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Abstract: Two solution-processable small organic molecules, (E)-6,6′-bis(4-

(diphenylamino)phenyl)-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-dione (coded as 

S10) and (E)-6,6′-di(9H-carbazol-9-yl)-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-

dione (coded as S11) were successfully designed, synthesized and fully characterized. S10 

and S11 are based on a donor-acceptor-donor structural motif and contain a common 

electron accepting moiety, isoindigo, along with different electron donating functionalities, 

triphenylamine and carbazole, respectively. Ultraviolet-visible absorption spectra revealed 

that the use of triphenylamine donor functionality resulted in an enhanced intramolecular 

charge transfer transition and reduction of optical band gap, when compared with its carbazole 
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analogue. Both of these materials were designed to be donor semiconducting components, 

exerted excellent solubility in common organic solvents, showed excellent thermal stability, 

and their promising optoelectronic properties encouraged us to scrutinize charge-carrier 

mobilities using solution-processable organic field effect transistors. Hole mobilities of the 

order of 2.2 × 10−4 cm2/Vs and 7.8 × 10−3 cm2/Vs were measured using S10 and S11 as 

active materials, respectively.  

Keywords: isoindigo; solution-processable; organic field effect transistors;  

donor-acceptor-donor; carbazole; triphenylamine 

 

1. Introduction 

Over the past two decades, the design and development of new organic semiconductors has been a 

subject of increasing research interest since these materials are widely used as active components for 

electronic devices such as light emitting diodes [1], field effect transistors [2], photodiodes [3], and 

photovoltaic cells [4–8]. Such vast and industrial applications place high demands on both the electronic 

and chemical properties of materials, including chemical and thermal stability, broad absorption profile, 

appropriately tuned energy levels, solution-processability and charge carriers’ mobility. The fulfilment of 

such properties constitutes a challenge for synthetic organic chemists who generally use a “structural 

strategy” in which blocks of distinctive electronic properties are assembled together in one chromophore 

through appropriate chemical coupling reactions [9]. 

Prior to their use as active materials for organic electronic devices, semiconductor materials were also 

used for optical data storage or optical switching [10,11]. Such materials/structures are typically based on 

a “push-pull” modular design that combines electron-rich (donor) and electron-deficient (acceptor) units 

connected via a π-conjugated linker [8,12]. Such designs have turned out to be highly successful in view 

of generating new semiconducting materials, controlling highest occupied molecular orbital (HOMO) 

and lowest unoccupied molecular orbital (LUMO) energy levels of target chromophores and tuning 

optoelectronic and redox properties. This approach has also been successful in tuning the solubility of 

target materials which is an essential requirement for the fabrication of organic electronic devices. These 

push–pull or donor–acceptor (D–A) modules allow an intramolecular charge transfer (ICT) transition 

that is beneficial for broadening absorption spectrum and narrowing the optical band gap. Most studied 

designs with various D–A combinations include, but are not limited to, D–A, D–A–D, A–D–A and  

A–D–A–D–A. Because of the vast majority of structural blocks and advances in organic chemistry, it 

is not surprising that there is tremendous interest in the development of such designs by varying D–A 

combinations with the goals of achieving panchromatic absorbance, appropriate energy levels and 

solution processability. Exploration of such designs is possible with polymeric entities as well as small 

organic molecules. However, small molecular semiconductors can offer advantages over polymeric 

counterparts in terms of ease of synthesis, introduction of structural variation, purification, less batch 

to batch variations and less end-group contamination. It has been realized that in order to take full 

advantage of the properties of small organic molecules, engineering of chemical structure as well as 
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incorporation of appropriate D and/or A functionalities are highly desirable [13,14]. We are decidedly 

interested in exploring small organic molecules for their potential applications in organic electronics. 

In our efforts to design and develop versatile and novel materials for organic electronic  

applications [15–18], we are interested in exploring the D–A–D module in particular. We [19] and 

others [20–23] have demonstrated that such modules facilitate the favorable π-π interactions in  

the film, leading to an enhanced charge transport between adjacent molecules. Few examples of 

acceptor functionalities within a D–A–D structural motif include diketopyrrolopyrrole (DPP), 2-pyran-

4-ylidenemalononitrile, thiazolothiazole, naphthalene diimide (NDI) and isoindigo [20–27]. The use of 

isoindigo has been widely reported to develop polymeric entities for organic electronics [28,29], however, 

progress on small molecular semiconductors is finitely reported [8]. A material development program 

based on isoindigo functionality has trailed behind other emerging accepting functionalities. 

In this study, we report the design, synthesis and characterisation of the optoelectronic properties of 

two new materials—(E)-6,6′-bis(4-(diphenylamino)phenyl)-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)- 

2,2′-dione (S10) and (E)-6,6′-di(9H-carbazol-9-yl)-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-

dione (S11)—which are based on isoindigo functionality and are represented in Figure 1. The chemical 

structures of both the materials, S10 and S11, were confirmed by 1H- and 13C-NMR spectroscopies and 

high resolution mass spectrometry. The target materials prepared in this work were found to be highly 

soluble in a variety of common organic solvents, such as dichloromethane, chloroform, chlorobenzene 

and toluene, which is a feature that is essential for the fabrication of solution-processed organic 

semiconductor devices. For instance, the solubility of S11 was found to be as high as 15 mg/mL of 

chloroform whereas S10 exerted better solubility at 22 mg/mL of chloroform, thus indicating that 

triphenylamine functionality can enhance the solubility profile of a target chromophore when compared 

with an analogue. We have fabricated the solution-processable organic field effect transistors (OFETs) 

using S10 and S11. Hole mobilities of the order of 2.2 × 10−4 and 7.8 × 10−3 cm2/Vs were measured using 

S10 and S11, respectively. This study builds upon our search for the versatile and efficient organic 

materials by exploring D–A–D module and is a comparative study of the effect of different donors 

(triphenylamine (S10) and carbazole (S11)) whilst keeping the acceptor part (isoindigo) constant. 

 

Figure 1. Molecular structures of the new organic materials investigated in this work. 
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2. Results and Discussion 

2.1. Design Strategy, Synthesis and Characterisation 

Both materials, S10 and S11, were developed based on the D–A–D module, and the central acceptor 

moiety was directly linked to the donor functionalities to create a highly conjugated backbone.  

The development of such structures involves the use of two identical donor units placed on either side 

of the central core, thus resulting in a symmetrical chromophore. In S10, triphenylamine (TPA) group 

was selected for its believed ability to act as an energy antenna [30], which may be responsible for an 

overall bathochromic absorption when compared with S11 for which carbazole functionality was used. 

Both S10 and S11 were synthesized as per reaction Scheme 1 (For their spectra, please see Supplementary 

Figures S1–S8 in Supplementary Materials). The use of isoindigo functionality for enhancing the 

solubility of target materials is paramount as it allows an incorporation of lypophilic chains on its core 

nitrogen atoms. These alkyl chains facilitate the deposition of target materials as films or layers on 

appropriate substrates by relatively simple fabricating techniques. 

2.2. Optoelectronic Properties 

The optical properties of S10 and S11 were investigated by measuring their ultraviolet-visible  

(UV-Vis) absorption spectra in chloroform solution and in pristine as-casted films (Figure 2). The 

longest wavelength absorption maximum (λmax) exhibited by S10 was at 572 nm with an absorption 

onset at 710 nm. S11 exhibited its λmax at 560 nm with an onset at 670 nm. Both the absorption 

maximum and extinction coefficient increased with the use of TPA donor unit. This is in agreement 

with the design principle that the use of TPA donor unit can indeed act as an energy antenna that is 

helpful for stronger bathochromic shift when compared with other donor functionalities, such as 

carbazole. This is consistent with the idea that greater ICT can be achieved with increasing donating 

strength. Absorption spectra of S10 and S11 in pristine films were also measured by spin-casting their 

films from chloroform solutions (equimolar solutions of S10 and S11 spun at 2500 rpm for 1 min). 

Thin film absorption spectra exhibited bathochromic shifts when compared with solution spectra, a 

finding that is consistent with literature reported materials [15,16]. The use of TPA donor unit in S10 

provided an augmentation of λmax by 20 nm when compared to the carbazole unit in S11. Evidently, the 

use of such a strong donor can be helpful (1) to enhance the absorption profile of a given chromophore 

that can lead to greater light harvesting on its surface during the process of photo-excitation and (2) to 

intensify the π-conjugation within the molecular backbone. 

We performed density functional theory (DFT) calculations on both the materials using the Gaussian 

09 suite of programs [31] and B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. DFT investigation 

indicated that HOMO to LUMO excitation moves the orbital density distribution from the donor 

functionalities to the isoindigo core unit. The HOMO densities of S10 and S11 have spread across the 

whole molecular backbone with major dwelling over the donor functionalities. The LUMO orbital 

densities were delocalized over the central part of the molecule and received a sizable contribution from 

the isoindigo core unit (see Figure 3). This type of density distribution may be advantageous for ICT 

transition between donor and acceptor components. It was further observed that the use of a TPA unit 

as an energy antenna in S10 improves the electron-donating ability and the theoretical optical band-gap 
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was reduced as a result of using TPA (2.26 eV (S10)) against carbazole functionality (2.39 eV (S11)). 

Experimentally, the HOMO energies of S10 and S11 were estimated using photoelectron spectroscopy 

in air (PESA) and the LUMO energies were calculated by adding the band gap determined by the onset 

of thin film UV–Vis absorption to the HOMO values. 

These PESA measurements were performed on thin solid as-casted films (same films that were used 

to measure the absorption spectra) to measure work functions corresponding to their HOMO levels. 

The HOMO energy level of S10 was reduced by 0.07 eV in comparison to the HOMO level of S11. The 

band gap was reduced by 0.11 eV with the use of a TPA donor in S10. These experimental findings (1) 

followed the theoretical calculations trend which indicated that with the use of a strong donor, of which 

TPA is an example, band gap reduces and (2) that both the target chromophores are electron donating 

semiconducting components (see energy level diagram, Figure 4). 

 

Figure 2. Molar absorptivity of newly synthesized materials S10 and S11 in chloroform 

solutions (upper) and normalized UV–Vis absorption spectra of S10 and S11 in thin solid 

films (lower), spin-cast from their chloroform solutions (equimolar solutions of S10 and 

S11 spun at 2500 rpm for 1 min).  
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Figure 3. Orbital density distribution for the HOMOs and LUMOs of S10 (upper) and S11 

(lower). DFT calculations on both the materials were performed using the Gaussian 09 

software suite and the B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level of theory. 

 

Figure 4. Energy level diagram depicting HOMOs LUMOs of S10 and S11, where HOMO 

levels were measured using PESA on thin solid films and LUMO levels were calculated 

from the optical band gaps and HOMO levels (ELUMO = Ebandgap + EHOMO). 
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Apart from PESA measurement, we also conducted the cyclic-voltammetry (CV) experiments  

in order to observe the solution behavior of these materials, and to look out for reversible oxidation 

potentials (one or multiple) which might suggest the suitability of these materials to be used as donor 

semiconducting components. We conducted the CV experiments on a glassy carbon electrode. The 

cyclic voltammograms are included in Figure 5. Both the compounds exhibit a chemically reversible 

first cathodic process, thus indicating that the species formed by acceptance of an electron is stable on 

the voltammetry timescale. Direct connection of TPA donor to the diimide core of S10 pushes the first 

reduction process to a more cathodic potential relative to S11, resulting in a higher LUMO of −3.47 eV 

for S10 (calculated by the onset potential method relative to ferrocene) compared to S11, which has the 

LUMO energy of −3.55 eV. This suggests that the direct bond of tertiary nitrogen atom to the central  

π-system in S11 reduces the electron density of electro-active centre of S11 compared to S10. Reversible 

oxidation potential in S10 indicates the strong donating capacity of TPA donor, an observation that 

verifies the design principle, absorption behavior as well as literature reports [15]. 

i (
A)

E (V vs. Fc/Fc+)  

Figure 5. Cyclic-voltammograms of S10 (upper) and S11 (lower), run in freshly distilled 

dichloromethane at a sweep rate of 50 mV·s−1, showing reversible reduction potential 

waves (both S10 and S11) and reversible oxidation potential wave (S10). 

It was further realized that despite the presence of intriguing and advantageous optoelectronic 

properties, organic semiconducting materials must possess thermal stability so that they can sustain 

rigid device fabricating conditions, such as device annealing at a higher temperature. In line with 

 this requirement, we conducted thermogravimetric and differential scanning calorimetry analyses. 

Thermogravimetric analysis (TGA) curves of S10 and S11 were run at a heating rate of 10 °C min−1 

under the protection of nitrogen. TGA indicated that both S10 and S11 are thermally stable up to 350 °C 

(Figure 6), a finding that supports high temperature annealing of as-casted organic electronic devices 

and corroborates differential scanning calorimetry (DSC) analysis (Supplementary Figure S9). 
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Figure 6. TGA traces of S10 (upper) and S11 (lower) under nitrogen atmosphere. Heating 

rate: 10 °C/min from room temperature to 800 °C.  

The electrical properties of S10 and S11 as an active channel semiconductor in OFET devices were 

characterized using a bottom-gate, top-contact geometry. Heavily n-doped conductive silicon wafer 

with a layer of ~200 nm SiO2 on the surface was used as the substrate. The SiO2 functions as the gate 

insulator and the doped Si as the gate. The active S10 and S11 thin films (~40 nm) were spin coated on 

top of the HMDS modified SiO2 surface using S10 and S11 CHCl3 solution (0.5 wt %). On top of S10 

and S11 thin films, gold was deposited as source and drain electrode via shadow mask. The OFET 

schematic of the complete device fabrication is shown in Figure 7a. The small molecule thin films 

were selectively annealed at 100 °C and 120 °C for 10 min on a hot plate in nitrogen atmosphere. 

OFET devices exhibit typical p-type electrical characteristics. The hole mobility was calculated from 

the saturation regime of transfer curve. The S10 and S11 thin film annealed at 120 °C exhibited hole 

mobility of 2.2 × 10−4 and 7.8 × 10−3 cm2/Vs, respectively (Table 1). The transfer and output 

characteristics of 120 °C annealed S10 and S11 based OFET devices are shown in Figure 7b–e, 

respectively. The on/off ratios for all of the devices were calculated around 104 to 105 whereas the 

threshold voltage was observed in the range of −21 to −16 V with respect to annealing. It should be 

noted that the interface between semiconductor and electrodes as well as the dielectric and 

semiconductor are critical for charge carrier injection and transport properties. Among them, the 
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dielectric interface is much more crucial, and the charge carrier traps caused by silanol groups on 

dielectric surface could affect the electron transport more significantly. The radical anions formed are 

unstable towards water and oxygen due to their low LUMO energy levels (around −3.7 eV), and can be 

easily trapped at the interface. Therefore, in our studies, only hole transport behavior was observed for 

these two compounds. To our knowledge, there are very few reports which explore isoindigo-based small 

molecules and their applications in OFET devices. The obtained hole mobility values for S10 and S11 

are in good agreement with some of the previously reported small molecules based on isoindigo core [32]. 

 

Figure 7. (a) Organic field effect transistor (OFETs) device geometry. Output and transfer 

characteristics of S10 (b,c) and S11 (d,e) based p-channel OFET annealed at 120 °C on 

HMDS treated n+-Si/SiO2 substrate. The hole transfer curves were derived at drain voltages 

(VD) of −70 V.  

Table 1. OFET device performance of S10 and S11 thin films annealed at 100 °C, and  

120 °C on HMDS treated n+-Si/SiO2 substrates using bottom-gate, top-contact (BGTC) 

device architecture. 

Annealing 
Temperature (°C) 

μ (cm2·V−1·s−1) VT (V) On/Off Ratio 

S10 
100 1.0 × 10−5 −18–−25 2.5 × 103 
120 2.2 × 10−4 −16–−20 1.1 × 104 

S11 
100 8.5 × 10−4 −20–−24 4.8 × 104 
120 7.8 × 10−3 −17–−21 1.3 × 105 
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The surface morphologies of S10 and S11 thin films were studied by atomic force microscopy 

(AFM) in the tapping mode and are shown in Figure 8. The spin coated films exhibited amorphous 

domains for both the materials. For S10, upon thermal annealing at 120 °C, the thin films become 

discontinuous due to strong aggregation, which deteriorates the charge transport properties. Compared 

to S10, S11 exhibited an interconnected network, which is beneficial for charge carrier transport. Two 

dimensional X-ray diffraction measurements of these two films were further investigated in order to 

study the crystallinity and microstructure of these films (see Supplementary Figure S10). It can be seen 

that both thin films exhibited week diffraction peaks. After thermal annealing, the diffraction intensity 

was enhanced for S10, which is consistent with the AFM image. However, for S11, the thin film still 

showed weak diffraction peak after thermal annealing, indicating its amorphous nature. These results 

are consistent with the results of surface morphologies as well as slight low charge transport properties. 

 

Figure 8. The AFM images of S10 (a,b) and S11 (c,d) for as-cast and thermally annealed films. 

3. Experimental Section 

3.1. Materials and Instruments 

All the reagents and chemicals used, unless otherwise specified, were purchased from Sigma-Aldrich 

Co. (Sydney, Australia). The solvents used for reactions were obtained from Merck Specialty 

Chemicals (Sydney, Australia) and were used as such. (E)-6,6′-dibromo-1,1′-bis(2-ethylhexyl)-(3,3′-

biindolinylidene)-2,2′-dione was purchased from Luminescence Technology Corporation (LTC, 

Taiwan) and was used as such. Unless otherwise specified, all 1H- and 13C-NMR spectra were recorded 

using a Bruker AV400 spectrometer (Bruker Corporation, Billerica MA, USA) at 400 MHz and  
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100.6 MHz, respectively. Chemical shifts (δ) are measured in parts per million (ppm). Thin layer 

chromatography (TLC) was performed using 0.25 mm thick plates precoated with Merck Kieselgel 60 

F254 silica gel (Merck, Darmstadt, Germany), and visualized using ultraviolet (UV) light (254 nm  

and 365 nm, Spectronics Corporation, Westbury, NY, USA). Melting points were measured using a 

Gallenkamp MPD350 digital melting point apparatus (Sanyo, Osaka, Japan) and are uncorrected. 

High-resolution mass spectra (atmospheric-pressure chemical ionization (APCI)) experiments were 

performed with a thermo scientific Q Exactive Fourier-transform mass spectrometer (Thermo Scientific, 

Bremen, Germany), ionizing by APCI from an atmospheric solids analysis probe (ASAP) [33]. UV-Vis 

absorption spectra were recorded using a Hewlett Packard HP 8453 diode-array UV-Vis spectrometer 

(Agilent Technologies, Mulgrave Victoria, Australia). Work functions of all the materials were 

estimated using PESA. PESA measurements were recorded using a Riken Keiki AC-2 PESA spectrometer 

(RKI Instruments, Union City, CA, USA) with a power setting of 5 nW and a power number of 0.5. 

Samples for PESA were prepared on cleaned glass substrates. The thermal stability of S10 and S11 

was investigated by TGA and DSC. 

3.2. Cyclic-Voltammetry 

CV was carried out in freshly distilled dichloromethane (over calcium hydride), with a supporting 

electrolyte of 0.1 M tetrabutylammoniumhexafluorophosphate (Bu4NPF6, Electrochemical grade, 

Aldrich), which was twice recrystallized from ethanol before use. A glassy carbon electrode was used 

as a working electrode (ALS, Tokyo, Japan), which was polished with 0.05 µM alumina on a felt pad, 

washed with distilled water followed by ethanol and dried under a N2 stream before use. A platinum 

wire was used as a counter electrode and a silver wire was used as a pseudo reference electrode. 

Ferrocene was used as an internal reference, by doping all solutions with an approximately equimolar 

amount of ferrocene. Reported voltammograms were recorded at a scan rate of 50 mV·s−1. Redox 

potentials (E1/2 values) were taken as a half-way point between forward and reverse peaks for each 

reversible redox process. 

3.3. Device Preparation for Thin Film Transistors 

Top contact/bottom gate OFET devices fabricated using n+-Si/SiO2 substrates where n+-Si and  

SiO2 work as gate electrode and gate dielectric, respectively. The thickness of thermally grown silicon 

oxide layer is around ~200 nm with a capacitance of about 17 nF/cm2. The SiO2/Si substrate was 

cleaned with acetone followed by isopropyl alcohol. It was then immersed in a piranha solution 

(V(H2SO4):V(H2O2) = 2:1) for 20 min, followed by rinsing with deionized water, and then immersed 

in a 0.1 M solution of hexamethyldisilazane (HMDS) in anhydrous toluene at 60 °C for 30 min. It was 

then rinsed with toluene followed by drying under nitrogen stream. Device fabrication was completed 

by deposition of S10 and S11 by spin coating CHCl3 solution (0.5 wt %) at 3000 rpm for 1 min. 

Subsequently, on top of the S10 and S11 active layer, a 100 nm thick gold (Au) thin film was deposited 

for source (S) and drain (D) electrodes through a shadow mask. For a typical OFET device reported 

here, the source-drain channel length (L) and channel width (W) was 100 μm and 1 mm, respectively. 

The device characteristics of the OFETs were measured at room temperature under nitrogen with a 

Keithley 4200 source meter. The field effect mobility (μ) was calculated from the saturation regime of 
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transfer characteristics. Estimation of the carrier mobility was done using the standard transistor 

Equation (1) in saturation mode: 

ID = W/(2L)Ciµ(VG − VT)2 (1) 

where μ is the field effect mobility, L is channel length, W is channel width, Ci is the gate  

insulator capacitance.  

3.4. Synthesis and Characterisation of Target Molecules 

Both the materials, S10 and S11, were synthesized by reacting the bis-bromoisoindigo precursor, 

(E)-6,6′-dibromo-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-dione, at reflux, with 4-(diphenylamino) 

phenyl)boronic acid and carbazole in dimethoxyethane and toluene solvents, respectively. The reaction 

strategy is depicted in Scheme 1. Both the materials were purified through conventional column 

chromatography on silica and their chemical structures were confirmed via spectroscopic analyses. 

 

Scheme 1. Reaction scheme for the synthesis of S10 and S11. 

(E)-6,6′-bis(4-(Diphenylamino)phenyl)-1-(2-ethylheptyl)-1′-(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-

dione (S10). (E)-6,6′-dibromo-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-dione (0.25 g, 0.38 mmol) 

and (4-(diphenylamino)phenyl)boronic acid (0.27 g, 0.95 mmol) were mixed in dimethoxyethane (25 mL) 

in a 100 mL round-bottomed flask at room temperature and the reaction mixture was stirred for 15 min 

followed by the addition of cesium carbonate (Cs2CO3) (0.37 g, 1.14 mmol). The resulting suspension 

was degassed for 10 min by purging with argon, and tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4) 

catalyst (0.10 g) was added to the reaction mixture. The reaction mixture was refluxed in an oil bath for 

12 h in the absence of light and the progress of reaction was followed by thin layer chromatography, 

which indicated the consumption of starting dibromo derivative. The reaction mixture was cooled to 

room temperature, diluted with water (50 mL), and the product was extracted in chloroform. The 

organic layer was washed with water followed by brine, dried over anhydrous MgSO4, and recovered 

to get crude solid which was purified by column chromatography on silica (hexane: ethyl acetate 9:1 as 

eluent) to afford S10 (0.26 g, 70%) as a bluish-black solid. IR (thin solid film, cm−1): 3034, 2957, 

2928, 2858, 1693, 1608, 1591, 1518, 1493, 1455, 1357, 1330, 1281, 1179, 1109, 818, 754; 1H-NMR 

(400 MHz, CD2Cl2, TMS): δ (ppm) 9.22–9.19 (2H, m), 7.58–7.56 (4H, m), 7.32–7.25 (10H, m),  

7.15–7.05 (16H, m), 7.04–7.00 (2H, m), 3.78–3.67 (4H, m), 1.97–1.86 (2H, m), 1.46–1.26 (16H, m), 

0.97–0.93 (6H, m), 0.90–0.86 (6H, m); 13C-NMR (400 MHz, CD2Cl2, TMS): δ (ppm) 168.63, 148.13, 

147.39, 145.87, 144.06, 133.71, 131.93, 129.95, 129.31, 127.56, 124.76, 123.55, 123.07, 120.53, 
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119.60, 105.78, 44.00, 37.69, 30.71, 28.72, 24.09, 23.05, 13.79, 10.47; HRMS (APCI): [M]+, found 

972.5338. C68H68N4O2 requires 972.5337; Elemental Analysis for C68H68N4O2: Calculated C, 83.91; H, 

7.04; N, 5.76; O, 3.29; Found C, 83.84; H, 7.01; N, 5.71; O, 3.27. 

(E)-6,6′-di(9H-Carbazol-9-yl)-1-(2-ethylheptyl)-1′-(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-dione 

(S11). (E)-6,6′-dibromo-1,1′-bis(2-ethylhexyl)-(3,3′-biindolinylidene)-2,2′-dione (0.25 g, 0.38 mmol) 

was added to the mixture of carbazole (0.15 g, 0.87 mmol), sodium t-butoxide (0.11 g, 1.14 mmol), 

and (1,1′-bis(diphenylphosphino)ferrocene)dichloropalladium(II), complex with dichloromethane 

(Pd(dppf)Cl2·CH2Cl2) (0.081 g, 0.1 mmol) in toluene (25 mL) followed by the addition of  

1,1′-bis(diphenylphosphino)ferrocene (0.22 g, 0.4 mmol) at room temperature, and the resulting 

suspension was refluxed overnight. The reaction mixture was cooled to room temperature, filtered 

through Celite bed and the solvent was evaporated off to get crude solid, which was subjected to 

column chromatography on silica (10% ethyl acetate/hexane) to afford title compound S11 (0.161 g, 

52%) as a black solid. IR (thin solid film, cm−1): 3057, 2958, 2928, 2872, 1694, 1610, 1501, 1447, 

1384, 1334, 1224, 1112, 1099, 736; 1H NMR (400 MHz, CD2Cl2, TMS): δ (ppm) 9.50–9.48 (2H, m), 

8.18–8.16 (4H, m), 7.63–7.61 (4H, m), 7.49–7.45 (4H, m), 7.35–7.31 (6H, m), 7.10–7.09 (2H, m), 

3.80–3.66 (4H, m), 1.97–1.87 (2H, m), 1.48–1.22 (16H, m), 0.96–0.92 (6H, m), 0.86–0.82 (6H, m); 
13C-NMR (400 MHz, CD2Cl2, TMS): δ (ppm) 168.50, 146.88, 141.07, 140.21, 132.19, 131.23, 126.17, 

123.76, 120.48, 120.31, 120.21, 119.28, 110.20, 106.12, 44.38, 37.81, 30.74, 28.74, 24.04, 23.00, 

13.74, 10.41; HRMS (APCI): [M]+, found 816.4397. C56H56N4O2 requires 816.4398; Elemental 

Analysis for C56H56N4O2: Calculated C, 82.32; H, 6.91; N, 6.86; O, 3.92; Found C, 82.27; H, 6.86; N, 

6.79; O, 3.89. 

4. Conclusions 

In conclusion, we have demonstrated the use of isoindigo accepting functionality to generate new  

D–A–D modular small organic molecules, S10 and S11, which contain a common isoindigo core unit 

and varied donor functionalities. The new materials, S10 and S11, were synthesized, found to be 

highly soluble in a variety of common organic solvents, and were thermally stable. Use of a TPA unit 

as an energy antenna helped to achieve a substantial red-shift of the absorption maximum in the visible 

region, improved the solubility of target material and helped to reduce optical band-gap. Upon testing 

these materials as active layers in OFET devices, hole mobilities of the order of 2.2 × 10−4 cm2/Vs and  

7.8 × 10−3 cm2/Vs were achieved for S10 and S11, respectively. There are several reports on isoindigo-

based polymers but not much work has been done so far on the design and development of small 

molecules. The reported charge-carrier mobility values for S10 and S11 are promising and through 

further visionary designing, high mobility values can be achieved. Our results on the effect of donor 

types on electronic properties of D–A–D modular organic materials can indeed inform the design of 

futuristic materials for organic electronic applications. Future studies will focus on the use of 

unsymmetrical donor units and incorporation of π-spacers between donor and acceptor functionalities. 
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