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Abstract: Results of research into four-membered 2-halo-1,2λ5-oxaphosphetane phosphorus(V)-
heterocycles are presented. The preparation of 2-halo-1,2λ5-oxaphosphetanes by reaction
of P-haloylides with carbonyl compounds is described. The mechanism of asynchronous
[2+2]-cycloaddition of ylides to aldehydes was proposed on the base of low-temperature NMR
investigations. 2-Halo-1,2λ5-oxaphosphetanes were isolated as individual compounds and their
structures were confirmed by 1H-, 13C-, 19F- and 31P-NMR spectra. These compounds are convenient
reagents for preparing of various organic and organophosphorus compounds hardly available by
other methods. Chemical and physical properties of the 2-halo-1,2λ5-oxaphosphetanes are reviewed.
The 2-chloro-1,2λ5-oxaphosphetanes, rearrange with formation of 2-chloroalkyl-phosphonates or
convert into trans-phosphorylated alkenes depending on the substituents at the α-carbon atom.
Prospective synthetic applications of 2-halo-1,2λ5-oxaphosphetanes are analyzed. The 2-halo-
1,2λ5-oxaphosphetanes may be easily converted to various alkenylphosphonates: allyl- or
vinylphosphonates, phosphorus ketenes, thioketenes, ketenimines.
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1. Introduction

One of the most interesting and intriguing classes of organophosphorus compounds are the
1,2-oxaphosphetanes—four-membered heterocycles containing pentacoordinated phosphorus [1–7].
Since 1,2-oxaphosphetanes are well-known intermediates in the Wittig reaction, a number of efforts
have been made for their structural characterization both in solution and the solid state [8–13].

In 1967, Birum and Matthews had already reported the structural characterization (NMR and
X-ray study) of the first isolated 1,2-oxaphosphetane 1. Compound 1 was prepared in 76% yield
by allowing hexaphenylcarbodiphosphorane to react with hexafluoroacetone in dry diglyme [14]
(Scheme 1).
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1. Introduction 

One of the most interesting and intriguing classes of organophosphorus compounds are the 1,2-
oxaphosphetanes—four-membered heterocycles containing pentacoordinated phosphorus [1–7]. 
Since 1,2-oxaphosphetanes are well-known intermediates in the Wittig reaction, a number of efforts 
have been made for their structural characterization both in solution and the solid state [8–13]. 

In 1967, Birum and Matthews had already reported the structural characterization (NMR and X-
ray study) of the first isolated 1,2-oxaphosphetane 1. Compound 1 was prepared in 76% yield by 
allowing hexaphenylcarbodiphosphorane to react with hexafluoroacetone in dry diglyme [14] 
(Scheme 1). 
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Scheme 1. First representative of stable 1,2-oxaphosphetanes isolated by Birum and Matthews. Scheme 1. First representative of stable 1,2-oxaphosphetanes isolated by Birum and Matthews.
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Vedejs [3,4] succeeded in detecting of 1,2-oxaphosphetanes 2–4 by low temperature NMR
spectroscopy during typical Wittig reactions and observed that these intermediates readily decompose
upon warming to room temperature into alkenes and phosphine oxides (Scheme 2).
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temperature ring expansion of epoxides with a Li/Cl phosphinidenoid complex [18] (Scheme 5). 
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Schmutzler and co-workers reported several stabilized bis(trifluoromethylated) oxaphosphetanes
5, 6 (Scheme 3) [15] which were characterized by NMR, MS spectra and X-ray analysis. At room
temperature Berry-pseudorotation was fast on the NMR time scale, impeding one from distinguishing
apical and equatorial P-CF3 groups. Decreasing the temperature to −60 ◦C in toluene-d8 allowed
resolving the signals for all CF3 groups of molecule 7 [16].
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Kojima [17] reported the interesting anti-apicophilic spirophosphorane 8 bearing an oxaphosphetane
ring. The structure of compounds 8 was confirmed by X-ray diffraction. Crystallization from hexane
gave the pure anti-apicophilic derivative. Stereomutation of compound 8 was observed in the presence
of acids and slowed down when DBU was present, suggesting that the isomerization into 9 is rather
the result of a P–O bond breaking-recombination process. Evidently, this conversion represents
an example of a thermodynamically stable oxaphosphetanes, in which pseudorotation is faster than
alkene formation (Scheme 4).
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Most of the previously reported stable oxaphosphetane structures contain fluorine-bearing
or bicyclic phosphole-type ligands either at the phosphorus position or at the 4 position in
the oxaphosphetane ring 10, 11 [15–20]. Recently, Streubel and coworkers have prepared the
first 1,2-oxaphosphetane complexes 12 formally similar to traditional oxaphosphetanes, using
low-temperature ring expansion of epoxides with a Li/Cl phosphinidenoid complex [18] (Scheme 5).
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Gilheany studied oxaphosphetane intermediates in the Wittig reaction by variable-temperature
NMR spectroscopy [9–11]. Compound 13 was obtained by low-temperature acid quenching of the
Wittig reaction of ylide with benzaldehyde, a suitable representative aromatic aldehyde (see Scheme 6).
The major diastereomer was the syn-13 on the basis that the unquenched Wittig reaction gives the
(Z)-alkene as the major product. In this manner, the syn/anti ratio of 13 was 89:11.
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Keglevich reported detection of enantiomers of P-stereogenic pentacoordinated phosphorus
compounds [20]. Detailed 31P-NMR investigations of oxaphosphetes in optically active solvents have
clearly shown that the most electronegative substituents (e.g., oxygen) prefers the apical position in
a trigonal bipyramidal structure and that the pentacoordinated phosphorus atom is in a dynamic
condition due to pseudorotation. Berger and coworkers found that 2-furyl groups on the phosphorus
atom increase the thermal stabilities of oxaphosphetanes and succeeded in isolation and determination
of the X-ray structure of tris(2-furyl) substituted oxaphosphetane, the stability of which is attributed to
the electron-withdrawing properties of the 2-furyl group [21].

Among the stable oxaphosphetanes [1–22], 2-halo-1,2λ5-oxaphosphetanes 14, which possess
relatively high stability and diverse reactivity, attract particular interest [23–38] (Scheme 7).
These oxaphosphetanes containing fluorine, chlorine or bromine atoms bonded to phosphorus are
an interesting class of pentacoordinated phosphorus heterocycles possessing peculiar properties.
The chemical properties of 2-halo-1,2λ5-oxaphosphetanes, first of all of P-chloro- and P-fluoroylides,
due to the presence of a labile halogen atom on phosphorus, are very specific and differ
from the properties of triphenylphosphonium ylides. For example, reactions and conversions
of 2-halo-1,2λ5-oxaphosphetanes proceed with preservation of the P-C bond and leads to the
formation of different organophosphorus compounds. In addition, this type of compounds
exhibit also physico-chemical properties uncharacteristic for traditional P,P,P-triorganosubstituted
oxaphosphetanes. For the first time the 2-halo-1,2λ5-oxaphosphetanes were prepared in our laboratory
almost twenty years ago and up to today we and some other authors are still studying their chemistry.
In this article, we summarize the synthesis and properties of this type of organophosphorus compounds.
The chemistry of 2-halo-1,2λ5-oxaphosphetanes was not previously analyzed, generalized or reviewed.
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2. Results and Discussion

2.1. General Description

Since pentacoordinated phosphoranes formally have 10 electrons in the valence shell, they display
a specific bonding model. Therefore pentacoordinated phosphoranes take a trigonal bipyramidal
structure and there are two ligating sites, apical and equatorial sites. The apical bond consists of
three-center four-electron bond using the p orbital of the central phosphorus atom, while the equatorial
bond is a typical s bond using sp2 hybrid orbital of the phosphorus atom. This three-center four-electron
bond forms three molecular orbitals.

It is generally known that pentacoordinated phosphoranes rapidly undergo intramolecular
positional isomerization without bond cleavage. A very rapid non-dissociative intramolecular site
exchange is usually explained by the Berry pseudorotation mechanism [19,22,23].

The 2-halo-1,2λ5-oxaphosphetanes (halogen = chlorine, bromine, fluorine) are the most stable
representatives of this type of compounds. They can be purified by distillation under vacuum and
stored in a refrigerator. At the same time they possess interesting chemical properties and participate
in various chemical transformations [24–28].

The stability of 2-halo-oxaphosphetanes changes in the same sequence of substituents R4 at
the endocyclic carbon atoms at position 4. The most stable are compounds containing strong
electron-accepting groups at C(4), drawing off electron density from the oxygen atom as a result
of which the three-centre apical bond O—P—Hal is strengthened. Chloro-oxaphosphetanes, having
less electron-accepting substituents at C(4), are dissociated to a large extent and correspondingly are
converted into vinylphosphine oxides at room temperature.

2.2. Synthesis of 2-Halo-1,2λ5-oxaphosphetane

Available methods for the synthesis of 2-halo-1,2λ5-oxaphosphetanes can be used for
investigation of the reaction mechanism of phosphorus ylides with carbonyl compounds as well
as for preparing stable oxaphosphetanes that can be used as reactants for organic synthesis.
The 2-halo-1,2λ5-oxaphosphetanes were prepared by reaction of P-fluoro-, chloro- or bromoylides
with carbonyl compounds. P-Chloro- and P-bromoylides react with active ketones, containing
a trifluoromethyl group, with the formation of stable [2+2]-cycloaddition products, 2-chloro- or
2-bromo-1,2λ5-oxaphosphetenes 14 were isolated in yields close to quantitative as crystalline
substances or as liquids distillable in vacuum (Scheme 8, Table 1) [29–42].
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Scheme 8. Synthesis of 2-halo-1,2λ5-oxaphosphetanes. Hlg = F, Cl, Br; R1 = Alk, Ph; CR2R3 = CH2,
CHAlk, CAlk2, CHPh, CHSiMe3, CCl2, CBr2; CR4R5 = C=O, CNPh, CHAlk, CAlk2, CHPh, CPh2,
CH2CH = CH2.

The addition of P-halogen-ylides to ketones proceeded stereoselectively and led predominantly
to the formation of one of the possible 2-halo-1,2λ5-oxaphosphetane diastereomers. 2-Halo-1,2λ5-
oxaphosphetanes dissociate at the P-halogen bond in solution with the formation of cyclic
phosphonium salts, as a result of which an equilibrium is established between the forms with five-
and four-coordinate phosphorus atoms. Dissociation of 2-halo-1,2λ5-oxaphosphetanes is enhanced
by reducing the electron-accepting properties of substituents and also by increasing priority solvent.
The 2-halo-1,2λ5-oxaphosphetanes containing electron-accepting groups at C(4) are distinctly stabler
than oxaphosphetanes with alkyl groups in this position [25–27].
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The reaction of P-bromomethylides with fluorinated acetophenone afforded in high yield
oxaphosphetanes 15, which were isolated as crystalline compounds (Scheme 9 and Table 1,
entries 10–13). The compounds 15 exist in solution as cyclic phosphonium salt.

Molecules 2016, 21, 1371 5 of 21 

The reaction of P-bromomethylides with fluorinated acetophenone afforded in high yield 
oxaphosphetanes 15, which were isolated as crystalline compounds (Scheme 9 and Table 1, entries 
10–13). The compounds 15 exist in solution as cyclic phosphonium salt. 

 
Scheme 9. Ionized form of 2-bromo-1,2λ5-oxaphosphetanes 15. 

At the same time the 2-chloro-1,2λ5-oxaphosphetanes 16 exist as mixture of P(IV) and P(V)-
forms. These compounds can be distilled under vacuum and dissolved in non-polar solvents 
(benzene) (Scheme 10 and Table 1, entries 1–9). Reaction of P-Fluoroylids with aldehydes and ketones 
proceeds in ether or pentane at −40–−20 °С and leads to the formation of stable 2-fluoro-1,2λ5-
oxaphosphetanes 17 (Scheme 11 and Table 2). 

 
Scheme 10. P(IV) and P(V)-forms of 2-chloro-1,2λ5-oxaphosphetane 16. 

 
Scheme 11. 2-Fluoro-1,2λ5-oxaphosphetane 17. 

The compounds 17 are liquids distilling in vacuo, the structure of which was proved by means 
of mass and NMR spectra. The 31Р-NMR spectra of 2-fluoro-oxaphosphetanes 17 present doublets 
with 800 Hz 1JРF constants in the high magnetic field of a NMR spectrum at −37–−8 ppm. This 
corresponds to a pentacoordinate state of compounds 17 [24,26–31]. Tetracoordinated forms of 2-
fluoro-oxaphosphetanes 17 were not registered by 19F- and 31P-NMR spectroscopy (Scheme 11). 

C-Silyl-P-chloroylides 18 react with carbonyl compounds to afford 2-chloro-1,2λ5-
oxaphosphetanes 19. The oxaphosphetanes 19 bearing an electronegative CF3 substituent at С-4 are 
relatively stable and can be isolated and analyzed by NMR (Scheme 12). The NMR spectra of these 
compounds reveal signals at 0.2 ppm, singlet (Me3Si), at 2 ppm, doublet, 3JPH 18.0 Hz (С3Н), and at 
4.5 ppm (С4Н). 13С-NMR signals of С-3 and С-4 carbons were found at 30 and 90 ppm, 
correspondingly. The 31P-NMR signals of 2-chloro-1,2λ5-oxaphosphetanes 19 at δP +48 ppm (R1 = i-
PrO) and at δP = 60 ppm (R1 = Et2N) correspond to tetracoordinate phosphorus included in four-
membered phosphetane cycle (Table 1) [25,32]. 

Scheme 9. Ionized form of 2-bromo-1,2λ5-oxaphosphetanes 15.

At the same time the 2-chloro-1,2λ5-oxaphosphetanes 16 exist as mixture of P(IV) and P(V)-forms.
These compounds can be distilled under vacuum and dissolved in non-polar solvents (benzene)
(Scheme 10 and Table 1, entries 1–9). Reaction of P-Fluoroylids with aldehydes and ketones proceeds
in ether or pentane at−40–−20 ◦C and leads to the formation of stable 2-fluoro-1,2λ5-oxaphosphetanes
17 (Scheme 11 and Table 2).
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Scheme 11. 2-Fluoro-1,2λ5-oxaphosphetane 17.

The compounds 17 are liquids distilling in vacuo, the structure of which was proved by
means of mass and NMR spectra. The 31P-NMR spectra of 2-fluoro-oxaphosphetanes 17 present
doublets with 800 Hz 1JPF constants in the high magnetic field of a NMR spectrum at −37–−8 ppm.
This corresponds to a pentacoordinate state of compounds 17 [24,26–31]. Tetracoordinated forms of
2-fluoro-oxaphosphetanes 17 were not registered by 19F- and 31P-NMR spectroscopy (Scheme 11).

C-Silyl-P-chloroylides 18 react with carbonyl compounds to afford 2-chloro-1,2λ5-
oxaphosphetanes 19. The oxaphosphetanes 19 bearing an electronegative CF3 substituent at
C-4 are relatively stable and can be isolated and analyzed by NMR (Scheme 12). The NMR spectra
of these compounds reveal signals at 0.2 ppm, singlet (Me3Si), at 2 ppm, doublet, 3JPH 18.0 Hz
(C3H), and at 4.5 ppm (C4H). 13C-NMR signals of C-3 and C-4 carbons were found at 30 and
90 ppm, correspondingly. The 31P-NMR signals of 2-chloro-1,2λ5-oxaphosphetanes 19 at δP +48 ppm
(R1 = i-PrO) and at δP = 60 ppm (R1 = Et2N) correspond to tetracoordinate phosphorus included in
four-membered phosphetane cycle (Table 1) [25,32].
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Entry R1 R2 R3 R4 X δP δF References

1 t-Bu t-Bu H C6H4F-4 Cl + 9.0 +7.2 c (CF3); −32.9 (C6H4F) [36,42]
2 i-Pr i-Pr Ph Ph Cl +1.23; +0.53 +1.08; +1.64 [42]
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7 t-Bu Et2N H Ph Cl +5.01; +9.13 +6.06; +6.09 [42]
8 t-Bu t-Bu Me CF3 Cl +2.53 +5.38; [42]
9 t-Bu Et2N H CF3 Cl −2.6 +2.65 q; +2.94 q, 1JFF 8 [42]

10 t-Bu t-Bu H CF3 Br +24.4 +6.25 [42]
11 t-Bu t-Bu H Ph Br +46 +7.35 [42]
12 t-Bu t-Bu H C6H4F-4 Br +46 +5.6 (CF3); −34.2 (C6H4F) [42]
13 t-Bu t-Bu H An-4 Br +60 +6.1 [42]
14 t-Bu t-Bu H Ph OMe −14.6 +1.15 [42]
15 t-Bu t-Bu H Ph OPh −12.8 +2.0 [42]

Sotiropulos and Bertrand [33] reported the addition of phosphacumulene ylides 20 bearing the
diazo group to isocyanates, leading to the formation of products 22. It was proposed that initial
nucleophilic attack of the ylide carbon atom on the carbonyl carbon gives a oxaphosphetane 21, which
depending on the relationship of the oxygen atom (or NR group) to nitrogen or phosphorus rearranges
into products of 1,4- or 1,5-cyclisation 22 (Scheme 13). Benzaldehyde gives the 2-chlorooxaphosphetane
23 with the ylide 20 which readily eliminates hydrogen chloride and a nitrogen molecule being
converted into an acetylene phosphonate 24 (Scheme 14).
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A number of 2-fluoro-1,2λ5-oxaphosphetanes 25 were prepared by reaction of P-fluoroylides
with aldehydes and ketones (Scheme 15, Table 2). The 2-fluoro-1,2λ5-oxaphosphetanes 25 are stable
compounds, which can be isolated and purified by distillation under vacuum or by crystallization
from non-polar solvents. These compounds are much distinguished from unstable adducts of
carbonyl compounds with triphenylphosphonium ylides. Cycloadducts of P-fluoroylides with
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carbonyl compounds, 2-fluoro-1,2λ5-oxaphosphetanes, are also much more stable than 2-chloro- or
2-bromo-1,2λ5-oxaphosphetanes [25–31].
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The stability of 2-fluoro-oxaphosphetanes is explained by the high electronegativity of the
fluorine atom, compared to the electronegativities of chlorine and bromine. The P-F bond in
2-fluoro-1,2λ5-oxaphosphetanes is very strong, and, therefore, these compounds do not dissociate
with formation of cyclic phosphonium salts, what is observed, for example, with 2-chloro-
1,2λ5-oxaphosphetanes. Various stable 2-fluoro-1,2λ5-oxaphosphetanes were synthesized, isolated as
pure specimens, and characterized (Table 2). Typical representatives of such compounds 26–29 are
shown in Schemes 16–18 [26,29].
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The 31P-NMR spectra of compounds 25 show a doublet at −6 to −45 ppm with
760–850 Hz PF coupling constants appropriate for axial fluorine atoms. The 31P-NMR spectra
of 2-fluoro-1,2λ5-oxaphosphetanes exhibit a doublet in the range −6 to −45 ppm, belonging to
the five-coordinate phosphorus with corresponding coupling constants on axial fluorine atoms
(760–850 Hz). The 19F-NMR spectra of 2-fluoro-1,2λ5-oxaphosphetanes exhibit doublets with the
same PF coupling constants.
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The P,P-difluoroylides 30 react with aldehydes and active ketones to afford the stable
oxaphosphetanes 31 bearing two fluorine atoms at the phosphorus (Scheme 19) [34–36].
The compounds 31 (R=CF3) were distilled under reduced pressure without decomposition and were
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Scheme 19. 2,2-Difluoro-1,2λ5-oxaphosphetanes 31.

The 19F-NMR spectra contain two double doublets at −47 and −65 ppm with expected coupling
constants for the axial and equatorial fluorine atoms: 1JPFa = 915 Hz, 1JPFe = 1025 Hz, and 2JFaFe = 62 Hz.
Apparently [2+2]-cycloaddition of the C=O group to the ylide 15 proceeds with high stereoselectivity,
because the 19F- and 31P-NMR spectra show the signals belonging to the single diastereomer of the
compounds 31. The signals of the second diastereomer, the existence of which one can suppose as
a consequence of the presence of two asymmetric endocyclic C-3 and C-4 carbon atoms are absent.
The 13C-NMR spectra reveal the presence of the signals at 62.5 ppm (1JCP = 150 Hz, 2JCF = 53 Hz) and
75.6 ppm due to the C-3 and C-4 carbon atoms in complete accordance with the assigned structure of
oxaphosphetane (Figures 1 and 2).

P-Fluoroylides add easily isocyanates, carbon dioxide and carbon disulfide with formation of
oxaphosphetanes 32–35. For example, the reaction of P-fluoroylides with phenyl isocyanate resulted
in the formation of 2-fluorooxaphosphetane 34 which was stable during several hours at ambient
temperature. Compound 34 was purified by crystallization in pentane and isolated as colorless
crystalline matter. In IR spectra of compounds was found the strong band at 1730 cm−1 belonging
to the C=O bond in a four-membered cycle. The 31P-NMR spectra disclosed a doublet with constant
1JPF = 780 Hz and a doublet with the same constant in 19F-NMR spectra. The oxaphosphetanes 32–35
convert at room temperature slowly and at heating quickly into phosphorylated heterocumulenes
(ketenes, thioketenes, ketenimines, see Scheme 20) [29,37–39].
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Table 2. 2-Fluoro-1,2λ5-oxaphosphetanes [26,32,37].
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Entry R1 R2 R3 R4 R5 R6 

Yield,
% 

bp., oC
(р, mmHg) 

δP, ppm. δF, ppm. 1JPF, Hz 

1 Et2N Et2N H H H Bu 85 90 (0.06) −42.15 31.30 767 
2 Et2N Et2N H H H C6H13 85 100 (0.06) −42.25 31.12 766 
3 Et2N Et2N H H Me Me 70 75 (0.02) −47.53 31.04 765 
4 Et2N Et2N H H Me Et 85 85 (0.06) −49.20 31.04 765 
5 Et2N Et2N H H Me Ph 99 a −44.00 32.00 766 
6 Et2N Et2N H H (CH2)5 90 110 (0.06) −44.60 34.90 766 
7 Et2N Et2N H Me (CH2)5 99 a −44.00 21.00 853 
8 Et2N Et2N H H Ph Ph 99 a −41.60 34.90 766 
9 Et2N Et2N H H H Ph 99 a −42.13 31.18 768 
10 Et2N Et2N Cl Cl H Pr 90 a −47.00 5.40 853 
11 Et2N Et2N Br Br H Pr  a −56.03 5.80 842 

12 Et2N Et2N H Me CF3 Ph 80 120 (0.06) 
−36.39;  

−38.27 (7:1) b 
−0.4 795; 795 

13 Ph Ph Ph H CH3 H 95 a −43.50 47.8 670 

14 Et2N F H Pr CF3 Ph 85 105 (0.06) −26.7 (99% dr) −46.9,  
−65 (CF3) 

915; 
1025 

15 Et2N F H Pr CF3 4-Tol 80 108 (0.06) −26.5 (99% dr) 
−46.6,  
−65 (CF3) 

915; 
1025 

16 Et2N Et2N H Ph CF3 Ph 85 <20 c –38.96 27 792.6 

17 t-Bu t-Bu H Pr CF3 Ph 70 125 (0.06) 
−7.73,  

−8.79 (9:1) b 
−1.03 768; 770 

18 t-Bu t-Bu H Pr H Ph 75 120 (0.08) 
−10.1;  

−9.62 (15:1) b 
9.9 762; 762 

19 t-Bu t-Bu H H H Ph 70 <20 c −5.9 13 750 

20 Et2N Et2N H i-Pr H Ph 70 110 (0.06) 
−33.7;  

−33.54 (15:1) b 
7.2 827; 827 

21 t-Bu t-Bu H Pr C=NPh 50 84–86 c −18.85 5.55 820 
22 t-Bu t-Bu H Pr C=O  a 20.01 −26.23 785 
23 Ph Ph Ph SiMe3 Ph H 85 a −43.5 28.76 670 

24 Et2N Et2N H SiMe3 Ph H 90 a 
−39.18;  

−38.83 (3:2) b 
−40.19; 
−8.84 

670 

25 t-Bu t-Bu H SiMe3 Ph H 90 a −11.0 - 768 

26 Et2N Et2N H SiMe3 Pr H 90 a 
−39.27;  

−42.11 (4:1) b 
−43.71; 
−42.61 

768 

27 Et2N Et2N H SiMe3 Bu H 95 a 
−39.22;  

−42.32 (4:1) b 
−43.71; 
−42.61 

768 

28 Et2N Et2N H SiMe3 C6H13 H 90 a 
−39.20;  

−42.10 (3:1) b 
−43.71; 
−42.61 

763 

29 Et2N  H SiMe3 C8H17 H 90 a 
−39.88;  

42.20 (4:1) b 
−42.85; 
−42.07 

763 

30 Et-N  H SiMe3 CF3 Ph 95 a 
−38.60;  

−37.45 (3:1) b 
−41.11 
−49.01 

777 

a Oil; b Diastereomers; c melting point (mp.). 

2.3. Properties of Oxaphosphetanes 

The cycloaddition of P-halogenylides to aldehydes and ketones proceeds stereoselectively and 
leads predominantly to the formation of one of the possible diastereomers of 2-halo-1,2λ5-
oxaphosphetanes (Tables 1 and 2). P-Haloylides (chloro- and bromo) react stereoselectively with 
aldehydes to give predominantly single diastereoisomers of 2-halo-oxaphosphetanes, bearing 
asymmetric endocyclic C-3 and C-4 carbon atoms (dr ~7:1–15:1). It was established by NMR that the 
ratio of diastereoisomers of 2-halooxaphosphetanes containing asymmetric atoms at C(3) and C(4) 
was within the limits ~99:1–90:10. The ratio of diastereomers after completion of the reaction was 
approximately 6:4–9:1. However on heating, as a result of permutational changes in the molecule, the 

Entry R1 R2 R3 R4 R5 R6 Yield, % b.p., ◦C
(P, mmHg) δP, ppm. δF, ppm. 1JPF, Hz

1 Et2N Et2N H H H Bu 85 90 (0.06) −42.15 31.30 767
2 Et2N Et2N H H H C6H13 85 100 (0.06) −42.25 31.12 766
3 Et2N Et2N H H Me Me 70 75 (0.02) −47.53 31.04 765
4 Et2N Et2N H H Me Et 85 85 (0.06) −49.20 31.04 765
5 Et2N Et2N H H Me Ph 99 a −44.00 32.00 766
6 Et2N Et2N H H (CH2)5 90 110 (0.06) −44.60 34.90 766
7 Et2N Et2N H Me (CH2)5 99 a −44.00 21.00 853
8 Et2N Et2N H H Ph Ph 99 a −41.60 34.90 766
9 Et2N Et2N H H H Ph 99 a −42.13 31.18 768

10 Et2N Et2N Cl Cl H Pr 90 a −47.00 5.40 853
11 Et2N Et2N Br Br H Pr a −56.03 5.80 842

12 Et2N Et2N H Me CF3 Ph 80 120 (0.06) −36.39;
−38.27 (7:1) b −0.4 795; 795

13 Ph Ph Ph H CH3 H 95 a −43.50 47.8 670

14 Et2N F H Pr CF3 Ph 85 105 (0.06) −26.7 (99% dr) −46.9,
−65 (CF3) 915; 1025

15 Et2N F H Pr CF3 4-Tol 80 108 (0.06) −26.5 (99% dr) −46.6,
−65 (CF3) 915; 1025

16 Et2N Et2N H Ph CF3 Ph 85 <20 c −38.96 27 792.6

17 t-Bu t-Bu H Pr CF3 Ph 70 125 (0.06) −7.73,
−8.79 (9:1) b −1.03 768; 770

18 t-Bu t-Bu H Pr H Ph 75 120 (0.08) −10.1;
−9.62 (15:1) b 9.9 762; 762

19 t-Bu t-Bu H H H Ph 70 <20 c −5.9 13 750

20 Et2N Et2N H i-Pr H Ph 70 110 (0.06) −33.7;
−33.54 (15:1) b 7.2 827; 827

21 t-Bu t-Bu H Pr C=NPh 50 84–86 c −18.85 5.55 820
22 t-Bu t-Bu H Pr C=O a 20.01 −26.23 785
23 Ph Ph Ph SiMe3 Ph H 85 a −43.5 28.76 670

24 Et2N Et2N H SiMe3 Ph H 90 a −39.18;
−38.83 (3:2) b

−40.19;
−8.84 670

25 t-Bu t-Bu H SiMe3 Ph H 90 a −11.0 - 768

26 Et2N Et2N H SiMe3 Pr H 90 a −39.27;
−42.11 (4:1) b

−43.71;
−42.61 768

27 Et2N Et2N H SiMe3 Bu H 95 a −39.22;
−42.32 (4:1) b

−43.71;
−42.61 768

28 Et2N Et2N H SiMe3 C6H13 H 90 a −39.20;
−42.10 (3:1) b

−43.71;
−42.61 763

29 Et2N H SiMe3 C8H17 H 90 a −39.88;
42.20 (4:1) b

−42.85;
−42.07 763

30 Et-N H SiMe3 CF3 Ph 95 a −38.60;
−37.45 (3:1) b

−41.11
−49.01 777

a Oil; b Diastereomers; c melting point (m.p.).

2.3. Properties of Oxaphosphetanes

The cycloaddition of P-halogenylides to aldehydes and ketones proceeds stereoselectively
and leads predominantly to the formation of one of the possible diastereomers of 2-halo-1,2λ5-
oxaphosphetanes (Tables 1 and 2). P-Haloylides (chloro- and bromo) react stereoselectively with
aldehydes to give predominantly single diastereoisomers of 2-halo-oxaphosphetanes, bearing
asymmetric endocyclic C-3 and C-4 carbon atoms (dr ~7:1–15:1). It was established by NMR
that the ratio of diastereoisomers of 2-halooxaphosphetanes containing asymmetric atoms at C(3)
and C(4) was within the limits ~99:1–90:10. The ratio of diastereomers after completion of the
reaction was approximately 6:4–9:1. However on heating, as a result of permutational changes
in the molecule, the ratio of diastereomers grew in favour of the thermodynamically more stable
diastereomer. 2-Fluoro- and 2-chloroxaphosphetanes containing chiral phosphorus or endocyclic
carbon atoms exist as mixtures of diastereomers whose ratio depends on the nature of the starting
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reagents (Scheme 21). The diastereomeric purity of the compounds, assessed by NMR spectroscopy,
was 80%–96%. The reaction of α,α,α-trifluoroacetophenone with P,P-difluoroylides proceeded
with very high stereo-selectivity to furnish only one diastereomer of compound. At the same
time 2-halo-1,2λ5-oxa-phosphetanes bearing asymmetric phosphorus atom are formed with low
stereoselectivity (dr~3:1).
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The reaction of P-halogenylides with aldehydes leads to the formation of an erythro-oxaphosphetanes
with the oxygen in the apical position, because of the tendency of electron-acceptor atoms to occupy this
position [40]. The preferred orientation of the transition state leading to the erythro-oxaphosphetane
is stereoselective approach of the ylide nucleophilic center to the carbonyl group at an angle of
107◦, with the double bonds of both reagents arranged in one plane. This was associated with
the Burgi-Dunitz trajectory concept (Scheme 22) [41]. The first step of reaction stereoselectively
leads to the formation of the betaine B. The conversion of reagents into oxaphosphetane requires
minimum energy when it proceeds with the non-synchronous formation of bonds between the carbonyl
and ylidic carbon atoms. On the second step the betaine converts into oxaphosphetane C with
low stereoselectivity, because of free rotation around of the P-C bond [28,42]. This mechanism of
asynchronous addition of P-haloylides to carbonyl compounds was confirmed by low temperature
NMR investigations. The reaction of di-tert-butylchlorphosphonium methylide with Ph(CF3)C=O
was studied by 31P-NMR at low temperature (−70–0 ◦C) in diethyl ether solution. At −70 ◦C
was found only a decreasing signal of P-chloroylide (+114 ppm) and a growing signal of
2-chloro-1,2λ5-oxaphosphetane (+9.9 ppm). The signal which could be referred to betaine was not
found, probably, because of the high speed of betaine cyclisation into 2-chloroxaphosphetane. However
the reaction of tert-butyl(diethylamino)chlorophosphonium methylide with benzaldehyde began at
−70 ◦C and led to the formation of erythro-betaine which was registered by increasing signal δP

+106 ppm, located in more weaker field than the signal of initial P-chloroylide (+102 ppm) (Figure 3).
The betaine formation was proceeded stereoselectively as in the 31P-(1H-)NMR spectrum only one
diastereomer signal was registered. The rise of temperature to −50 ◦C led to the formation of two
signals of threo and erythro-oxaphosphetane diastereomers δP + 92.6 and +84.6 ppm in the ratio of
2:1. Evidently, the formation of diastereomers proceeded via SN2@P substitution with inversion of
configuration at the phosphorus atom [43]. The formation of isomers indicates on the nucleophilic
substitution at asymmetric tetracoordinate phosphorus atom, proceeding with partial inversion
of configuration. At −50–−40 ◦C the oxaphosphetane was converted into 2-chloralkylphosphine
oxide, which was also formed as two threo- and erythro-diastereomers in the ratio of 2:1 (δP +48.7
and +49.2 ppm). The conversion was completed at −20 ◦C. The threo- and erythro diastereomers
were separated and isolated in pure state by chromatography and crystallization (m.p. 100 and
123 ◦C, see Table 3, entries 13, 14). Although at present many of the puzzling features about the
reaction mechanism of ylides phosphorus with carbonyl compounds have been clarified, it seems
there is no general mechanism, which could explain the progress of the reaction, transition states
and stereochemistry. Nevertheless in case of P-chloroylide addition to aldehydes, on the basis of
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presented above stereochemical researches the asynchronous [2+2]-cycloaddition seems to be the most
likely mechanism.
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Figure 3. 31P-(1H-)NMR monitoring of the reaction of ylide a with PhCHO leading via the formation
of betaine b, and oxaphosphetane c to the formation of β-chloroalkylphosphonates d and d′.

2-Halo-oxaphosphetanes exist in pentacoordinate form, but ionize under certain conditions
with formation of tetracoordinate forms. In the mass spectra of 2-chlorooxaphosphetanes the
peak of molecular ion was observed that indicated the covalent character of the P–Cl bond.
All oxaphosphetanes show methyl carbons with lJPC values characteristic of equatorial placement in
the trigonal bipyramid. The resonances of the methylene carbons of the phosphetane ring system lay
downfield of the methyl carbons and the large measured lJPC values indicate equatorial placement.
The four-membered ring is occupying an apical-equatorial plane where the O-P-C angle is 90◦,
and never a diequatorial plane or a diapical plane where the O-P-C angle would have to be 120
or 180◦, respectively.

In the 1H-NMR spectra of the 2-halooxaphosphetanes possessing asymmetric carbon atom C4 the
magnetic nonequivalence of protons CHaHb in the four-membered ring became apparent because the
geminal spin-spin interaction arose between them. Each of the signals CHa and CHb was the double
doublet with the coupling constant with phosphorus nucleus 2JPH = 20–22 Hz and a constant of geminal
interaction 2JHH = 16–17 Hz. The chemical shifts 31P of 2-halogenoxaphosphetanes depended on the
polarity of the solvent. Thus, in nonpolar solvents (diethyl ether, pentane) the signals of δP are located in
the strong field of the 31P-NMR spectrum (from−3 to 10 ppm) that corresponds to the pentacoordinated
state of the phosphorus atom. In polar solvents and especially in the presence of Lewis acids, like AlCl3,
the values of δP were shifted downfield. For example, for 2-chloro-oxaphosphetanes the chemical
shift of phosphorus, δP was as follows (ppm): 9 (pentane), 22 (CH2C12), 30 (CHC13), 35 (CH3CN), 45
(CHC13 + A1C13 (traces)). With the increase in amount of aluminum chloride up to equimolar level
the value of δP 100 ppm was registered for 2-chlorooxaphosphetanes that was in accordance with the
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values of chemical shifts for the known alkoxyphosphonium salts and apparently indicated complete
ionization of chlorophosphorane with the formation of phosphonium salt. The dependence of the
chemical shift value of phosphorus in 2-chlorooxaphosphetanes on the solvent polarity and on the
presence of Lewis acid is in accordance with the published data showing that chlorophosphoranes
can be ionized with the formation of phosphonium structures. Herewith in the 31P-NMR spectrum
the resultant signal is registered due to fast exchange in the phosphorus coordination 15A
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The value of δP is shifted downfield proportionally to the increase in the phosphonium structure
content, which in its turn depends on the solvent polarity. Substitution of electron withdrawing
CF3 group at C4 atom by hydrogen atom destabilizes the oxaphosphetane cycle and considerably
reinforces the ionization of P-C1 bond. The stability of 2-halogenoxaphosphetanes decreases, and
positive values δP and ionization of P-C1 bond increases in the sequence of substituents at C4 atom:
CF3 > C6H4F-4 >-C6N5 > C6H4OMe > H (Table 4) [25,30,31]. Chemical shifts of phosphorus in
2-bromo-1,2λ5-oxaphosphetanes (δP = +20–+75 ppm) were in the weaker fields relatively to chemical
shifts of chloro-oxaphosphetanes. Evidently high positive values δP of 2-bromoxaphosphetanes
is undoubtedly explained by bigger, than in case of 2-chlorooxaphosphetanes, contribution of
phosphonium forms 15B in the equilibrium 15A
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4 t-Bu t-Bu H Ph CF3 75 112.5 (benzene) 57.2
5 t-Bu t-Bu H C6H4NO2 CF3 70 139 (hexane) 59
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12 t-Bu Ph H Ph H 75 oil 57.9; 58.3 (10:1)
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2-Chloro-1,2λ5-oxaphosphetanes enter into a number of interesting chemical conversions.
Thus, 2-chloro-1,2λ5-oxaphosphetanes as a result of [1,3]-migration of chlorine atom to carbon
atom underwent 2-chlorooxaphosphetane-2-chlorooxyphosphine oxide rearrangement to convert
into the 2-chlorooxyphosphine oxides 35. Thermal stability of 2-chloro-1,2λ5-oxaphosphetanes was
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decreased in case of oxaphosphetanes which not contain at C4 atom strong acceptor substituents,
which rearranged into chloroalkylphosphonates at room temperature (Table 3). At heating
2-chloralkylphosphine oxides yield vinylphosphine oxides 38. Hydrolysis of 2-chloro- and
bromo-oxaphosphetanes led to the formation of 2-hydroxyalkylphosphine oxides 36 (Table 5).
The chlorine atom of 2-chloro-1,2λ5-oxaphosphetanes is easily substituted on methoxy- or phenoxy
groups by reaction with methanol or phenol in the presence of triethylamine with formation of
2-alkoxyoxaphosphetanes 37, which at heating were converted into alkenes (Scheme 23, Table 1,
entries 14, 15) [27,42].
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Scheme 23. Chemical reactions of 2-chloro and 2-bromo-1,2λ5-oxaphosphetanes.

The 2-chloro-1,2λ5-oxaphosphetanes not containing electron accepting groups at C-3 are unstable
and rearrange easily into 2-cloroalkylphosphonates at temperature below +20 ◦C. The oxaphophetanes
bearing at C4 electronegative CF3 groups convert into vinylphosphonates with elimination of
hydrogen chloride at heading up to 150–160 ◦C. 2-Bromooxaphosphetanes are less stable than
2-chlorooxaphosphetanes and are converted into vinylphosphine oxides at room temperature.
At heating (160–190 ◦C) 2-chloralkylphosphine oxides eliminate HCl to convert into vinylphosphine
oxides (Scheme 24) [27–29,42].
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The oxaphosphetanes bearing a trimethylsilyl group at C-3 atom eliminate the
trimethylchlorosilane moiety and convert into the phosphorylated alkenes 38. The conversion of
oxaphosphetanes into alkenephosphonates proceeds at room temperature slowly, and at heating
faster to give the alkenes 38 in good yields (Scheme 25). The phosphorylated alkenes 38 were
purified by distillation under vacuum and isolated as pure compounds. The reaction of ylides
14 with aldehydes is regioselective. For example, the oxaphosphetanes obtained by reaction of
silylated P-chloroylide 5 with terephthalic aldehyde depending on a ratio of initial reactants led to the
formation of 1,4-bis-vinylphosphonobenzene or phosphonovinylbenzaldehyde, that represent interest
as reactants for organic synthesis (See Table 6, entries 10, 11) [13,18–20].
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The 2-fluoro-1,2λ5-oxaphosphetanes enter readily into a number of interesting organophosphorus
compounds proceeding without P—C bond cleavage [26]. Thus, the treatment of 2-fluorooxaphosphetanes
25 with ether solution of HCl led to the formation of 2-chloro-oxaphosphetanes 40, which was isolated
in good yield. At heating the 2-fluorooxaphosphetanes 25, in contrast to triphenyloxaphosphetanes,
convert into phosphorylated alkenes: vinylphosphonates or allylphosphonates. The direction
of reaction depended on substituents R2 and R3 at C-3 and C-4 of oxaphosphetane cycle.
The 2-fluorooxaphosphetanes bearing at C-3 R2 = H, Alk, Ar, and at C-4 R3 = Alkyl eliminated
HF to convert into the allylphosphonates 42 [39,44,45]. The reaction was catalyzed by boron trifluoride
etherate. At the same time the 2-fluorooxaphosphetanes 25 bearing at C-3 substituent R = Me3Si
eliminated Me3SiF and afforded the vinylphosphonates 41 (Scheme 26, Table 7). This reaction represent
a convenient method for the preparation of phosphorylated alkenes that are versatile building blocks
for organic synthesis [45–48]. 2-Fluoro-1,2λ5-oxaphosphetanes containing two alkyl groups at C3 as
well eliminated hydrogen fluoride and afforded the allylphosphonates 42 (Scheme 26, Table 8).
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Table 6. Vinylphophonates 38 (Scheme 25). 

 
Entry R R′ 

Reaction Conditions
Yields, % References 

Time, h t °C Solvent
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9 Et2N 
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9 EtO 
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12 i-PrO R2P(O)CH=CHC6H4 25 24 THF 50 [25,32] 

a without solvent. 
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a without solvent.
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The reaction occurs by the 1,4-elimination as shown in Scheme 26 [25]. Opposite to
2,2,2-triphenyloxaphosphetanes, upon heating, the decyclization of 2-fluorooxaphosphetanes led
to the formation of phosphorylated alkenes 41, 42.
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At heating to +100 ◦C the 2-fluoro-3-silyloxaphosphetanes 25, bearing CF3 group at C-4, afforded
a mixture of E- and Z-vinylphosphonates 29, 30 in the ratio 2:1 with elimination of Me3SiF. However
the slow conversion of oxaphosphetane at +20 ◦C during several days provided almost pure
vinylphosphonates E-29, containing only 2%–3% of Z-isomer (Scheme 27) [26]. This effect was
explained by formation of carbocation intermediate and rotation of substituents around the C-C
bond (Scheme 28).
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into vinylphosphonates.

The conversion of 2-fluoro-1,2λ5-oxaphosphetanes bearing alkyl groups at C-3 into
allylphosphonates 42 represents an interesting example of 1,4-elimination as Scheme 28 and
Table 8 show [45]. The study of the reaction mechanism showed that Lewis and Broensted
acids actively catalyze the conversion of 2-fluorooxaphosphetanes into allylphosphine oxides.
The reaction is autocatalytic because the evolving hydrogen fluoride catalyzes the transition
of 2-fluorooxaphosphetanes into allylphosphine oxides. The decomposition of protonated
2-fluorooxaphosphetanes leads to the formation of oxonium salts and carbocation intermediates
under conditions of EN1 elimination. We suppose that the 2-fluorooxaphosphetanes under condition of
acid catalysis (with HF or BF3) via the formation of an oxonium intermediate F, convert to carbocation
intermediate G which has a planar configuration [46]. The removal of a proton from the carbocation
intermediate G depends on electronic effects of the substituents. Alkyl groups possessing the +I-effect
and the effect of hyperconjugation stabilize the positive charge and reduce the energy of intermediate G
formation. Therefore, the intermediate G′ leading to allylphosphonates is energetically more favorable
than this one that is converted into vinylphosphonates.
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Table 7. Vinylphosphonates 41 (Scheme 26) [26].
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12 Et2N H -C6H4CHO-4 50 98 (hexane) 23.7
13 Et2N H -C6H4CH=CHP(O)(NEt2)2 50 190 (heptane) 24.8

a yield of the isolated product; b mixture of E/Z-diastereomers in 97:3 ratio.

In addition, even in case when the initial 2-fluorooxaphosphetanes 25 exist as a mixture of threo-
and erythro-diastereomers, they converted into pure E-vinylphosphonates. Probably, this effect can be
explained by rotation of substituents around the C-C bond in carbocation intermediate G. However,
the presence of Me3Si at C-3 in G′′ leads to the elimination of Me3SiF, which has a high energy of
formation, that creates a preference for the formation of vinylphosphonates 45 (Scheme 28) [26,40].
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Scheme 28. The mechanism for the 2-fluoro-1,2λ5-oxaphosphetane conversion into allyl- or
vinylphosphonates 44, 45.

The formation of carbocation intermediate G was experimentally confirmed (Scheme 29).
The treatment of 2-hydroxyphosphonate 46 with trifluoracetic acid and refluxing for several hours,
generated the carbocation intermediate, as a result of acid-catalyzed dehydration of alcohol.

After that the carbocation intermediate is converted into allylphosphonate 47, which is identical
to the one obtained from 2-fluorooxaphosphetane 25 [26,40,45].
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The reaction of P-fluoroylides with carbonyl compounds is a convenient method for the
synthesis of allylphosphonates having various applications in the synthesis of naturally occurring
compounds (Scheme 30) [45–47]. In this case, the carbonyl compounds can be used twice for the
constructing of diene structures: first in reaction with P-fluoroylide and then in the Wittig reaction
with allylphosphonate. This reaction was used for preparing analogs of the juvenile hormone.
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The cycloadducts of P-fluoroylides with carbon dioxide or with carbon disulfide were isolated as
colorless liquids or crystalline substances. Their structure was confirmed by the NMR spectra. Upon
gentle heating or at room temperature these cycloadducts 32–35 (Table 2, entries 21, 22) are converted to
phosphorylated ketenes or thioketenes 48 (Scheme 31). Stable [2+2]-cycloadducts of 2-fluoroylides with
alkyl and aryl isothiocyanates were also synthesized and converted into phosphorylated ketenimines.
The reaction of P-fluoroylides with carbon disulfide gives unstable cycloadducts that at temperatures
above 0 ◦C converted completely into phosphorylated thioketenes in high yields. Phosphorylated
thioketenes are red liquids distillable in vacuum and susceptible for various transformations [29,36,37].
The same phosphorylated ketenes or thioketenes 29 were prepared by reaction of P-cloroylides
corresponding with CO2 and CS2 (See Scheme 31 and Table 9) [37–39].Molecules 2016, 21, 1371 19 of 21 
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Entry R X Y Z Yield, % bp. °C (mmHg) References 

1 H Cl O O 80 a [36,39] 
2 Me F O O 70 98 (0.06) [37] 
3 Me Cl O O 85 98 (0.06) [36,39] 
4 Pr F O O 60 102 (0.06) [37] 
5 Pr Cl O O 69 102 (0.06) [36,39] 
6 Me F O NPh 45 150 (0.06) [37] 
7 Pr F O NPh 45 150 (0.06) [37] 
8 Me Cl S S 75 95 (0.06) [38] 
9 Pr Cl S S 80 115 (0.06) [38] 
10 Pr F S S 70 115–120 (0.06) [37,38] 
11 i-Pr Cl S S 80 105 (0.06) [38] 

a unstable compound. 

3. Conclusions 

In conclusion, this review has summarized the achievements in the synthesis and properties of 
stable four-membered phosphorus heterocycles-2-chloro-, 2-bromo- and 2-fluoro-1,2λ5-oxa-
phosphetanes. These interesting compounds were obtained by reaction of P-halogenylides with 
various carbonyl compounds (aldehydes, ketones, isocyanates, carbon dioxide, and others). The 2-
chloro and 2-bromo-1,2λ5-oxaphosphetanes, depending on the halogen nature and substituents at the 
α-carbon atom, underwent the rearrangement into 2-haloalkylphosphonates or with elimination of 
hydrogen halides were converted into trans-phosphorylated alkenes. Hydrolysis of 2-halo-1,2λ5-
oxaphosphetanes led to the formation of 2-hydroxyalkylphosphonates. The 2-fluoro-oxaphosphetanes, 
bearing alkyl groups at the С-4 atom at heating as a result of 1,4-elimination of hydrogen fluoride are 
turned to allylphosphonates. Upon heating 3-silyl-2-fluoro-1,2λ5-oxaphosphetanes  easily eliminate 
the trimethylsilylfluoride to convert into E-vinylphosphonates in high yields. These reactions provide 
efficient protocols for the preparation of various phosphorylated alkenes (vinylphosphonates, 
allylphosphonates, phosphorus ketenes, ketenimines, thioketenes) and can be useful for fine organic 
synthesis. 
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Entry R X Y Z Yield, % b.p. ◦C (mmHg) References

1 H Cl O O 80 a [36,39]
2 Me F O O 70 98 (0.06) [37]
3 Me Cl O O 85 98 (0.06) [36,39]
4 Pr F O O 60 102 (0.06) [37]
5 Pr Cl O O 69 102 (0.06) [36,39]
6 Me F O NPh 45 150 (0.06) [37]
7 Pr F O NPh 45 150 (0.06) [37]
8 Me Cl S S 75 95 (0.06) [38]
9 Pr Cl S S 80 115 (0.06) [38]

10 Pr F S S 70 115–120 (0.06) [37,38]
11 i-Pr Cl S S 80 105 (0.06) [38]

a unstable compound.

3. Conclusions

In conclusion, this review has summarized the achievements in the synthesis and properties
of stable four-membered phosphorus heterocycles-2-chloro-, 2-bromo- and 2-fluoro-1,2λ5-oxa-
phosphetanes. These interesting compounds were obtained by reaction of P-halogenylides
with various carbonyl compounds (aldehydes, ketones, isocyanates, carbon dioxide, and others).
The 2-chloro and 2-bromo-1,2λ5-oxaphosphetanes, depending on the halogen nature and
substituents at the α-carbon atom, underwent the rearrangement into 2-haloalkylphosphonates
or with elimination of hydrogen halides were converted into trans-phosphorylated alkenes.
Hydrolysis of 2-halo-1,2λ5-oxaphosphetanes led to the formation of 2-hydroxyalkylphosphonates.
The 2-fluoro-oxaphosphetanes, bearing alkyl groups at the C-4 atom at heating as a result of
1,4-elimination of hydrogen fluoride are turned to allylphosphonates. Upon heating 3-silyl-2-fluoro-
1,2λ5-oxaphosphetanes easily eliminate the trimethylsilylfluoride to convert into E-vinylphosphonates
in high yields. These reactions provide efficient protocols for the preparation of various phosphorylated
alkenes (vinylphosphonates, allylphosphonates, phosphorus ketenes, ketenimines, thioketenes) and
can be useful for fine organic synthesis.
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