Supplementary Materials: Towards Water Soluble Mitochondria-Targeting Theranostic Osmium(II) Triazole-Based Complexes

Salem A. E. Omar, Paul A. Scattergood, Luke K. McKenzie, Helen E. Bryant, Julia A. Weinstein and Paul I. P. Elliott

¹ H-NMR spectrum of [Os(btzpy) ₂][PF ₆] ₂ (1)	S2
¹³ C-NMR spectrum of [Os(btzpy) ₂][PF ₆] ₂ (1)	S 3
ESI mass spectrum of [Os(btzpy)2][PF6]2 (1)	S 3
¹ H-NMR spectrum of [Os(btzpy) ₂][Cl] ₂ (1 ^{Cl})	S4
¹³ C-NMR spectrum of [Os(btzpy) ₂][Cl] ₂ (1 ^{Cl})	S4
ESI mass spectrum of [Os(btzpy)2][Cl]2 (1 ^{Cl})	S 5
ground and triplet state geometries for complex [Os(btzpy)2] ²⁺	S5-7
TDDFT spectrum for [Os(btzpy)2] ²⁺	S 7
Summary of TDDFT vertical excitation data for [Os(btzpy)2] ²⁺	S 8
	¹ H-NMR spectrum of [Os(btzpy)2][PF6]2 (1) ¹³ C-NMR spectrum of [Os(btzpy)2][PF6]2 (1) ESI mass spectrum of [Os(btzpy)2][PF6]2 (1) ¹ H-NMR spectrum of [Os(btzpy)2][Cl]2 (1 ^{Cl}) ¹³ C-NMR spectrum of [Os(btzpy)2][Cl]2 (1 ^{Cl}) ESI mass spectrum of [Os(btzpy)2][Cl]2 (1 ^{Cl}) ground and triplet state geometries for complex [Os(btzpy)2] ²⁺ TDDFT spectrum for [Os(btzpy)2] ²⁺ Summary of TDDFT vertical excitation data for [Os(btzpy)2] ²⁺

Figure S1. ¹H-NMR (400 MHz, *d*₃-MeCN) spectrum of 1.

Figure S2. ¹³C-NMR (101 MHz, *d*₃-MeCN) spectrum of 1.

Figure S3. High resolution ESI mass spectrum for **1**. The expansion shows detail of the $[C_{42}H_{30}N_{14}Os]^{2+}$ mass fragment. The cationic ion pair { $[C_{42}H_{30}N_{14}Os][PF_6]$ } is also observed at m/z = 1067.2005.

Figure S4.¹H-NMR (400 MHz, *d*₆-DMSO) spectrum of 1^{Cl}.

Figure S5. ¹³C-NMR (101 MHz, d₆-DMSO) spectrum of 1^{Cl}.

-

Figure S6. High resolution ESI mass spectrum for 1^{Cl} . The expansion shows detail of the $[C_{42}H_{30}N_{14}Os]^{2+}$ mass fragment.

XYZ coordinates for optimised ground state geometry of $[Os(btzpy)_2]^{2+}$ 59 geometry

	Х	Y	Z
Os	0.00037831	-0.00001671	-0.00008369
Ν	1.48264883	-0.12295165	1.46999247
Ν	2.29736703	0.72406015	2.03942651
Ν	3.01804563	0.01669161	2.91790722
С	2.66892556	-1.2899966	2.91845714
С	1.66756779	-1.39534131	1.97744192
С	0.83097035	-2.46139716	1.44131815
Ν	-0.02359735	-1.99876293	0.49370528
С	-0.89294883	-2.8312213	-0.13359452
С	-1.71035973	-2.12010421	-1.1087362
С	-2.71344175	-2.44521485	-1.99516912
Ν	-3.03515725	-1.28169018	-2.60671588
Ν	-2.29531113	-0.26179738	-2.15431557
Ν	-1.49580768	-0.76177555	-1.25178148
С	0.83438869	-3.80830032	1.79238141
С	-0.05396724	-4.67170946	1.15434565
С	-0.92723986	-4.18602293	0.1828913
С	4.02704546	0.69206609	3.73684752
С	-4.04369914	-1.04996694	-3.64359979
Ν	1.40189648	0.06726901	-1.55078507
Ν	2.1491102	-0.81016009	-2.16499462
Ν	2.8448869	-0.13045263	-3.08442634
С	2.54785027	1.18891361	-3.06603382
С	1.60696958	1.33210683	-2.06924251
С	0.84342458	2.4290595	-1.48830074
Ν	0.02594091	1.99869016	-0.49392353
С	-0.77423249	2.86336333	0.18009887
С	-1.56260154	2.18323509	1.20020895
С	-2.50222493	2.54560248	2.1401122
Ν	-2.83440401	1.39456286	2.76942337
Ν	-2.1599621	0.34759072	2.27830621
Ν	-1.39285411	0.81750203	1.33253247

	Х	Y	Z
С	0.87924764	3.77524191	-1.84032893
С	0.06191062	4.67156629	-1.1545342
С	-0.77384617	4.2188361	-0.13534276
С	3.78516365	-0.84230102	-3.95277932
С	-3.78729148	1.20164495	3.86520168
Н	3.14114267	-2.01380642	3.56208934
Н	-3.20468181	-3.37537268	-2.23020295
Η	1.51582873	-4.17892157	2.54848559
Η	-0.06585776	-5.72345311	1.41424004
Η	-1.6205536	-4.85138372	-0.31712287
Η	4.5550336	-0.05648754	4.32314467
Η	3.54009097	1.40462658	4.40112195
Η	-4.02379283	0.00872691	-3.88756102
Η	-5.02918396	-1.32372633	-3.26805246
Η	3.01028169	1.89454266	-3.73640209
Н	-2.94372618	3.49366728	2.40087242
Η	1.53121642	4.12016332	-2.63366341
Η	0.07615963	5.72328718	-1.41440255
Η	-1.41193161	4.90987606	0.40197644
Н	3.24543538	-1.58145116	-4.5426841
Η	4.26088583	-0.12076665	-4.61299764
Н	-3.8289726	0.13689908	4.07811661
Η	-4.77218191	1.5565091	3.56360409
Η	4.72818758	1.21165081	3.08625597
Н	-3.80474771	-1.63746502	-4.52959181
Η	4.53930127	-1.33513133	-3.34143677
Η	-3.44972652	1.74196887	4.7492682

XYZ coordinates for the optimised lowest lying triplet excited state of $[Os(btzpy)_2]^{2+}$ 59 geometry

1	5	0 1	-
	Х	Y	Z
Os	0.01845474	0.05781669	0.00311501
Ν	1.487627	-0.13390125	1.47527065
Ν	2.30251278	0.7193301	2.03057555
Ν	3.02865984	0.01763692	2.90468257
С	2.68040783	-1.28961336	2.91656835
С	1.67215299	-1.40155498	1.983473
С	0.83114242	-2.46335998	1.446889
Ν	-0.02039133	-1.99850151	0.50270458
С	-0.89027523	-2.82323231	-0.12465495
С	-1.70627285	-2.11167488	-1.10055267
С	-2.71220975	-2.42962844	-1.98703209
Ν	-3.0263115	-1.26188092	-2.59537426
Ν	-2.28126894	-0.24978654	-2.14299045
Ν	-1.4878702	-0.75955324	-1.24429782
С	0.83193939	-3.81007075	1.79844818
С	-0.05984851	-4.66867977	1.15920366
С	-0.93108701	-4.17901941	0.18856806
С	4.02308557	0.70537757	3.73505074
С	-4.02978959	-1.01971962	-3.63779239
Ν	1.41894882	0.08266841	-1.56374972
Ν	2.18263713	-0.81356737	-2.14639259
Ν	2.86850636	-0.15426764	-3.07729122
С	2.55698427	1.16405887	-3.10825899
С	1.60650924	1.33812164	-2.1177948
С	0.83631262	2.42666423	-1.56528026
Ν	-0.0589103	1.96641059	-0.57158615

	Х	Y	Ζ
С	-0.84669776	2.88026464	0.16755446
С	-1.60737091	2.20561649	1.19160787
С	-2.55424763	2.54094395	2.14287712
Ν	-2.84150185	1.38214696	2.7854459
Ν	-2.14628318	0.35372511	2.30527282
Ν	-1.40038345	0.84358919	1.34240081
С	0.88743925	3.763787	-1.86305922
С	0.05949259	4.67412968	-1.1650922
С	-0.79230857	4.2170422	-0.1332031
С	3.79949331	-0.88186826	-3.94247632
С	-3.78255495	1.17628266	3.88845911
Η	3.1576729	-2.0095593	3.56091616
Η	-3.20933686	-3.35632013	-2.2233939
Η	1.51252787	-4.18319503	2.55386396
Η	-0.07568169	-5.72081876	1.41771876
Η	-1.62678045	-4.84051918	-0.31293626
Η	4.73097551	-0.02972337	4.11150259
Η	3.52596791	1.20460159	4.56628225
Η	-4.03615131	0.04747465	-3.84203218
Η	-5.00991856	-1.33496388	-3.28222831
Η	3.01483209	1.84808	-3.80306851
Η	-3.02719024	3.47405889	2.40056053
Η	1.56562274	4.12857224	-2.62598337
Η	0.09807315	5.72877853	-1.40382789
Η	-1.39408277	4.92708645	0.42251583
Η	3.24273948	-1.48723282	-4.65707507
Η	4.41676614	-0.16036098	-4.4728357
Η	-3.77765799	0.11724956	4.13150312
Η	-4.78238445	1.48047899	3.58042375
Η	4.5417356	1.43634042	3.11924542
Η	-3.76241636	-1.56836439	-4.54030406
Н	4.42860114	-1.52107094	-3.3266109
Н	-3.46763749	1.75644661	4.75544338

Figure S7. Simulated UV-visible absorption spectrum of $[Os(btzpy)_2]^{2+}$: singlet vertical excitations from TDDFT calculations (green trace) with experimental spectrum overlaid (blue trace). Red dots indicate positions of calculated spin-forbidden direct triplet excitations.

State	λ/nm (Energy/eV)	Oscillator Strength (f)	Composition	Character	
S_1	452 (2.74)	0.004	HOMO \rightarrow LUMO (96%)	¹ MLCT	
			HOMO \rightarrow LUMO+2 (34%)		
S7	374 (3.31)	0.227	HOMO-2 \rightarrow LUMO+1 (13%)	¹ MLCT	
			HOMO-1 \rightarrow LUMO (13%)		
S13	319 (3.36)	0.065	HOMO \rightarrow LUMO+4 (88%)	¹ MLCT	
S_{14}	313 (3.89)	0.088	HOMO \rightarrow LUMO+5 (88%)	¹ MLCT	
C	274 (4.53) 0.251	074 (4 52) 0.051	HOMO-4 \rightarrow LUMO (63%)		
327		HOMO-4 \rightarrow LUMO+1 (15%)	LC		
T 1	512 (2.42)	E12 (2 42)	E12 (2 42)	HOMO-2 \rightarrow LUMO+1 (44%)	
		512 (2.42) -	HOMO-1 \rightarrow LUMO (44%)	SMLCI	
			HOMO-2 \rightarrow LUMO+1 (25%)		
T2	499 (2.48)	499 (2.48) -	HOMO-1 \rightarrow LUMO (25%)	змі ст	
			HOMO-2 \rightarrow LUMO (21%)	SMLCI	
			HOMO-1 \rightarrow LUMO+1 (21%)		
т.	480 (2.58)	490 (2 59)	HOMO \rightarrow LUMO (76%)	3MI CT	
13		480 (2.58) -	HOMO \rightarrow LUMO+1 (20%)	"MILCI	

Table S1. Summarised data for major singlet excitations and the three lowest energy triplet excitations from TDDFT calculations.