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Abstract: This work provides an evaluation of an ultrasound-assisted, combined extraction, 
centrifugation and ultrafiltration process for the optimal recovery of polyphenols. A purple sweet 
potato (PSP) extract has been obtained using ultrasonic circulating extraction equipment at a power 
of 840 W, a frequency of 59 kHz and using water as solvent. Extract ultrafiltration, using 
polyethersulfone (PES), was carried out for the recovery of polyphenol, protein and anthocyanin. 
Pre-treatment, via the centrifugation of purple sweet potato extract at 2500 rpm over 6 min, led to 
better polyphenol recovery, with satisfactory protein removal (reused for future purposes), than 
PSP extract filtration without centrifugation. Results showed that anthocyanin was efficiently 
recovered (99%) from permeate. The exponential model fit well with the experimental ultrafiltration 
data and led to the calculation of the membrane’s fouling coefficient. The optimization of 
centrifugation conditions showed that, at a centrifugation speed of 4000 rpm (1195× g) and duration of 
7.74 min, the optimized polyphenol recovery and fouling coefficient were 34.5% and 29.5 m−1, 
respectively. The removal of proteins in the centrifugation process means that most of the 
anthocyanin content (90%) remained after filtration. No significant differences in the intensities of 
the HPLC-DAD-ESI-MS2 peaks were found in the samples taken before and after centrifugation for 
the main anthocyanins; peonidin-3-feruloylsophoroside-5-glucoside, peonidin-3-caffeoyl-p-
hydroxybenzoylsophoroside-5-glucoside, and peonidin-3-caffeoyl-feruloyl sophoroside-5-
glucoside. This proves that centrifugation is an efficient method for protein removal without 
anthocyanin loss. This study considers this process an ultrasound-assisted extraction-
centrifugation-ultrafiltration for purple sweet potato valorization in “green” technology. 
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1. Introduction 

The use of synthetic pigments is becoming ever more restricted in a number of countries due to 
concerns over their association with diseases, including cancer and heart disease [1]. These 
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restrictions have led both food researchers and food industries to replace them, in food products, 
with natural molecules, especially polyphenols, which display numerous benefits (e.g., antioxidant 
activity, hepato-protectant, etc.) [2–4]. 

Purple sweet potatoes (PSP) have been studied as a potential source of polyphenols, which could 
provide important applications in functional foods [3,5]. In fact, a number of conventional and  
non-conventional methodologies have been used for their extraction. These methods include 
ultrasound-assisted extraction (UAE), which is considered to be one of the most economic and 
efficient techniques for the recovery of polyphenols and other valuable compounds from PSP [6,7]. 

It is widely believed that the cavitation effect caused by ultrasound waves enhances cell 
disruption, solvent penetration and mass transfer [8–11], thus intensifying target molecular 
extraction. In a recent work, UAE has been successfully demonstrated to work in green extraction of 
polyphenols from PSP, using water as solvent [4]. Despite the unsatisfying polyphenol yields 
recovered under ultrasound conditions, advanced treatment may lead to improved denaturation of 
PSP tissues and the enhanced release of target molecules. 

The feasibility of using ultrafiltration for polyphenol recovery and protein removal  
(major impurity) from PSP extracts has been recently investigated [12]. However, although the 
polyphenol content in the permeate increased, the filtration flux decreased because of membrane 
fouling caused by the accumulation and deposition of particles on the membrane surface, thus 
clogging the filtration pores. Membrane fouling is one of the major problems encountered in the food 
industry when using similar technologies. This fact limits the productivity of the process and means 
that additional maintenance steps are required. Controlling membrane fouling is a key to overcoming 
this problem and therefore achieving the efficient recovery and purification of target molecules (i.e., 
polyphenols). Fouling control has always been performed by preventing the formation of fouling 
elements using trans-membrane pressure, solute size and physicochemical properties as well as 
foulant and membrane characteristics [13]. 

The pre-treatment of feed juice is one of the most effective membrane fouling elimination 
technologies [13,14]. Centrifugation is an important juice pre-treatment method that has a great effect 
on membrane fouling and filtration kinetics by removing suspended particles [15]. 

Moreover, the biological activity and retention of polyphenols differ according to their chemical 
structure and the affinity of these compounds to the purification systems. It is thus necessary to study 
polyphenol profiles using innovative analytical tools, such as high performance liquid 
chromatography (HPLC) (with diode array detector (DAD)) coupled to mass spectrometry (MS) 
(with electro-spray ionization interface (ESI)) (HPLC-DAD-ESI-MS2). A detailed investigation of the 
centrifugation conditions, such as the centrifugation speed and duration, in PSP extraction 
ultrafiltration (UF) performance is therefore of paramount importance if polyphenols are to be 
recovered at higher productivities. 

In the present study, polyphenols have been extracted from PSP using ultrasonic circulating 
extraction equipment. The extract was then pre-treated with centrifugation and separated with 
ultrafiltration. Filtration behavior and permeate quality have been analyzed. The impact of 
centrifugation conditions on polyphenol recovery and filterability (membrane fouling) have been 
investigated and furnished optimal centrifugation conditions. The HPLC-DAD-ESI-MS2 polyphenol 
profiles have also been investigated before and after the centrifugation and filtration processes. 

2. Results and Discussion 

2.1. Impact of Centrifugation Pre-Treatment on UF Efficiency 

The contents of polyphenols, anthocyanins and proteins in the PSP extract were found to be  
1.30 ± 0.01 mg/g, 0.13 ± 0.00 mg/g and 40.0 ± 0.01 mg/g. The efficiencies of UF in PSP extract 
purification, with and without centrifugation pre-treatment, are presented in Figure 1. Results show 
that better PSP juice polyphenol recovery (Rph) (29% ± 1%) was observed after centrifugation at 2500 rpm 
for 6 min, whereas the raw PSP extract provided lower recovery (23% ± 1%). This result demonstrates 
that centrifugation pre-treatment can improve the recovery of polyphenols from a PSP extract. This 
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result could be attributed to the removal of fine particles, which may enhance fouling propensity 
during the filtration process. These fine particles are mainly composed of colloid aggregates, known 
to be highly involved in membrane fouling [16]. Their accumulation on the surface of the membrane 
may result in the build-up of a tight network with higher strength, leading to more polyphenol 
retention. The protein removal results (≈99%) show that centrifugation pre-treatment did not affect 
protein elimination via the UF process, implying that the retention of proteins is most likely 
dominated by membrane pore size, not the fouling layer. Moreover, satisfactory anthocyanin 
recovery was confirmed, proving that centrifugation and ultrafiltration did not affect the permeation 
of anthocyanin. 

 
Figure 1. Polyphenol, protein and anthocyanin recovery after the ultrafiltration of purple sweet potato 
(PSP) extracts, both without centrifugation and with centrifugation at 2500 rpm during 6 min. Error 
bars correspond to standard deviations. Significant differences were marked with asterisk. 

An analysis of permeate quality highlighted the improvement that centrifugation pre-treatment 
had on the recovery of polyphenols. The effect of centrifugation on filtration behavior and membrane 
fouling was also investigated (Figure 2). The filtration behavior of PSP juice, obtained after 
centrifugation at 2500 rpm over 6 min, was clearly better than that of the PSP extracted without 
centrifugation. These results confirm that centrifugation can improve both the recovery of 
polyphenols and filtration behavior. Under the same filtration operating conditions (trans-membrane 
pressure (TMP), rotation speed, membrane pore size) better filtration behavior is generally obtained 
when less fouling occurs. In order to explain the drop in membrane fouling generated by 
centrifugation, the exponential model given by Equation (6) was applied to fit the experimental data 
(solid points in Figure 2a), and the fitting curves are shown as dashed lines. This model had 
successfully been used previously for the investigation of chicory juice filtration using an Amicon 
8200 (Millipore, Bedford, MA, USA) [13]. Similarly, the fouling coefficients for the filtration of PSP 
exact, with and without centrifugation, were calculated. The results presented in Figure 2b show that 
the fouling coefficient of PSP juice decreased after centrifugation, as compared to PSP exact obtained 
without centrifugation. 
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Figure 2. (a) Permeate volume versus filtration time. The points represent the experimental data and the dashed 
lines represent the fitted results after applying Equation (2); and (b) fouling coefficient (k) for the filtration of 
the PSP extract without centrifugation and PSP juice with centrifugation (2500 rpm, 6 min). Error bars 
correspond to standard deviations. 

The results highlight the improved filterability of PSP juice after centrifugation pre-treatment, 
which removes particles in the PSP extract. The particle size distributions of both feeds were then 
analyzed (Figure 3) to verify the above assumptions. Before centrifugation, particle sizes were mainly 
around 1, 435, and 1289 nm, whereas, after centrifugation, the particle sizes were 195 and 485 nm. 
The complex composition of the suspension for PSP juice before centrifugation resulted in more 
serious fouling and declined flux. 

 
Figure 3. Average size distributions for particles in PSP extracts before centrifugation (a) and after 
centrifugation (b). 
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2.2. Optimization of the Centrifugation Conditions 

Despite the positive effect that centrifugation has on the recovery of polyphenols and filtration 
kinetics, which has been supported by the above discussion, literature studies have also shown that 
centrifugation conditions have a significant effect on separation and filtration performance [15,17,18]. 
Detailed investigation and optimization of the centrifugation conditions (centrifugation speed and 
time) were thus carried out. 

In order to obtain a well-fitted model, the linear regression coefficients for the model and the 
test for the lack of fit were determined. The results of the quadratic response surface model for 
polyphenol recovery and the fouling coefficient are presented in Table 1 in the form of an analysis of 
variance (ANOVA). The response surface methodology (RSM) model p-value for the recovery of 
polyphenols was 0.0349, meaning significance at 95% confidence. The p-value for the lack of fit was 
0.741, which indicates that it is not significantly different from the pure error. The same analysis can 
also be applied to the fouling coefficient according to the ANOVA results presented in Table 1. The 
response surface models developed for all the response variables can therefore be stated to be 
adequate. 

Table 1. Analysis of variance (ANOVA) for the response surface methodology (RSM) models of 
polyphenol recovery and the fouling coefficient. 

Source Sum of Squares df Mean Square F-Value p-Value (Prob > F) 

Polyphenol recovery a      
Model 135.09 5 27.02 4.62 0.0349 Significant 

Residual 40.94 7 5.85    
Lack of fit 32.64 3 10.88 5.24 0.0718 Not significant 
Pure error 8.3 4 2.08    

Fouling coefficient b       
Model 262.73 5 52.55 4.85 0.0309 Significant 

Residual 75.77 7 10.82    
Lack of fit 61.83 3 20.61 5.91 0.0594 Not significant 
Pure error 13.94 4 3.49    

Note: df denotes degree of freedom. a R2 = 0.8; b R2 = 0.8. 

Equations (1) and (2) give the equations in terms of coded variables achieved by applying 
multiple regression analyses to the experimental data: R = 28.68 + 2.42	x − 0.19 x + 2.75 x x + 1.81 x + 2.46	x , (1) k = 26.95 − 1.98	x + 0.5 x + 1.42 x x + 2.72 x + 5.25 x , (2) 

where x1 and x2 represent the coded variables of TMP and shear rate, respectively. 
The models in terms of actual variables obtained from Equations (1) and (2) and the actual values 

are presented in Equations (3) and (4): R = 42.38 − 5.16	10 X − 3.04 X + 4.58 10 X X + 8.04 10 X + 0.15X , (3) k = 52.43 − 8.79	10 X − 4.41 X + 2.37 10 X X + 1.21 10 X + 0.33	X . (4) 

The quadratic response models given by Equations (3) and (4) can be used to predict the 
polyphenol recovery and fouling coefficients within the limits of the experimental domain. 

The combined effect of the centrifugation speed and time on polyphenol recovery is shown in 
Figure 4a,b. As expected, increasing the centrifugation speed led to the highest polyphenol recovery 
values and to less fouling, while the influence of centrifugation time was more complex. In fact, 
polyphenol recovery decreased with increasing rotation time, from 2 to 6 min, and then increased 
when further centrifugation was applied. Centrifugation led to accelerated sedimentation as well as 
particle flocculation. Flocculated particles did not successfully sediment at short centrifugation times 
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and therefore act as a foulant in the upcoming filtration. Longer centrifugation times resulted in more 
foulant sedimentation and better polyphenol retention. 

Polyphenol recovery (Rph) and fouling coefficient (k) were used as responses to the optimization 
of centrifugation conditions. Considering that the conditions to achieve the highest Rph and the lowest 
k values were different, a compromise using a desirability function approach was made [19,20]. A 
detailed description of this method has been provided previously [21]. Briefly, an overall desirability 
function, which is a multiplicative model of individual desirability, was used. The optimal 
conditions, calculated from the models, correspond to a centrifugation speed of 4000 rpm (1195× g) 
and centrifugation duration of 7.8 min. The corresponding Rph and k values were 34.5% and 29.5 m−1, 
respectively. The experiment was run under the optimal conditions and in triplicate. Results were 
not significantly different from the predicted ones, confirming the adequacy of the predicted models. 

 
Figure 4. Surface response of polyphenol recovery (a) and fouling coefficient (b) as a function of 
centrifugation speed and time. 

2.3. Anthocyanin Identification and HPLC-DAD-ESI-MS2 Profiles 

In order to identify the main anthocyanins in the PSP extract and investigate the variation of 
anthocyanin content in the PSP extract before and after the centrifugation and filtration processes, 
HPLC-DAD-ESI-MS2 analyses were used to determine the anthocyanin profiles for PSP raw extract 
(S1), PSP juice after centrifugation at 4000 rpm for 7.8 min (S2) and the permeate of filtration of S2 
with 30 kDa membrane under 0.3 MPa and a rotation speed of 600 rpm (S3). The HPLC-DAD-ESI-MS2 
profiles are presented in Figure 5a–c. From the results obtained after HPLC-DAD-ESI-MS2 analysis, 
three main anthocyanin molecules were identified in the PSP extracts: (i) peonidin-3-
feruloylsophoroside-5-glucoside (peak 1); (ii) peonidin-3-caffeoyl-p-hydroxybenzoylsophoroside-5-
glucoside (peak 2) and (iii) peonidin-3-caffeoyl-feruloyl sophoroside-5-glucoside (peak 3), as 
previously reported [22–26] (Table 2). It should also be noted that the raw extract and  
post-centrifugation sample HPLC peak intensities (anthocyanins present in Figure 5) did not show 
variation, meaning that centrifugation is an efficient method for protein removal without 
anthocyanin loss. Moreover, the normalized peak area remained at ≈90% after filtration with 30 kDa 
membrane, showing slight anthocyanin loss. The removal of protein and other impurities by 
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centrifugation might lead to a lesser fouling layer, which not only retains high molecular weight 
molecules, but also anthocyanins during the filtration process. 

Table 2. Anthocyanin identification of purple sweet potato (PSP) extracts and samples obtained via 
the centrifugation and filtration processes. 

Peak 
m/z 

Anthocyanins 
Normalized Peak Area

[M]+ Fragment Ions S1 S2 S3

1 963 801;463;301 
Peonidin 3-feruloyl sophoroside-5-

glucoside 
1 1 0.88 

2 1069 907;463;301 
Peonidin 3-caffeoyl-p-hydroxybenzoyl 

sophoroside-5-glucoside 
1 1 0.96 

3 1125 963;463;301 
Peonidin 3-caffeoyl-feruloyl sophoroside-5-

glucoside 
1 1 0.86 

S1: Raw extract; S2: Sample obtained after centrifugation at 2500 rpm and 6 min; S3: Sample obtained 
from filtration of sample 2 with 30 kDa membrane under 0.3 MPa and 600 rpm. 

 
Figure 5. HPLC profiles of anthocyanins in (a) purple sweet potato (PSP) raw extract; (b) supernatant 
via centrifugation of raw extract at 4000 rpm for 7.8 min; and (c) permeate of supernatant via 
centrifugation and ultrafiltration (UF) (600 rpm, 30 kDa membrane, trans-membrane pressure (TMP) 
= 0.3 MPa). 

3. Materials and Methods 

3.1. Samples 

Purple sweet potatoes (PSP) were purchased from a local market in Wuhan, China. Fresh PSP 
samples (100 g each) were milled and accumulated using a Joyoung cooker (JYL-D022, Joyoung 
Corporation, Jinan, China) at a rotating speed of 20,000 rpm and a power of 250 W for extraction 
purposes. 
  



Molecules 2016, 21, 1584 8 of 13 

 

3.2. PSP Extract Preparation 

Ultrasonic circulating extraction equipment (Figure 6) (TGCXZ-10B, frequency 59 kHz, up to 
1000 W power, Beijing Hong Xiang Long Co., Ltd., Beijing, China) equipped with an ultrasound  
horn-type probe of 20 mm diameter, was used for pilot scale extraction (500 g milled PSP sample). 
Twenty liters of deionized water were added as the extraction solvent. In this study, the ultrasonic 
treatment power was set at 840 W and the frequency was 59 kHz. The extraction temperature was fixed 
at 60 °C for 120 min. In the extraction test, a hydrochloric acid solution with a concentration of 4% 
(v/v) was added to give a pH ≈ 3 to the solvent, which is in the pH range for maximum anthocyanin 
color stability and thus prevents the degradation of these compounds [27]. The extract was pre-filtered 
on a mesh to remove the pulp, and then pooled and stored at −20 °C until needed for analysis. 

 
Figure 6. Schematic representation of ultrasonic circulating extraction equipment and ultrafiltration 
experimental set-up. 

3.3. Centrifugation of PSP Extract 

Centrifugation of PSP extract was carried out in an Optima XE-100 ultracentrifuge (Beckman 
Coulter, Brea, CA, USA), in order to remove impurities, such as proteins and hydrocolloids that were 
present in the PSP extract. The centrifugation speed varied from 378 rpm (11× g) to 4621 rpm (1595× g) 
and the centrifugation duration varied from 0 to 6 min. 

3.4. Filtration of PSP Juice 

Polyphenol recovery and protein separation was performed via dead-end ultrafiltration (UF) 
coupled with rotation (Figure 6), in a stirred Amicon 8010 cell (effective membrane area of 4.1 × 10−4 m2 
and maximal volume of 10 mL) (Millipore, Bedford, MA, USA). For each experiment, 10 mL of PSP 
juice was used and 6 mL of filtrate was obtained. Polyethersulfone UF membranes (Microdyn-Nadir 
GmbH, Wiesbaden, Germany) with molecular weight cut-offs (MWCO) of 30 kDa were used for all 
the filtration tests. New membranes were used for each set of experiments. The stirring was done 
using a magnetic stirrer fixed over the membrane surface and rotating at fixed rate (ω = 600 rpm). 
Ultrafiltration experiments were performed at room temperature by applying a trans-membrane 
pressure (TMP) of 0.3MPa. The volume of filtrate obtained during filtration was collected and recorded. 

3.5. Membrane Fouling Analysis with Exponential Model 

In order to quantify membrane fouling, an exponential model was used for the analysis of 
filtration performance and fouling coefficient calculation. The exponential model proposed 
previously [28], and presented in Equation (5) assumes that the total resistance (Rtot) to filtrate flow 
is empirically related to the filtrated volume: 
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Rtot = Rme × e
kV
A , (5) 

where Rme is the membrane resistance (m−1) and k is the exponential fouling coefficient (m−1), which 
depends on many factors, including feed composition, operation conditions and membrane 
properties. V (m3) is the filtrate volume and A is the effective membrane area (m2). 

Equation (6) can be obtained after rearrangement by substituting Equation (5) into the general 
equation of filtration, as previously reported [14]: 

V = A
k

ln(k × Ptm

μ × Rme
× t + 1), (6) 

where t is filtration time (s), μ is the dynamic viscosity (Pa·s) of the feed juice and Ptm is trans-
membrane pressure (Pa). 

By fitting the experimental data V(t) to this equation, the value of k, which can be used as a 
response for the centrifugation condition optimization, was determined. 

3.6. Compound Analyses 

3.6.1. Polyphenol Analysis 

HPLC-DAD-ESI-MS2 Anthocyanin Analysis 

The anthocyanin profiles of the samples obtained from the PSP extract, centrifugation and 
filtration permeate were studied using HPLC-DAD-ESI-MS2, as recently reported [22]. An Accela 
series HPLC instrument (Thermo Fisher, San Jose, CA, USA) coupled with an Accela LTQ XL mass 
spectrometer (Thermo Fisher, San Jose, CA, USA) were used in this study. The HPLC instrument 
consisted of two Accela 600 pumps, Accela auto-sampler and Accela PDA detector. Chromatographic 
separation was carried out using a C18 reversed-phase column (250 mm × 4.6 mm, 5 μm, Merck, 
Billerica, MA, USA). The HPLC conditions were set as follows: column temperature was set at 25 °C, 
UV-Vis spectra were recorded in the wavelength range 220–780 nm, chromatograms were acquired 
on channel A (541 nm) and the injection volume was set at 10 μL. Prior to injection, all samples were 
filtered through a 0.2 μm cellulose acetate filter. The mobile phase was prepared with mixtures of 
formic acid/water (solvent A) and formic acid/acetonitrile/water (solvent B) at the ratios of 10/90 
(volume of formic acid/volume of water), and 10/30/60 (volume of formic acid/volume of 
acetonitrile/volume of water), respectively. The elution gradient was as follows: 0 min: 20% (B),  
70 min: 85% (B), 72 min: 100% (B), 75 min: 100% (B), 78 min: 20% (B), and 80 min: 20% (B) using a 
flow rate of 1 mL/min. MS conditions were as follows: sheath gas (N2) flow rate: 20 mL/min, spray voltage: 
4.5 kV, capillary temperature: 270 °C, capillary voltage: 26 V and collision energy: 25–35V. Data 
acquisition was performed using X-Calibur software (version 2.1, Thermo fisher Scientific Inc., 
Waltham, MA, USA), and analyzed in positive spray ionization mode. A full scan MS-MS (MS2) mode 
of the most intense ions, determined using relative collision energy of 20 V, was applied. 

Anthocyanin Analysis 

Anthocyanin content (Can) was determined according to a pH-differential method based on the 
color change of anthocyanin with pH, as previously described [4]. The absorbance for each sample 
was measured at pH 1.0 and pH 4.5. The observed absorbance difference was proportional to the 
anthocyanin content, Can (mg·L−1) and was calculated according to Equations (7) and (8): 

Can mg · L 1 = ABS
ε×L

× MW × D × 103, (7) ABS = (A − A )pH . − (A − A )pH . , (8) 

where Can is the total anthocyanin content, expressed as cyanidin-3-glucoside equivalent (CGE) (mg 
CGE/L), A541 and A700 are the absorbance values at 541 and 700 nm, respectively, MW is the molecular 
weight of cyanidin-3-glucoside (449.2 g·mol−1), D is the dilution factor, ε is the molar absorptivity of 
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cyanidin-3-glucoside (26,900 L·mol−1·cm−1), L is the cell path length (1 cm in the present study) and 
103 is the conversion factor from g to mg.  

Anthocyanin recovery (Ran) was determined as expressed in Equation (9): R (%) = C ,C , , (9) 

where Can,feed and Can,permeate represent the concentrations of anthocyanin in the feed and the permeate 
solutions, respectively. 

Total Phenolic Compounds 

Polyphenol content (Cph) was determined using a Folin–Ciocalteu assay [29]. Standard solutions 
of gallic acid at different concentrations (0–0.1 mg·mL−1) were used for the calibration curve. One 
milliliter of sample, 1 mL Folin-Ciocalteu reagent and 1.5 mL 20% (w/v) Na2CO3 were added 
successively to a glass tube. The volume was then made up to 10 mL using distilled water. The 
solution was placed in the dark for 2 h at room temperature and then the absorbance was measured 
at 760 nm. Cph was expressed as gallic acid equivalents (GAE) (mg GAE/L). Polyphenol recovery (Rph) 
was determined as expressed in Equation (10): R (%) = C ,C , , (10) 

where Cph,feed and Cph,permeate (mg GAE/L) represent the concentrations of polyphenols in the feed and 
the permeate solutions, respectively. 

3.6.2. Total Protein Content 

The protein concentrations (TC) in the extract and the permeate were determined as previously 
reported [30]. In brief, 1 mL of the sample was mixed with 5 mL of freshly prepared Coomassie 
Brilliant Blue G-250 solution in a glass tube. The volume was then adjusted to 10 mL. After 5 min 
incubation at room temperature, the absorbance was measured at 595 nm. Bovine Serum Albumin 
(BSA) was used for the calibration curve.  

RCpr, representing the coefficients of protein rejection, was estimated using Equation (11): RC = C ,C , , (11) 

where Cpr,permeate and Cpr,feed are the protein concentrations in the filtrate and the feed, respectively. 

3.7. Particle Size Distribution 

The volume-based function of the particle size distribution SDF (%) of the PSP extract was 
measured using a Malvern Zen 3600 Zeta sizer instrument (Malvern Instrument, Malvern, UK). SDF 
was calculated using Zeta sizer software (Ver.7.11, Malvern Instruments, Malvern, UK). 

3.8. Centrifugation Study by Experimental Design 

Response surface methodology (RSM) using a Central Composite Design (CCD) was used to 
investigate the impact of two independent variables (centrifugation speed (X1), and centrifugation 
time (X2)), on polyphenol recovery and filterability. 

Regression analysis was performed according to experimental data. RSM design and statistical 
analyses were performed using Design-Expert Version 7.0.0 software (Stat Ease Inc., Minneapolis, 
MN, USA). Coded and actual levels for the process of independent variables are shown in Table 3. 
The correspondence between coded and actual values can be obtained using the formula given in 
Equation (12): x = X − XΔX , (12) 
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where xi is the coded value, Xi is the corresponding actual value, X0 
i  is the actual value in the center 

of the domain and ∆Xi is the variation amplitude around the mean value. 

Table 3. Independent variable values of the centrifugation process and their corresponding levels. 

Independent 
Variables 

Symbol Levels
Actual Coded −1 0 1 

Speed (rpm) X1 x1 
1000 2500 4000 

(75× g) (467× g) (1195× g) 
Time (min) X2 x2 2 6 10 

Experimental data for polyphenol recovery and filterability were fitted to a quadratic model 
given by Equation (13): y = b + b x + b x + b x x + b x + b x , (13) 

where x1 and x2 correspond to the coded independent variables, namely, centrifugation speed and 
centrifugation time, respectively. The bn values represent the corresponding regression coefficients. 
Five replicates at the center of the domain were used to estimate the pure error. The experiments 
were randomized in order to maximize the effects of unexplained variability in the observed 
responses. 

The responses of each independent variable are listed in Table 4. The lack of fit was calculated 
in order to ensure satisfactory model optimization. The experimental Fisher value (F-value) is 
generally used to evaluate the significance of the model. Significance was tested at 95% confidence 
level. 

Table 4. RSM design and its experimental values. 

Run 

Independent Variables Response Variables 
Centrifugation 

Speed (rpm) 
X1(x1) 

Centrifugation 
Time (min) X2(x2) 

Polyphenol 
Recovery (%) 

Fouling 
Coefficient (m−1) 

1 2500 (0) 6 (0) 29 25.78 
2 2500 (0) 6 (0) 31 25.67 
3 2500 (0) 6 (0) 27.3 25.39 
4 1000 (−1) 2 (−1) 31.3 39.48 
5 2500 (−1) 0.3 (−1.414) 37 38.05 
6 4621 (+1.414) 6 (0) 38.1 33.67 
7 379 (−1.414) 6 (0) 29.8 31.71 
8 2500 (0) 12 (+1.414) 33.5 37.45 
9 4000 (+1) 2 (−1) 29.6 27.34 

10 1000 (−1) 10 (+1) 27.5 39.07 
11 2500 (0) 6 (0) 27.8 29.45 
12 2500 (0) 6 (0) 28.3 28.45 
13 4000 (+1) 10 (+1) 36.8 32.62 

4. Conclusions 

The extraction of polyphenols from purple sweet potatoes has been carried out using ultrasonic 
circulating extraction equipment and water as a solvent. Ultrafiltration gave a polyphenol recovery 
of 23% and an anthocyanin recovery of 99%. Centrifugation pre-treatment of the PSP extract at  
2500 rpm over 6 min increased the recovery of polyphenols to 29%. The positive effect of 
centrifugation on the filtration kinetics and membrane fouling has been demonstrated. By taking the 
polyphenol recovery and the fouling coefficient as responses, the centrifugation conditions were 
optimized by applying a response surface methodology using central composite design. Under the 
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optimal conditions of 4000 rpm (1195× g) centrifugation speed and 7.8 min duration, the recovery of 
polyphenols and the fouling coefficient were of 34.5% and 29.5 m−1, respectively. Protein removal by 
centrifugation meant that the main anthocyanin content remained at ≈90% after filtration. This study 
demonstrates the promising potential of the ultrasound-assisted, combined green extraction, 
centrifugation and ultrafiltration process for the valorization of purple sweet potatoes. 
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