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1. Introduction

Ruthenium-catalyzed olefin metathesis represents nowadays an indispensable synthetic tool for
constructing carbon-carbon double bonds in both organic and polymer chemistry [1–8]. The use
of N-heterocyclic carbenes (NHCs) as ancillary ligands [9,10] for ruthenium olefin metathesis
complexes (second generation catalysts) has led to tremendous advances in the design of robust
and effective catalysts for various metathesis applications, including some challenging and difficult
transformations [11–15].

In order to improve catalytic performance of NHC-stabilized ruthenium metathesis complexes,
many efforts have been devoted to the manipulation of the NHC scaffold of the commercially available
second generation catalysts (Figure 1).
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Figure 1. Commercial Grubbs’ and Hoveyda-Grubbs’ second generation catalysts.

Modifications of the NHC ligand include the nature of the ring backbone (saturated or
unsaturated), substitution at the nitrogen atoms and at the carbon atoms of the backbone, ring-size
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variation, introduction of heteroatoms in the skeleton, and introduction of chirality [11–15]. Among
these, modifications of the steric and electronic properties of substituents on the backbone and/or the
nitrogen atoms have had a significant impact on catalyst activity, stability and selectivity in several
metathesis applications [16–29].

This review provides an overview of the reactivity and selectivity shown by olefin metathesis
ruthenium catalysts bearing NHC ligands with substituents on the backbone in definite stereochemical
arrangements, mostly focusing on their catalytic performances in challenging metathesis reactions,
such as asymmetric or sterically hindered reactions. Relevant literature data for ruthenium catalysts
with syn and anti NHC backbone configurations are discussed according to the substitution pattern
at the nitrogen atoms (symmetrical or unsymmetrical), highlighting, where it is possible, the effect
of changing NHC backbone configuration on catalytic behavior. A brief description of ruthenium
catalysts coordinated with backbone-monosubstituted NHCs is also presented.

2. Ruthenium Catalysts Bearing Symmetrically N-Substituted NHCs with
syn or anti Backbone Configurations

2.1. Non-Aromatic N-Substituents

Many research efforts have been devoted to improving catalyst performance by increasing the
σ-donor properties of the NHC ligand through the introduction of more electron-donating N-alkyl
substituents. However, most ruthenium complexes bearing only alkyl side chains were unstable and
did not provide better catalytic results compared with the parent catalysts GII and HGII [30–33].
In 2008, the first examples of monophosphine Ru complexes bearing monodentate saturated NHC
ligands which combine benzyl chiral groups on the nitrogens with methyl backbone substituents were
reported in the literature (1-synGII and 1-antiGII, Figure 2) [21].
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Figure 2. NHC-Ru complexes with N-(S)-phenylethyl groups and syn or anti methyl groups on
the backbone.

Both complexes, presenting S-phenylethyl N-substituents and syn (1-synGII) or R,R-anti
(1-antiGII) methyl groups on the backbone, were prepared in around 40% yield by deprotonation
of the corresponding imidazolinium salts obtained after condensation of the corresponding chiral
diamines. 1-synGII showed higher cataytic activity than 1-antiGII in all reported representative
reactions (Scheme 1) [34], however both performed worse than GII.

Indeed, in the presence of 1-synGII the ring-closing metathesis (RCM) of diethyl diallylmalonate
(1) led to only 27% of conversion to product 2 after 1 h, and the cross–metathesis (CM) of allylbenzene
(3) and cis-1,4-diacetoxy-2-butene (4) to 70% yield of 5 in 12 h, giving in all reactions slightly higher
conversion than its anti analogue. Better results, although mediocre compared to GII, were observed in
the ring-opening metathesis polymerization (ROMP) of 6, where 100% conversion was achieved in 1 h.
Most likely the presence of benzyl N-substituents slows down the efficiency of catalysts with respect
to N-aryl groups. Nevertheless, it is possible to discriminate in the described complexes a different
behavior of catalysts with syn or anti NHC backbone configuration, being 1-synGII always better
performing than 1-antiGII. Interestingly, in ROMP and CM reactions both the catalysts gave improved
selectivity toward Z double-bond formation (E/Z ratio of 2.6:1 with 1-synGII).
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Scheme 1. Representative RCM, CM and ROMP metathesis reactions.

2.2. N-Aryl Substituents

The first complexes with modifications of the backbone of the NHC ring (2-antiGII and 3-antiGII,
Figure 3) were reported by Grubbs and coworkers in 1999, along with the famous second-generation
catalyst GII [35]. The introduction of this type of NHCs was essentially due to an expected enhanced
activity of the resulting ruthenium catalysts, as a consequence of the more basic nature of the NHC,
presenting a saturated backbone, with respect to the ruthenium-based complexes with unsaturated
NHCs known until then. The RCM activity of complexes 2-antiGII and GII was explored and
an increased reactivity especially at elevated temperatures was actually found.
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Figure 3. Catalysts with anti NHC backbone.

The first example of a ruthenium complex bearing an NHC ligand with a syn configuration of the
backbone was reported by Köhler et al., in 2005 (Figure 4) [36]. With the aim of synthesizing complex
4-synGII with syn allyl substituents on the backbone as functional groups for immobilization of the
catalyst to a solid support, they instead formed a new NHC ligand featuring an olefinic group in the
ligand backbone, then employed it to prepare the complex 5-synHGII. In the ring-closing metathesis
of N,N-diallyl-4-methylbenzenesulfonamide, complex 5-synHGII was slightly less active than the
benchmark catalysts HGIItol, especially at low catalyst loadings.
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In 2007 Blechert and coworkers presented a new ruthenium complex 6-synGII (Figure 5)
containing an NHC ligand in which the N-aryl substituents were connected to the NHC backbone
through a syn related C2 unit [37]. In this complex, the steric influence exerted by the aromatic
moiety on the ruthenium alkylidene moiety is much stronger than in GII, therefore an increase of
the diastereoselectivity of ring rearrangement metathesis reactions (dRRM) was expected. Catalyst
6-synGII was found to have limited stability in solution, even in the absence of olefin substrates, thus
showing less catalytic efficiency than GII. Nevertheless, promising results in the RRM of racemic 7 were
observed. Possible deactivation pathways involving intramolecular carbene-arene bond formation
(intramolecular C-H insertion) were also investigated.
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In 2009, the effect of NHC backbone configurations in ruthenium catalysts bearing aromatic N-tolyl
groups was explored by Grisi and coworkers (7-synGII and 7-antiGII, Figure 6) [26]. The synthesis
of 7-synGII and 7-antiGII proceeded in good yield (55%–60%), although it required several steps,
including the preparation of meso and chiral 1,2-diamines [38] to achieve the corresponding NHC
ligand precursors.
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Figure 6. Catalysts with syn and anti methyl groups on the NHC backbone.

The catalytic properties of 7-synGII and 7-antiGII were probed in RCM reactions and intriguing
results were registered above all in the RCM of hindered olefins carried out with 7-synGII. In fact,
while 7-synGII promoted the RCM of 1 with almost the same efficiency of the commercial GIItol and
slower rate than GII (Table 1), catalytic activity higher than that of GIItol and quite similar to GII
was observed in the RCM of 9 (Table 2), and, more significantly, 7-synGII outperformed both GIItol
and GII in the RCM of challenging encumbered substrate 11 (Table 3). 7-antiGII showed a lower
activity than 7-synGII in the RCM of all three malonate derivatives, with an enhanced gap for hindered
substrates where only half of yield with respect to 7-synGII was reached in the ring-closure of 11.
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GII 96 17 [34] HGIItol 0.5 >95 [39]
GIItol 1 70 [26] 7-synHGII 0.5 >95 [27]

7-synGII 1 82 [26] 7-antiHGII 1 78 [27]
7-antiGII 1 47 [26] 8-synHGII 1 85 [27]
8-synGII 1 70 [27] 8-antiHGII 1 59 [27]
8-antiGII 1 35 [27] 9-synHGII 72 55 [22]

a Reactions conducted in CD2Cl2 (0.1 M) at 30 ˝C, catalyst 5 mol %; b Reactions conducted in C6D6 (0.1 M) at
60 ˝C, catalyst 5 mol %.

No significant difference between the two isomers of 7 with dissimilar backbones was appreciated
in CM of 3 and 4, being both catalysts less active than GII, with slightly higher E selectivity.
The behavior of the two catalysts was also flattened in the ROMP of 6, where both catalysts exhibit
high activities as well as E/Z ratios very similar to GII and GIItol [26].

7-synGII and 7-antiGII were tested in the ROMP of 13 (Scheme 2), as well. Both catalysts gave
highly sindiotactic poly(13) with low polydispersities (PDI = 1.1–1.2), 100% of anti units and cis contents
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that reached 88% in the case of 7-antiGII. The latter surprisingly was found more active than the syn
analogue, converting 44% of monomer in 6 minutes with 0.1% of catalyst [40].
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An important role on the catalytic activity is also played by the bulkiness of N-aryl
substituents, as generally reported for Ru complex, even with backbone unsubstituted NHCs [41–45].
Phosphine-containing Ru catalysts bearing N-o-isopropylphenyl groups in place of N-o-tolyl (8-synGII
and 8-antiGII, Figure 6) can be prepared in good yields (60%–65%) with the same procedures
adopted for 7-synGII and 7-antiGII [27]. As expected by the increased catalyst bulkiness, 8-synGII
and 8-antiGII exhibited higher activity in the RCM of substrates 1 and 9 [41–45] with respect
to the corresponding o-tolyl N-substituted catalysts (Tables 1 and 2), whereas the RCM of the
more encumbered 11 appeared slowed down (Table 3). The increase of catalyst bulkiness was
counterproductive also in the ROMP of 13 (Scheme 2), where 8-antiGII gave lower conversion to
polymer (8%) with respect to its analogous with N-o-tolyl groups, 7-antiGII (44%) [40].

The analogous phosphine-free catalysts 7-HGII and 8-HGII were easily synthesized with
standard procedures in good yields (60%–88%) [27]. All obtained phosphine-free catalysts were
able to convert 1 to 2 in a few minutes at 60 ˝C, with performances comparable to HGIItol, as emerged
from data reported in Table 1. 7-antiHGII and 8-antiHGII revealed slightly less efficiency in the RCM
of 9 (Table 2), and this gap was increased in the RCM of 11, where only 7-synHGII showed an activity
comparable with the commercial HGIItol (see data in Table 3).

The phosphine-free Ru catalyst bearing a syn methyl substituted backbone and N-mesityl groups
(9-synHGII, Figure 6), reported by Grubbs [22], is able to almost completely convert 1 in 1 h, at 30 ˝C
in CD2Cl2 in the presence of 1 mol % of catalyst and 0.1 M of monomer, being less efficient than HGII.
On the other hand at only 15 ppm catalyst loading and 50 ˝C, the catalyst performed slightly better
than HGII, giving over 40% of conversion in 24 h. Less interesting behaviour was recorded for more
encumbered substrates, and, in the RCM of 11, even mediocre results were observed (55% conversion
in 3 days, Table 3).

The role of the NHC backbone configuration in the RCM of challenging hindered substrates,
investigated by theoretical studies on monophosphine o-tolyl N-substituted catalysts, revealed that the
rate determining step occurs at the very beginning of the RCM, during the first CM of the substrate,
and the corresponding transition state of the syn complex, that induces a syn orientation of the o-tolyl
groups, presents lower energy than the anti complex mainly due to steric reasons [27].

The presence of NHC backbone substituents plays a significant additional role, besides the
orientation of the N-aryl groups, that is the increase of catalyst stability toward decomposition through
C-H activation by restricting rotation around the N-aryl bond [20,22].

Phosphine-containing catalyst 7-synGII was further tested in the macrocyclic RCM to produce
unsaturated lactones and lactams according to the general reaction reported in Scheme 3.
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Results are collected in Figure 7, where comparison with the behavior of GII and GIItol is
also reported. RCM of 14-membered lactones and lactams 14–17 were successfully carried out with
7-synGII that exhibited an intermediate activity in between GII and GIItol [46]. As for E/Z ratios of
unsaturated macrocyclic products, they generally reflected the thermodynamic stabilities predicted
by DFT calculations for the E and Z isomers. Only small differences, with slightly lower E/Z ratios
observed, can be appreciated in the formation of 16 promoted by 7-synGII and GIItol (E/Z = 90:10).
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In another work, the same group presented ruthenium catalysts 10-synGII and 10-synHGII
(Figure 8) where syn methyl substituents on the NHC backbone were replaced with more
encumbered syn phenyl groups [47]. Complex 10-synGII was synthesized in good yields (58%)
by a shorter synthetic pathway than that of 7-synGII, starting from the commercially available
meso-1,2-diphenylethylenediamine. Surprisingly, two isomeric compounds, corresponding to different
conformations of the N-tolyl substituents (10a-synGII and 10b-synGII, Figure 8), were obtained.
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Since complex 7-synGII as well as GIItol exist as a mixture of rotational isomers both
in the solid state and in solution [18,26,48], the obtainment of separate, stable rotational
isomers was strictly related to the steric pressure exerted by the bulky phenyl groups on the
backbone. Phosphine-containing complexes 10a-synGII and 10b-synGII were easily converted in the
corresponding phosphine-free catalysts 10a-synHGII (95% yield) and 10b-synHGII (84% yield) by
treatment with 2-isopropoxystyrene.

The catalytic behavior of complexes with different N-tolyl conformations was investigated in
model RCM reactions and, one year later, this study was extended to some other attractive RCM
transformations, as well as other representative metathesis processes (ROMP, CM) [39]. Catalysts
with frozen syn orientation of the N-tolyl groups were clearly identified as the most efficient in
all the examined reactions, outperforming also the commercially available catalysts GIItol and
HGIItol in almost all cases. In the challenging RCM of malonate derivative 11, complex 10a-synGII
gave the better result obtained with a phosphine-containing catalysts up to now (92% conversion
within 30 min) (Table 4), proving to be more efficient than complexes 7-synGII and GIItol (Table 3).
In comparison to the catalytic beaviour of complexes 7-synGII and GIItol, existing as a mixture of
inseparable syn and anti NHC conformational isomers [18,26,48], the catalytic behavior of 10a-synGII,
possessing frozen syn N-tolyl groups, furnished the unequivocal evidence for the importance of
correctly disposed N-aryl groups to successfully accomplish RCM reactions. As for phosphine-free
complex 10a-synHGII, although the differences in activity with respect to complexes 10b-synHGII
and HGIItol were less pronounced (see Tables 3 and 4), it turned out to be the most efficient, allowing
the ring-closure of the difficult substrate 11 also at a low catalyst loading (0.5 mol %). In the easier
RCM of hindered N-tosyl derivatives, such as N-allyl-4-methyl-N-(2-methylallyl)benzenesulfonamide
and 4-methyl-N,N-bis(2-methylallyl)benzenesulfonamide, catalyst loadings as low as 0.05–0.1 mol %
were required to achieve quantitative conversions [39,47].

Table 4. RCM of dienes 1, 9 and 11 with catalysts 10a and 10b.

Diene Substrate RCM Product Catalyst a (mol %) t (min) Yield (%) Catalyst b (mol %) t (min) Yield (%) b

1 2 10a-synGII (1.0) 30 >98 10a-synHGII (1.0) 5 >99
1 2 10b-synGII (1.0) 60 70 10b-synHGII (1.0) 12 >99
9 10 10a-synGII (1.0) 35 >95 10a-synHGII (1.0) 6 >99
9 10 10b-synGII (1.0) 60 66 10b-synHGII (1.0) 60 95

11 12 10a-synGII (5.0) 30 92 10a-synHGII (5.0) 30 >99
11 12 10b-synGII (5.0) 60 44 10b-synHGII (5.0) 120 94

a ref. [47]: reactions conducted in CD2Cl2 (0.1 M) at 30 ˝C; b ref. [47]: reactions conducted in C6D6 (0.1 M)
at 60 ˝C.

In the RCM of (˘)-linalool, a plant-derived monoterpene alcohol, to form 1-methylcyclopent-2-
en-1-ol and isobutylene, the reactivity trend highlighted once again the superior performance of
complex 10a-synGII with respect to both its anti conformer 10b and GIItol. As an intriguing
secondary aspect, both isomers of 10-synGII, as well as GIItol, were found able to promote the
dehydration reaction of the cyclization product (1-methylcyclopent-2-en-1-ol) to well-defined mixtures
of methylcyclopentadiene isomers, which represents a viable route to specialized fuel products.

The catalytic potential of 10-synGII and 10-synHGII was also explored in the ring-closing ene-yne
metathesis (RCEYM) of (1-(allyloxy)prop-2-yne-1,1-diyl)dibenzene, where the overall reactivity profile
puts complexes with syn related N-tolyl groups 10a-synGII and 10a-synHGII among the most efficient
catalysts known until now.

In the macrocyclic RCM reactions (Scheme 3) to form the 14-membered lactones 14 and 18,
respectively (Figure 9), complex 10a-synGII showed better performance than benchmark catalysts GII
and GIItol, proving that correct N-tolyl conformation, combined with increased stability due to NHC
backbone substitution, led to highly efficient catalysts.
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The beneficial role of syn phenyl groups on the NHC backbone was also noticed in the CM
of allyl benzene (3) and cis-1,4-diacetoxy-2-butene (4) and in the ROMP of 1,5-cyclooctadiene (6)
(Scheme 1), where higher efficiency compared to commercial catalysts GIItol and HGIItol was found.
No influence of the NHC backbone configuration on E/Z selectivity was instead observed in both
the transformations.

Therefore, the judicious choice of syn related NHC backbone substituents permits the obtainment
of stable Ru metathesis complexes with frozen syn NHC conformation, which seems to be a general
requirement to successfully accomplish olefin metathesis reactions. This insight provides the
inspiration for further development of NHC-bearing olefin metathesis catalysts.

3. Ruthenium Catalysts Bearing Unsymmetrically N-Substituted NHCs with
syn and anti Backbone Configurations

The introduction of differently oriented substituents on the backbone of unsymmetrical NHCs was
recently described by Grisi et al. [49]. The synthesis of ruthenium catalysts containing unsymmetrical
NHCs that combine phenyl substituents on the backbone in syn or anti stereochemical relationships and
N-cyclohexyl, N-isopropylphenyl groups (11-GII and 11-HGII, Figure 10) was easily accomplished in
moderate to good yields (45%–64%).
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The catalytic properties of these complexes were evaluated in the RCM of diethyl diallylmalonate
(1), diethyl allylmethallylmalonate (9), and diethyl dimethallylmalonate (11) to form cycloolefins 2, 10
and 12 (Figure 11). Complexes 11-antiGII and 11-antiHGII performed better than their syn analogues
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in all of the tested RCM reactions. Notably, anti complexes disclosed an unexpectedly high propensity
to the ring closure of the most hindered diolefins 9 and 11, rivaling with the benchmark catalysts
GIItol and HGIItol. This is in contrast with results reported for analogous systems incorporating
symmetrical N-substituents [26,27], where instead syn isomers were found better performing, and
suggests that the impact of backbone configuration of unsymmetrical N-substituted NHCs on catalyst
properties is not easily predictable or interpretable.
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The catalytic behavior of catalysts 11-GII and 11-HGII was also investigated in the CM of
allylbenzene (3) and cis-1,4-diacetoxy-2-butene (4), depicted in Scheme 1. In this reaction, syn complexes
11-synGII and 11-synHGII showed better performances than their anti congeners, reaching high
conversions (88% and 72%, respectively) and low E/Z ratios (~3).

Although preliminary, this study clearly indicates that the presence of differently oriented
phenyl groups on the backbone of unsymmetrical NHCs can dramatically affect catalytic activity
and selectivity, providing a new opportunity in catalyst design.

4. Ruthenium Complexes Bearing NHCs with anti Backbone Configuration in
Asymmetric Metathesis

4.1. Symmetrical N-Substituents

The introduction of chirality into the backbone of the NHC framework was proposed for the first
time by Grubbs and coworkers with the synthesis of ruthenium complexes 2-antiGII and 3-antiGII
(Figure 3), bearing (1R,2R)-1,2-diaminocyclohexane and (1R,2R)-1,2-diphenylethylenediamine moieties
as chiral entities [35]. Subsequently, in 2002, Grubbs’ group reported on the first asymmetric reaction
promoted by these catalysts and by chiral catalysts 12-, 13-, 14-and 15-antiGII (Figure 12) [16], obtained
in high yields (~70%) starting from commercially available enantiopure 1,2-diamines.
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Figure 12. Catalysts 12-GII–15-GII bearing monodentate NHCs with anti backbone.

The catalytic behavior of all these complexes was evaluated in the asymmetric
ring-closing metathesis (ARCM) of prochiral trienes (Scheme 4). Complexes derived from (1R,2R)-1,2-



Molecules 2016, 21, 117 11 of 20

diphenylethylenediamine (3-, 14- and 15-antiGII) gave higher enantiomeric excesses than those
prepared from (1R,2R)-1,2-diaminocyclohexane. Replacement of the mesityl substituent (in 2- and
3-antiGII) with o-tolyl (in 12- and 14-antiGII) or o-isopropylaryl groups (in 13- and 15-antiGII) led
to increased enantioselectivity. More significantly, changing in situ the halide ligands of catalysts
12-GII—15-GII from Cl´ to I´ further improved the enantioselectivity, allowing to reach 90% ee in
the ARCM of triene 18 with catalyst 15b-antiGII (Scheme 4). No effects of temperature and solvent on
enantioselectivity were observed.
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Scheme 4. Asymmetric ring-closing metathesis reactions.

The authors proposed that the chiral information of the NHC backbone was transferred to
the ruthenium center through the ortho-substituted N-aryl groups (the so-called “gearing” effect),
and, in a later study, a theoretical explanation of the origin of the enantioselectivity of the reaction
was also offered by Costabile and Cavallo [50]. The authors rationalized the enantiomeric excesses
experimentally obtained by Grubbs essentially as a result of the chiral folding of the N-bonded aromatic
groups imposed by the anti Ph groups on the NHC backbone, which imposes a chiral orientation around
the Ru=C bond, which, in turn, selects between the two enantiofaces of the substrate. To enhance
enantioselectivity and expand the substrate scope of the ARCM, in 2006 Grubbs and coworkers
reported chiral complexes 16-antiGII–18-antiGII, differing for the number of substituents and/or
for their arrangement on the N-aryl moieties (Figure 13) [51]. Among them, catalysts 16-GII and
18-GII presenting substitution on the N-aryl group of the NHC para to the o-isopropyl group showed
enantioselectivities very similar to those of the parent chiral catalyst 15-GII, while catalysts 17a-antiGII
and 17b-antiGII with o-isopropyl substituents on the same side of the aromatic ring led to an increase
in enantioselectivity.
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Figure 13. Catalysts 16-GII–18-GII bearing monodentate NHCs with anti backbone.

Catalysts 15b- and 17a-antiGII were successfully employed in the desymmetrization of the
alkenyl ether- and silyl ether-prochiral trienes forming five- to seven-membered rings. Conversions
> 98% and 92% enantiomeric excess were obtained with 17a-antiGII in the ARCM of silyl ether
20 (Scheme 4). In general, the diiodide catalysts showed higher enantioselectivity than the
dichloride analogues, although in some cases lower conversions were obtained. The same type
of catalysts was used by the Grubbs’ group in the asymmetric ring-opening cross-metathesis
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(AROCM) for a number of norbornenes and related strained bicycles [52]. In the model reaction
of cis-5-norbornene-endo-2,3-dicarboxylic anhydride (22) with styrene (Scheme 5), catalyst 18a-antiGII
provided the product 23 with a good enantiomeric excess (76%) and high yield (95%) at low catalyst
loading (1 mol %). No selectivity between E and Z isomers was observed, and the use of the analogous
diiodide complex 18b-antiGII generated in situ did not lead to significant improvements in reactivity
or selectivity.
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Scheme 5. Asymmetric ring-opening cross metathesis.

Moreover, in the same work, the first examples for the most challenging asymmetric metathesis
transformations, the asymmetric cross-metathesis (ACM) reactions, were reported. The enantiomeric
excesses observed in ACM reactions of meso-diene substrates containing differently encumbered
substituents at the allylic carbon atom with cis-1,4-diacetoxy-2-butene (4) were modest. In the ACM of
TIPS-protected 1,4-pentadien-3-ol (24) with 4, catalyst 16a-antiGII gave 25 in 54% yield and 52% ee
(Scheme 6).

Molecules 2016, 21, 117 12 of 19 

of norbornenes and related strained bicycles [52]. In the model reaction of cis-5-norbornene-endo- 
2,3-dicarboxylic anhydride (22) with styrene (Scheme 5), catalyst 18a-antiGII provided the product 
23 with a good enantiomeric excess (76%) and high yield (95%) at low catalyst loading (1 mol %). No 
selectivity between E and Z isomers was observed, and the use of the analogous diiodide complex 
18b-antiGII generated in situ did not lead to significant improvements in reactivity or selectivity. 

 
Scheme 5. Asymmetric ring-opening cross metathesis 

Moreover, in the same work, the first examples for the most challenging asymmetric metathesis 
transformations, the asymmetric cross-metathesis (ACM) reactions, were reported. The enantiomeric 
excesses observed in ACM reactions of meso-diene substrates containing differently encumbered 
substituents at the allylic carbon atom with cis-1,4-diacetoxy-2-butene (4) were modest. In the ACM 
of TIPS-protected 1,4-pentadien-3-ol (24) with 4, catalyst 16a-antiGII gave 25 in 54% yield and 52% ee 
(Scheme 6). 

 
Scheme 6. Asymmetric cross-metathesis. 

Besides the above described catalysts with phenyl substituents on the backbone, also ruthenium 
complexes bearing symmetrical NHC ligands with anti methyl groups on the backbone were explored 
in the ARCM of model substrate 18 (Scheme 4). Catalyst 1-antiGII [21], that bears a C2 symmetric 
NHC ligand with four stereogenic centers, since, in addition to the R,R methyl substituted backbone, 
they have S-phenylethyl N-substituents, gave modest enantioselectivity (33% ee) in the asymmetric 
ring-closure of 18, probably due to the minor role of the chiral phenylethyl groups in transferring the 
asymmetric information from the backbone to the substrate. 

In fact, when o-tolyl or o-isopropylaryl groups replaced phenylethyl groups on nitrogens, 
catalysts bearing NHCs with S,S methyl substituted backbone (7-antiGII and 8-antiGII) [27] exhibited 
in the presence of NaI good enantioselectivities (83% ee and 90% ee, respectively), comparable to 
those obtained by analogous anti phenyl substituted backbone 14b-antiGII and 15b-antiGII. 

4.2. Unsymmetrical N-Substituents 

In 2007 Collins and coworkers reported the synthesis of the new complex 19-antiGII bearing a 
C1-symmetric monodentate NHC ligand [53] (Figure 14). In this system the anti phenyl groups on 
the backbone were replaced with two anti tert-butyl groups, with the hope that an encumbered and 
electro-donating group could lead to an increased enentioselectivity and a pronounced reactivity. 
Considering the high steric hindrance, it seemed necessary to replace one N-aryl substituent with a 
smaller N-substituent, thus a Me-group was employed. Complex 19-antiGII was obtained in low 
yield (~30%) starting from enantiopure 1,2-di-tert-butyldiamine. 
  

O

O

H

H

O

O

O

O

Ph

22 23

10 equiv.

        [Ru] 
CH Cl , RT, 1h2 2 18a- GIIanti  (1 mol%)

conv. >95%, 
ee 76%,  1:1E/Z =

AcO OAc OAc

5 equiv

24 25

5 mol% 16a- GIIanti
OTIPS

1 equiv

OTIPS

+

4
Neat, 40°C, 6h

Scheme 6. Asymmetric cross-metathesis.

Besides the above described catalysts with phenyl substituents on the backbone, also ruthenium
complexes bearing symmetrical NHC ligands with anti methyl groups on the backbone were explored
in the ARCM of model substrate 18 (Scheme 4). Catalyst 1-antiGII [21], that bears a C2 symmetric
NHC ligand with four stereogenic centers, since, in addition to the R,R methyl substituted backbone,
they have S-phenylethyl N-substituents, gave modest enantioselectivity (33% ee) in the asymmetric
ring-closure of 18, probably due to the minor role of the chiral phenylethyl groups in transferring the
asymmetric information from the backbone to the substrate.

In fact, when o-tolyl or o-isopropylaryl groups replaced phenylethyl groups on nitrogens, catalysts
bearing NHCs with S,S methyl substituted backbone (7-antiGII and 8-antiGII) [27] exhibited in the
presence of NaI good enantioselectivities (83% ee and 90% ee, respectively), comparable to those
obtained by analogous anti phenyl substituted backbone 14b-antiGII and 15b-antiGII.

4.2. Unsymmetrical N-Substituents

In 2007 Collins and coworkers reported the synthesis of the new complex 19-antiGII bearing
a C1-symmetric monodentate NHC ligand [53] (Figure 14). In this system the anti phenyl groups
on the backbone were replaced with two anti tert-butyl groups, with the hope that an encumbered
and electro-donating group could lead to an increased enentioselectivity and a pronounced reactivity.
Considering the high steric hindrance, it seemed necessary to replace one N-aryl substituent with
a smaller N-substituent, thus a Me-group was employed. Complex 19-antiGII was obtained in low
yield (~30%) starting from enantiopure 1,2-di-tert-butyldiamine.
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Figure 14. Catalysts bearing C1-symmetric monodentate NHC.

For complexes bearing unsymmetrically substituted NHC ligands there are two possible rotational
isomers: the syn isomer, in which the N-alkyl substituent lies over the carbene unit and its
anti counterpart, in which the N-aryl substituent resides above the carbene. In the case of 19-antiGII,
NOE experiment and X-Ray analysis revealed the sole presence of the syn isomer.

Catalyst 19-antiGII was tested in ARCM reactions of several prochiral trienes showing lower
enantioselectivities with respect to Grubbs’ chiral catalysts 15a- and 17a-antiGII but, interestingly,
the best results obtained in the RCM of standard substrate 18 were obtained without the use of any
halide additive (Table 5) [54].

Table 5. RCM of prochiral triene 18.
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Catalyst ee (%) Conv. (%) Ref.

19-antiGII a 82 >98 [53]
19-antiGII b 48 >98 [53]
15a-antiGII a 35 >98 [51]
15b-antiGII b 90 >98 [51]
17a-antiGII a 46 >98 [51]
17b-antiGII b 90 >98 [51]

a Catalyst 2 mol %, CH2Cl2 (0.055 M), 40 ˝C; b Catalyst 4 mol % with NaI as the additive, THF, 40 ˝C.

However, the role of the halide addictive with catalysts 19-antiGII is strongly dependent on the
size of the ring formed. In fact, while in the ARCM of triene 18 a reduction of the enantioselectivity was
observed by adding NaBr or NaI, when a seven-membered ring is involved the addition of the halide
is even beneficial. The low enantiomeric excesses registered in desymmetization to form six- and
seven-membered rings was attributed to the NHC rotation that could occur during the catalytic cycle
causing the erosion of enantiomeric excesses. NHC rotation at room temperature was observed in
19-antiHGII, the Hoveyda version of 19-antiGII, that was formed as a mixture of rotational isomers
with clear prevalence of the syn isomer (19a-antiHGII, Figure 15). Notwithstanding, 19-antiHGII
showed the same reactivity profile and enantioselectivities as 19-antiGII, suggesting that, although
the NHC is rotating at room temperature, the reaction takes place in the conformation in which the
N-methyl group is syn to the carbene at a much faster rate than when the N-aryl group is syn to
the carbene.
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Figure 15. Rotational isomers of 19-antiHGII.

The same group also reported catalysts 20-antiGII and 21-antiGII (Figure 14), bearing a modified
N-aryl substituent, with the expectation that an increased substitution at the N-aryl group would result
in a hindered rotation and therefore in a reduction of the supposed interconversion between isomeric
active species during the catalytic cycle [54]. 20-antiGII and 21-antiGII were obtained in moderate
yields (42%–44%) as a mixture of rotational isomers, in which the syn isomer prevailed. No rotation
of the NHC ligand was observed in either catalyst at room temperature. Catalysts 20-antiGII and
21-antiGII showed similar or enhanced catalytic performances in terms of both activity and selectivity
with respect to the parent catalyst 19-antiGII. Therefore, all the significant reactivity of 20- and
21-antiGII was assumed to occur from the major syn isomer. Notably, the high levels of asymmetric
induction observed in ARCM reactions were achieved without the use of halide additives and, in
particular, catalyst 21-antiGII was found to be especially efficient in the asymmetric ring closing
metathesis involving six and seven-membered rings (Scheme 7). All the catalysts were also able to
promote the asymmetric synthesis of [7] helicene. Using vinylcyclohexane as an additive and C6F6 as
a solvent, 21-antiGII gave 80% of enantiomeric excess [55].
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One deficiency of all these complexes is related to their pronounced thermal sensitivity and
instability in solution. To overcome this disadvantage, Collins and coworkers synthesized a series of
new complexes by varying the nature of the N-alkyl substituents [23].The substitution of the N-Me
group with larger N-benzyl or N-propyl substituent led to improved thermal and solution state
stability. The new complexes, isolated as mixtures of syn/anti rotational isomers, were evaluated in
desymmetrization reactions of meso-trienes and showed lower reactivities than the parent catalyst
19-antiGII. Moreover, lower enantiomeric excesses in almost all cyclization reactions were registered,
suggesting an important effect of the N-alkyl group on the observed enantioselectivities. On the other
hand, the increased robustness of these catalysts allowed for their application also in more challenging
metathesis reaction, such as the ARCM of prochiral trienes affording tetrasubstituted olefins. In the
desymmetrization of trienes 30 and 32 catalyst 22-antiGII (in which the anti isomer is the major isomer)
gave 31 and 32 in 71% and 78% ee, respectively (Scheme 8) [28].
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Enantiopure catalysts 11-antiGII and 11-antiHGII (Figure 10), incorporating a C1-symmetric
NHC ligand with anti phenyl groups on the backbone, were tested in the ARCM of prochiral trienes
18 and 34 (Scheme 9) [49]. In the ARCM of 18 both the catalysts gave quantitative conversion to
19 along with low enantiomeric excesses (18%–19%). The use of NaI as an additive led to higher
ee values (52%–53% ee), as observed by Grubbs with chiral catalysts bearing C2-symmetric NHCs,
and in contrast with the results reported by Collins with catalysts 19-antiGII–22-antiGII, which
are actually structurally much more similar to 11-antiGII and 11-antiHGII. In the challenging
enantioselective desymmetrization of 34 to afford the tetrasubstituted cycloolefin 35 both the catalysts
efficiently performed the cyclization of 34 (>95%), equaling the best results, in terms of conversion and
enantioselectivity, obtained by Collins with modified versions of 19-antiGII, in which the N-Me group
is replaced with N-propyl group (95% conversion, 43% ee) [28].
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The relevance of the chirality of the NHC backbone in ruthenium complexes with differing N-aryl
substituents was also proved by the work of Hoveyda and co-workers. In 2005, they reported the
synthesis of the biphenolate NHC complexes 23a-antiHGII and 23b-antiHGII (Figure 16), presenting
a C1-symmetric bidentate NHC ligand [56].
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Within these systems, the presence of anti groups on the NHC backbone influences the orientation
of the achiral biphenyl moiety, which coordinates diastereoselectively to the ruthenium center. In this
way, the chiral information on the NHC backbone is efficiently transferred to the metal. Although
chromatographic isolation of chloride complex 23a-antiHGII was not possible, both the catalysts
23a- and 23b-antiHGII could be used in situ proving efficiency in a series of AROCM transformations
with high enantioselectivities [56,57].

5. Chiral Ruthenium Complexes Bearing Backbone-Monosubstituted NHCs

In 2010, a new concept in the design of chiral NHC Ru-based systems was introduced by Blechert
and coworkers (Figure 17) [29]. The NHC ligand was characterized by a monosubstituted backbone
with a single stereocenter, and two different N-aryl substituents. The mono-ortho-substituted phenyl
group next to the stereocenter in the backbone efficiently transfers the chirality to the olefin coordination
sphere, and the opposing mesityl group, due to the lack of backbone substituent, adopts a planar
arrangement which increases the space for metathesis transformations. These catalysts proved to be
highly stable and highly active, providing excellent results in terms of both enantioselectivity and
E-selectivity in AROCM reactions. In the AROCM of 22 with 5 equivalents of styrene (Scheme 5),
complex 24c-HGII allowed for complete conversion of 22 also at low catalysts loading (0.05 mol %) or
at low temperature (´10 ˝C), along with high enantiomeric excesses (88% and 93%, respectively) and
E/Z ratios >30:1. Notably, no halide additives were required for this transformation.
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One year later the same group reported ruthenium catalysts 25-GII and 26-HGII coordinated
with a new type of chiral NHC ligand presenting an intramolecular linkage between the N-aryl and the
backbone which creates a rigid chiral environment around the metal [58]. Catalysts 25-GII and 26-HGII
were employed in AROCM with excellent results in terms of activity, enantioselectivity, and substrate
scope, however E/Z selectivities were less pronounced than those observed with previous complexes
24-HGII. Significantly, for the first time the AROCM of norbornenes with allyltrimethylsylane as
the cross-partner was investigated (e.g., AROCM of 36, Scheme 10). The fixed, non–rotable N-aryl
unit in the NHC ligand of catalysts 25-GII and 26-HGII led to higher enantioselectivities for both
E/Z stereoisomers of the formed olefin with respect to Grubbs catalyst 18a-antiGII, in which the
possible partial N-aryl rotation gives rise to a more flexible reaction pocket, resulting in a lower
enantioselectivity [59].
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6. Conclusions

Since their discovery, the NHC-containing olefin metathesis ruthenium catalysts have undergone
extensive modifications in the ligand shell with the purpose of providing effective catalysts that are
readily available, easy to handle, reliable, and highly selective. Significant progress in catalyst design
is undoubtedly related to the manipulation of the NHC framework. In this review we focused on the
impact of NHC ligands bearing substituents at the backbone in a fixed stereochemical arrangement
on the catalytic properties of metathesis ruthenium complexes. The reported results highlight the
crucial role of NHC backbone configuration in giving positive enhancement for RCM reactions,
especially with sterically demanding olefins, as well as for challenging asymmetric transformations.
As a future perspective, we believe that the intriguing behavior of ruthenium complexes bearing
unsymmetrical NHCs with different backbone configuration represent an important starting point for
further development of metathesis catalysts.
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