for treating hypertension, heart disease, diabetic nephropathy, viral hepatitis, and other diseases [2].
Conventionally, RA is regarded as a sweet, warm-natured drug, without any distinct toxicity and side
effects in regular dosages [3]. In traditional Chinese medicine (TCM), this herb is often combined
with other herbs, such as Angelica and Codonopsis pilosula, in complex formulas such as Shenqifuzheng
Injection and Bushenyiqi Decoction as adjuvant therapy in the treatment of cancers, strokes, and
other diseases.

As one of the dominant bioactive components in RA, the astragaloside IV (AST) (Figure 1)
level is required to determine the Quality Control (QC) of RA slices and extracts [4]. Moreover,
AST itself is currently under development as a potential New Molecular Entity because of its
cardiac, antihypertension, antiviral, antioxidant, and immunity effects [5]. Studies focusing on
the pharmacokinetics and bioavailability of astragaloside IV suggest that astragaloside IV has low
bioavailability after oral administration, which is only 2.2%–3.7% [6,7] in rats and 7.4% in dogs [8].
Apart from physicochemical characteristics such as high molecular weight, high hydrogen-bonding
capacity, high molecular flexibility, poor membrane permeability, poor absorption through the gut,
and limited metabolism by intestinal microflora may contribute to the poor bioavailability of AST [9].
However, AST undergoes intestinal bacterial biotransformation, and the main resultant metabolite,
cycloastragenol (CAG) (Figure 1), can be more readily absorbed to reach systemic circulation. When
AST was orally administered to rats, CAG presented as the main component in plasma following AST,
and the area-under-the-curve (AUC0-∞) were 88.60 ± 9.66 (CAG) and 452.28 ± 43.33 nM·h (AST) [1].
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Although much research has been carried on the in vitro and in vivo metabolism profiles of AST
and CAG, only a few articles that deal with metabolism enzymes elucidate the potential toxicity and
herb-drug interactions. Shan et al. [10] reported that AST was a competitive inhibitor of CYP2C9
and a non-competitive inhibitor of CYP3A4 in an in vitro study. Another study performed by
Zhang et al. [11] found that AST exerted obvious inhibitory effects on CYP1A2 activity in rats, using
theophylline as the probe. However, compared with phase I metabolizing enzymes, no research has
been conducted on the interaction of AST and CAG with phase II conjugating enzymes.

Human UDP-glucuronosyltransferase (UGT) enzymes are one of the most important phase II
metabolizing enzymes, predominantly catalyzing the glucuronidation reactions of endobiotics, drugs
and xenobiotics, generally making these molecules more amended to biliary and renal excretion.
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The disposition and clearance of drugs may be significantly changed when UGT are modulated
by co-administrated drugs or herbal medicines. For example, fluconazole itself is not metabolized
by UGT but alter pharmacokinetic parameters of co-administrated zidovudine in AIDS patients,
because the glucuronidation of zidovudine by UGT2B7 is strongly inhibited by fluconazole [12];
indinavir [13] and sorafenib [14] can disturb the activity of UGT1A1, resulting in the inhibition of
bilirubin gulucuronidation; atractylenolide I and III have been proven to specifically inhibit UGT2B7,
thus affecting drugs undergoing UGT2B7- catalyzed metabolism [15].

Since the drug-drug interaction is considered as an important cause of adverse drug reactions, the
present study aims to determine the inhibition behavior of AST and CAG towards UGT, and indicate
the potential herb-drug interaction induced by UGT inhibition. Thus, the present study evaluated and
compared the inhibitory effects of AST and CAG towards various UGT isoforms simultaneously. The
experimental results should help clinic doctors and pharmacologists to re-evaluate the risk-benefits
ratio when RA or AST are co-administered with drugs mainly metabolized by the same UGTs.

2. Results

2.1. Comparison of Inhibition Effect of AST and CAG

For the inhibition screening of compounds on the activity of drug-metabolizing enzymes (DMEs),
100 µM has been widely accepted to be the most optimal initial screening concentrations [16–18].
Based on this previous literature, we also selected this concentration as the initial screening
concentration. As exhibited in Figure 2, 100 µM AST inhibited the activity of UGT1A1, 1A3, 1A6, 1A7,
1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 by 3.8%, 35.9%, −11.4%, 15.8%, 3.7%, 4.2%, 31.4%, 14.9%,
51.5% , 20.5%, and 7.2%, respectively. 100 µM CAG inhibited the activity of UGT1A1, 1A3, 1A6, 1A7,
1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17 by 50.2%, 75.2%, 36.3%, 49.7%, 100.0%, 4.0%, 23.3%, 20.7%,
84.9%, 43.4%, and 16.3%, respectively. These results show that the deglycosylation of AST to CAG
strongly increased the inhibitory effects towards almost all of the tested UGT isoforms.
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(4-MU) was used as a probe substrate for recombinant human UGT1A1, UGT1A3, UGT1A6, UGT1A7,
UGT1A8, UGT1A9, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17, and data are shown using
mean value plus SD. * p < 0.05.

2.2. Inhibition Type and Kinetics of CAG Towards UGT1A8 and UGT2B7

As exhibited in Figure 2, 100 µM CAG strongly inhibited the activity of UGT1A8 and UGT2B7 by
100% and 84.9%, respectively. As shown in Figures 3a and 4a, CAG inhibited UGT1A8 and UGT2B7
in a concentration-dependent manner with an IC50 of 0.84 µM and 11.28 µM, respectively. To further
explore the inhibition information, we evaluated the inhibition type and parameters of CAG towards
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UGT1A8 and UGT2B7. CAG competitively inhibited UGT1A8 and non-competitively inhibited
UGT2B7, as demonstrated via Dixon plot (Figures 3b and 4b) and Lineweaver–Burk plot (Figures 3c
and 4c). The second plot (Figures 3d and 4d) was drawn with the slopes from the Lineweaver-Burk
plot versus the concentrations of CAG, and the inhibition constant (Ki) were calculated to be 0.034 µM
and 20.98 µM for the inhibition of CAG towards UGT1A8 and UGT2B7, respectively.
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(a) Dose-dependent inhibition of CAG towards UGT2B7; (b) Dixon plot of inhibition of CAG towards
UGT2B7; (c) Lineweaver-Burk plot of inhibition of CAG towards UGT2B7; (d) Second plot of inhibition
of CAG towards UGT2B7. The data point represents the mean value of duplicate experiments.

3. Discussion

Inhibitory drug-drug interactions (DDIs) are considered as an important origin of adverse effects
and have led to the withdrawal of several approved drugs from the market, which means it is not
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only a clinical problem, but also a potential economic loss for the pharmaceutical industry. Thus, it is
quite necessary to profile and evaluate potential inhibitory effects of drug candidates through in vitro
experiments, which is important for prediction of drug-drug interactions.

In our research, we studied the inhibitory effects of AST and CAG on 11 UGT isoforms and came to
the conclusion that deglycosylation of AST to CAG can strongly increase the inhibitory effects towards
almost all tested UGT isoforms. Results from research carried out by Guo et al. [19] showed that the
aglycone liquiritigenin and glycyrrhetic acid exhibited stronger inhibition than their saponin, liquiritin,
and glycyrrhizin. Cao et al. [20] evaluated the inhibitory effect of UGT1A7 by glucoaurantio-obtusin
and aurantio-obtusin, indicating the importance of deglycosylation process for strengthening the
inhibitory effect of glucoaurantio-obtusin towards UGT1A7. Besides, the deglycosylation of saponin
to aglycone can also strongly increase the inhibitory effects towards CYPs. Liu et al. [21] found that
naturally occurring ginsenosides exhibited no inhibition or weak inhibition against human CYPs,
while their main intestinal metabolites demonstrated a wide range of inhibition of the P450-mediated
metabolism. However, different from the above articles, it is interesting that the intestinal metabolites of
icariin exhibited a different inhibition profile compared with icarrin [22]. Structural insights into UGTs
and glycosylation mechanism may give us a proper explanation to this difference. In the structures of
UGTs, the acceptor binding pocket is adjacent to the donor binding site, mainly consisting of residues
in the N-terminal domain and some residues in the C-terminal domain, formed by several helices
and loops. These regions are highly varied in these UGTs, thus making the interaction between UGTs
and donor-glycosides and the interaction between UGTs and receptor-products of deglycosylated
glycosides different [23].

As exhibited in Figure 2, 100 µM CAG strongly inhibited the activity of UGT1A8 and UGT2B7 by
100% and 84.9%. Although liver is considered to be the main organ of drug metabolism for derivative
generation, the intestinal mucosa, as the first exposure site to orally dosed chemical substances, may
play an important role in the first-pass metabolism of xenobiotics [24]. UGT1A8 is expressed in the
mucosa of both the small intestine and the colon; therefore, UGT1A8 plays important roles in the
first step of inactivation and detoxification in vivo. UGT1A8 shows higher catalytic activities toward
the glucuronidation of catechol estrogens, coumarins, flavonoids, anthraquinones, and phenolic
compounds [25]. Besides UGT1A8, CAG had strong inhibition towards UGT2B7, which is arguably the
most important isoform because it contributes to the glucuronidation of 35% of clinically used drugs
and endogenous compounds including bile acid, fatty acids, and steroids [26]. When considering
clinically relevant DDIs involving UGTs, the enzyme that is most commonly implicated is UGT2B7 [27].

In practice, the [I]/Ki ratio is used to predict the likelihood inhibitory drug-drug interactions.
When assessing in vivo interaction potential, [I] represents the mean steady-state Cmax value following
the administration of the highest proposed clinical dose [28]. When CAG was co-administrated
with drugs mainly undergoing UGT1A8- or UGT2B7-catalyzed metabolism, in vivo herb-drug
interaction could have occurred when the mean steady-state Cmax of CAG was above 0.034 µM
and 20.98 µM, respectively.

Although speculation on the clinical relevance of in vitro observations of inhibition of
glucuronidation are relatively common, appropriate mechanistic studies attempting to link in vitro
inhibition with influence on AUC in humans are rare. In fact, high risk occurs only when the
AUCi/AUC ratio is above 5; however, observed AUCi/AUC ratios for glucuronidated drugs
co-administered with UGT inhibitors are typically less than 2, thus indicating a low possibility of
inhibitory drug-drug interactions caused by UGTs [29]. In view of the low levels of AST and its
intestinal metabolite-CAG in blood, AST/CAG is impossible to cause a clinically significant DDI
through the inhibition of hepatic glucuronidation after oral administration. However, in our research,
CAG extremely strongly inhibited the activity of UGT1A8, an extrahepatic isoform. UGT1A8 may
make great contributions to the first-pass metabolism of orally administered drugs that undergo
glucuronidation. Therefore, AST/CAG may exert an influence on the glucuronidation and first-pass
metabolism of some drugs orally administered, thus predicting inhibitory DDI potential.
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In conclusion, the present study investigated the inhibitory potential of AST and CAG
towards 11 UGT isoforms, to predict the possible herb-drug interactions between RA/AST and
co-administrated drugs. The IC50 of CAG towards UGT1A8 and UGT2B7 was calculated to be
0.84 µM and 11.28 µM, respectively. The inhibition constants (Ki) were calculated to be 0.034 µM
and 20.98 µM for UGT1A8 and UGT2B7, respectively. The experimental data will be of considerable
referential importance when RA or AST/CAG is co-administered with drugs mainly metabolized by
UGT1A8 or UGT2B7 for consequent excretion.

4. Materials and Methods

4.1. Materials and Reagents

AST and CAG were purchased from Tianjin Yousi Pharma Ltd. (Tianjin, China), with the purity
both above 98%. 4-Methylumbelliferone (4-MU), 4-MU-b-D-glucuronide (4-MUG), 7-hydroxycoumarin,
Tris-HCl, and uridine-50-diphosphoglucuronicacid (UDPGA) (trisodium salt) were purchased from
Sigma-Aldrich (St Louis, MO, USA). Recombinant human UGT supersomes (UGT1A1, 1A3, 1A6, 1A7,
1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17) expressed in baculovirus-infected insect cells were obtained
from BD Gentest Corp. (Woburn, MA, USA). All other reagents were of high-performance liquid
chromatography (HPLC) grade.

4.2. Inhibition of UGT Activity Assay

The in vitro incubation experiment was carried out according to previously literature [15]. In brief,
a typical 200 µL incubation mixture contained various recombinant UGT isoforms, 5 mM UDPGA,
5 mM MgCl2, 50 mM Tris-HCl buffer (pH = 7.4), and various concentrations of 4-MU. 4-MU was
used as a non-selective substrate of UGTs. There was a 5 min pre-incubation step at 37 ◦C before the
reaction was initiated by the addition of UDPGA. 4-MU and inhibitors were previously dissolved in
DMSO, and the total concentration of DMSO was 1% (v/v). The reactions were continued at 37 ◦C for
120 min for UGT1A1, UGT1A10, UGT2B4, UGT2B7, UGT2B15, and UGT2B17, 75 min for UGT1A3,
and 30 min for UGT1A6, UGT1A7, UGT1A8, and UGT1A9, respectively. Reactions were terminated
by the addition of 100 µL of acetonitrile with 7-hydroxycoumarin (100 µM) as the internal standard.
The incubation mixtures were then centrifuged at 12,000× g for 10 min.

4.3. Analytical Methods

An amount of 2 µL of supernatant was injected into the UPLC system for analysis. A Waters
ACQUITY UPLC System equipped with an UV detector was used to analyze the samples, and the
separation of all compounds was carried out using an ACQUITY UPLC® BEH C18 (2.1 mm × 100 mm,
1.7 µm, Waters, Milford, MA, USA) at a flow rate of 0.2 mL/min and an UV detector at 316 nm.
The mobile phase consisted of ultrapure water containing 0.5% formic acid (v/v) (A) and acetonitrile
(B). The following gradient condition was used: 0–3.5 min, 10%–65% B; 3.5–4.0 min, 65% B; 4.0–9.0 min,
10% B. The retention times for 4MUG, 7-hydroxycoumarin (internal standard) and 4MU were 2.6, 3.2,
and 3.5 min, respectively.

4.4. Data Analysis

To calculate the standard curve, 0.1–100 µM 4-MUG was used by drawing the peak area ratio
of 4-MUG/internal standard towards the concentration range of 4-MUG, with a linear correlation
coefficient r2 over 99% (1/r2). We force the calibration equation through zero because we assume no
HPLC response when no metabolite exists. The fitting equation was y = 0.0282x. The detection and
quantification limits were obtained via signal-to-noise ratios of 3:1 and 10:1, respectively. The LOD and
LOQ were 0.015 µM and 0.03 µM, respectively. The accuracy and precision of the back-calculated values
for each concentration were less than 5%. All experiments were separately performed in duplicate
three times. The determination of IC50 was calculated using Probit analysis in SPSS11.5 (SPSS, Chicago,
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IL, USA). The Student’s t-test was adopted at a significance level of p < 0.05 to determine statistically
significant differences among experimental groups.

4.5. Inhibition Kinetics

The inhibition type and Kinetics were determined for the inhibition of CAG towards UGT1A8 and
UGT2B7. The half inhibition concentration (IC50) values were determined using various concentrations
of CAG (0.15625, 0.3125, 0.625, 1.25, 2.5, 4, and 5 µM for UGT1A8 and 0.5, 1, 5, 10, 20, 40, 60, 80, and
100 µM for UGT2B7). Inhibition constant (Ki) were determined utilizing various concentrations of
4-MU (1500, 3000, 4500, and 7500 µM for UGT1A8 and 40, 150, 200, and 500 µM for UGT2B7) in the
absence (control) and presence of different concentrations of CAG (0.15625, 0.3125, 1.25, and 2.5 µM for
UGT1A8 and 2.5, 20, 40, and 60 µM for UGT2B7). Dixon and Lineweaver–Burk plots were employed
to determine the inhibition type, and the second plot of the slopes from the Lineweaver–Burk plot
versus the compound concentrations was utilized to calculate the Ki value.

4.6. In Vitro–In Vivo Extrapolation (IVIVE)

In vitro–in vivo extrapolation (IVIVE) was performed using the following equation:

AUCi/AUC = 1 + [I]in vivo/Ki

The terms are defined as follows: AUCi/AUC is the predicted ratio of the in vivo exposure of the
xenobiotics or endogenous substances with or without the co-exposure of CAG. [I]in vivo is the in vivo
exposure concentration of CAG, and the Ki value is the in vitro inhibition constant.
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