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Abstract: The reactions of isolable dialkylsilylene 1 with aromatic acyl chlorides afforded aroylsilanes
3a–3c exclusively. Aroylsilanes 3a–3c were characterized by 1H-, 13C-, and 29Si-NMR spectroscopy,
high-resolution mass spectrometry (HRMS), and single-crystal molecular structure analysis.
The reaction mechanisms are discussed in comparison with related reaction of 1 with chloroalkanes
and chlorosilanes.
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1. Introduction

Acylsilanes or α-silyl ketones have been known as a unique class of silicon compounds [1–9],
showing remarkably red–red shifted n→π* transition bands [1,2] and being useful as distinct reagents
in organic synthesis [4–6,10–19]. Most of all, acyltris(trimethylsilyl)silanes are of particular importance,
which were utilized for the synthesis of the first stable silicon–carbon doubly bonded compounds
(silenes) [20,21]. However, the synthesis of acylsilanes is still limited because of the relatively facile
silicon–carbon bond cleavage under the reaction conditions. The direct reaction of a silylmetal with
an acyl halide afforded the corresponding acylsilanes, but the yields were usually low due to the
undesired secondary reactions [22,23]. The oxidation of α-silyl alcohols using ordinary oxidizing
reagents often leads to the corresponding aldehydes [5]. The first successful synthesis of an aroylsilane
was achieved by using an elaborate two-step route in good yields (Equation (1)) [22], while it is not
applicable for the synthesis of alkanoylsilanes.
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A variety of acylsilanes have been synthesized up to date using different methods, the reactions
of protected aldehydes, esters, and other carboxylic acid derivatives, etc. with various silicon
reagents [1–9].

During the course of our studies of the reactions of an isolable dialkylsilylene with various
functional groups [26–30], we have found that the silylene inserts exclusively into the C–Cl bond
of aroyl chlorides providing rather exceptional aroyl(chloro)silanes that cannot be obtained via
conventional methods. Very recently, an acyl(halo)silane was utilized to synthesize an isolable
silenyllithium (Equation (3)) [31].
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The 1:1 reactions of dialkylsilylene 1 [32–37] with benzoyl and 4-substituted benzoyl
chlorides 2a–2c at −30 ◦C afforded the corresponding benzoyl(chloro)silanes 3a–3c in high
yields, indicating that the C(carbonyl)–Cl bond is much more reactive than the carbonyl group
(Equation (4)) [38]. No significant difference was observed in the reactivity among benzoyl chlorides
2a–2c. Even when an excess amount of 1 was used to a benzoyl chloride (2:1 mol ratio), the
corresponding benzoyl(chloro)silane was obtained solely as the product. The expected reactions
of 3 with silylene 1 would be prohibited due to the steric effects of bulky silylene moiety of 3. The
reactions of 1 with alkanoyl chlorides like acetyl chloride and butanoyl chloride afforded complex
reaction mixtures. Because simple alkanoyl chlorides are more reactive than aroyl chlorides, the
products of the reactions between 1 and the alkanoyl chlorides may react further with 1 to give the
unidentified products.
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the unique electronic feature of acylsilanes. The 29Si-NMR resonances due to the ring silicon of 3a–3c
appear at the same chemical shifts of 27.8 ppm.

2.3. Molecular Structure Analysis

Molecular structures of compounds 3a–3c were determined by X-ray single-crystal diffraction
analysis. Yellow single crystals of 3a–3c suitable for X-ray crystallography were obtained by slowly
evaporating the solvent from their hexane solutions. The ORTEP drawing of compound 3a is
depicted in Figure 1. Compound 3a was crystallized in space group P-1 with two crystallographically
independent molecules in an asymmetric unit. The structural parameters of the two molecules in
a unit cell are similar but different in the torsion angles of C(1)Si(1)C(17)O(1) and its equivalent,
C(24)Si(6)C(40)O(2), (129.03◦ and 5.26◦, respectively). The sum of bond angles around C(17) and
C(40) are 360◦, being in accord with the sp2 character of the carbonyl carbon atom. The distances of
Si(1)–C(17) (1.935(3) Å) and Si(6)–C(40) bonds (1.929(2) Å), are significantly larger than the normal
Si–C bond length (1.87–1.89 Å). A similarly long distance of the Si–C(carbonyl) bond (1.926 Å) has
been observed in the molecular structure of acetyltriphenylsilane by Trotter et al. [41]. The origin
may be ascribed to the effective σ(SiC)–n(O) conjugation as proposed by Ramsey, Brook, Bassindale,
and Bock [42]. In other words, it is suggested that resonance form B contributed significantly to the
bonding in acylsilanes.
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96.14(8), O(2)–C(40)–C(41) 119.4(2), O(2)–C(40)–Si(6) 114.64(18), C(41)–C(40)–Si(6) 125.89(17).

Similarly, compounds 3b and 3c were crystallized in space group P21/n and P-1 and their
molecular structures are shown in Figures 2 and 3. A single crystal of 3b has two crystallographically
independent molecules in the asymmetric unit, while that of 3c has one independent molecule. Their
structural parameters are similar to those of 3a.
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of the mechanisms. The reactions may be understood uniformly starting from initially formed Lewis
acid-base complexes as shown in Scheme 1. From the complex, ionic cleavage of the C–Cl bond
followed by recombination would yield an alkylchlorosilane such as 4 [43]. The ionic mechanism
is also applicable for the reaction of 1 with cyclopropylmethyl chloride, in which the intermediary
cyclopropylmethyl cation or its equivalent 3-butenyl cation reacts with an extra silylene 1 forming
3-butenylsilyl cation and then finally 6; the 3-butenylsilyl cation would be stabilized by the coordination
of the terminal π bond. Chloroalkanes with less electron donating substituents like CHCl3 and CCl4
destabilize the carbocation intermediates and instead yield 5 after the homolysis of the C–Cl bond [54].
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The insertion reactions of silylene 1 into the Si–Cl bonds of chlorosilanes have been found to occur
cleanly [49,50]; hence, the concerted mechanism via three-membered cyclic transition states has been
proposed. The mechanism has been supported by the detailed DFT calculations [55–57].
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3. Materials and Methods

3.1. General Procedures

Manipulation of air-sensitive compounds was performed under a controlled dry argon
atmosphere using standard Schlenk techniques. Tetrahydrofuran (THF), hexane, and toluene were
distilled from sodium–benzophenone. All the other reagents were obtained from commercial suppliers
and used without further purification. Dialkylsilylene 1 was prepared according to literature
procedures [32]. 1H- (400 MHz), 13C- (100.6 MHz), and 29Si- (79.5 MHz) NMR spectra were recorded
on a Bruker AV-400 spectrometer at room temperature (Bruker, Rheinstetten, Germany), using CDCl3
as the solvent. Melting points are uncorrected. High-resolution mass spectra (HRMS) were recorded
on a Bruker Daltonics Apex-III spectrometer (Bruker, Rheinstetten, Germany).

3.2. Synthesis

3.2.1. Synthesis of 3a

A hexane solution of benzoyl chloride (0.45 g, 3.2 mmol) was added to a solution of
dialkylsilylene 1 (1.12 g, 3.0 mmol) in hexane at −30 ◦C. The reaction mixture was allowed to stir
for 2 h at 0 ◦C. The color of the solution changed from red to yellow. Then, the solvent was removed
under vacuum. The resulting residue was purified by flash chromatography (Silica gel, 200–300 mesh;
ethyl acetate/hexane, 1:300) to yield 3a as a yellow solid. Yield: 0.98 g (64%). m.p. 152–154 ◦C;
1H-NMR (400 MHz, CDCl3): δ 8.07 (d, J = 7.2 Hz, 2H, o-Ar), 7.56 (t, J = 7.2 Hz, 1H, p-Ar), 7.49
(t, J = 7.2 Hz, 2H, m-Ar), 2.14 (s, 4H, CH2), 0.30 (s, 18H, SiMe3), 0.16 (s, 18H, SiMe3). 13C-NMR
(101 MHz, CDCl3): δ 225.28 (C=O),138.90 (CAr-C(O)),133.22 (p-Ar), 129.42 (o-Ar), 128.30 (m-Ar), 33.25
(CH2), 12.50 (C(SiMe3)2), 4.27 (SiMe3), 3.25 (SiMe3); 29Si-NMR (80 MHz, CDCl3): δ 27.84 (SiCl), 5.53
(SiMe3), 2.85 (SiMe3); HRMS(ESI) calculated for C23H45ClOSi5: 513.2079, found 513.2078.

3.2.2. Synthesis of 3b

A hexane solution of p-methyl benzoyl chloride (0.49 g, 3.2 mmol) was added to a solution of
dialkylsilylene 1 (1.12 g, 3.0 mmol) in hexane at −30 ◦C. The reaction mixture was allowed to stir
for 2 h at 0 ◦C. The color of the solution changed from red to yellow. Then, the solvent was removed
under vacuum. The resulting residue was purified by flash chromatography (Silica gel, 200–300 mesh;
ethyl acetate/hexane, 1:300) to yield 3b as a yellow solid. Yield: 0.97 g (61%). m.p. 174–177 ◦C;
1H-NMR (400 MHz, CDCl3): δ 7.96 (d, J = 7.2 Hz, 2H, o-Ar), 7.29 (d, J = 7.2 Hz, 2H, m-Ar), 2.43 (s, 3H,
Ar-Me), 2.13 (s, 4H, CH2), 0.29 (s, 18H, SiMe3), 0.17 (s, 18H, SiMe3). 13C-NMR (101 MHz, CDCl3): δ
224.53 (C=O), 144.13 (CAr-C(O)), 150.00, 136.63 (p-Ar), 129.59 (o-Ar), 128.98 (m-Ar), 33.24 (CH2), 21.77
(Ar-Me), 12.44 (C(SiMe3)2), 4.28 (SiMe3), 3.24 (SiMe3). 29Si-NMR (79 MHz, CDCl3): δ 27.84 (SiCl), 5.47
(SiMe3), 2.81 (SiMe3); HRMS(ESI) calculated for C24H47ClOSi5: 527.2225, found 527.2235.

3.2.3. Synthesis of 3c

A hexane solution of p-trifluoromethyl benzoyl chloride (0.67 g, 3.2 mmol) was added to a solution
of dialkylsilylene 1 (1.12 g, 3.0 mmol) in hexane at −30 ◦C. The reaction mixture was allowed to stir
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for 2 h at 0 ◦C. The color of the solution changed from red to yellow. Then, the solvent was removed
under vacuum. The resulting residue was purified by flash chromatography (Silica gel, 200–300 mesh;
ethyl acetate/hexane, 1:300) to yield 3c as a yellow solid. Yield: 1.16 g, (67%). m.p. 160–163 ◦C;
1H-NMR (400 MHz, CDCl3): δ 8.17 (d, J = 7.2 Hz, 2H, o-Ar), 7.76 (d, J = 7.2 Hz, 2H, m-Ar), 2.16 (s, 4H,
CH2), 0.29 (s, 18H, SiMe3), 0.17 (s, 18H, SiMe3). 13C-NMR (101 MHz, CDCl3): δ 224.78 (C=O), 140.87
(CAr-C(O)), 134.31 (dd, p-Ar), 129.57 (m-Ar), 124.86 (o-Ar), 123.61 (dd, JC-F = 271, CF3), 33.26 (CH2),
12.61 (C(SiMe3)2), 4.29 (SiMe3), 3.22 (SiMe3). 29Si-NMR (80 MHz, CDCl3) δ 27.83 (SiCl), 5.66 (SiMe3),
2.94 (SiMe3); HRMS(ESI) calculated for C24H44ClF3OSi5: 581.1949, found 581.1952.

3.3. X-ray Crystallography

The diffraction data of 3a–3c were collected on a Bruker Smart Apex II CCD diffractometer with
graphite-monochromated Mo Kα radiation (λ = 0.71073 Å). All of the data were collected at ambient
temperatures, and the structures were solved via the direct method and subsequently refined on
F2 using full-matrix least-squares techniques (SHELXTL) [58]. Absorption corrections were applied
empirically using the SADABS program [59]. The non-hydrogen atoms were refined anisotropically,
and hydrogen atoms were located at calculated positions. A summary of the crystallographic data and
selected experimental information is given in Table S1.

4. Conclusions

Isolable dialkylsilylene 1 was found to react with the C(carbonyl)–Cl bonds in aroyl chlorides
2 at low temperatures highly chemoselectively to give aroyl(chloro)silanes 3; the carbonyl groups in
neither 2 nor 3 react with silylene 1. The structural analysis using NMR and X-ray crystallography
indicate the lower field 13C-NMR resonance of the carbonyl carbon and longer Si–C(carbonyl) bond
distance than the standard values. The facile and highly selective nature of the reactions suggests that
the insertion occurs concertedly from the initial Lewis acid-base complexes, similarly to that of 1 into
the Si–Cl bonds in chlorosilanes. We are hoping the present synthetic methodology is applicable in
general for a wide variety of silylenes. The silylenes should be however relatively long-lived and their
reactions with the aroyl chlorides should be fast enough to prevent their oligomerization. Further
works on the acylsilanes with unique electronic properties are under progress in our laboratory.

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/21/
10/1376/s1. Crystallographic information for compounds 3a–3c in CIF format and crystallographic tables.
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Appendix A

Crystallography data (excluding structure factors) for the structures reported in this paper have
been deposited with the Cambridge Crystallographic Data Center, CCDC 979677 (3a), 979676 (3b) and
979675 (3c). Copies of these data can be obtained free of charge on application to the Director, CCDC,
12 Union Road, Cambridge CB2 1EZ, UK (fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or
http://www.http.ccdc.cam.ac.hk).
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