Supporting Information

Table of Contents:

1.	General	S1
2.	Typical procedure for the asymmetric reaction of anilines, ethyl glyoxalate and racemic	
epo	xides	S1
3.	Characterization data of 1,3-oxazolidine derivatives	S2–S6
4.	¹ H- and ¹³ C-NMR spectra and HPLC analysis of products	S7–S50
5.	HPLC analysis for epoxystyrene	.S50-S52
6.	HMBC spectrum of product 3a	S53
7.	NOESY spectrum of product 3a	S54

1. General

Unless otherwise noted, materials were used as commercial suppliers. All solvents were purified by standard method. Flash column chromatography was performed using 200–300 mesh silica gel.

Reaction progress was followed by TLC analysis at 254 nm. NMR spectroscopy was performed on 400 MHz spectrometer operating at 400 MHz (¹H-NMR) and 100 MHz (¹³C-NMR). TMS was used as an internal standard and CDCl₃ was used as the solvent. ¹H-NMR data were reported as follows: chemical shifts in ppm downfield from tetramethylsilane, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet and br = broad), coupling constant = *J*. IR spectra were recorded by using KBr optics. All the reagents are used directly from commercial and without further purification.

2. Typical Procedure for the Asymmetric Reaction of Anilines, Ethyl Glyoxalate and Racemic Epoxides

Ti(O-*i*-Pr)₄ (0.05 mmol) and chiral binaphthalene ligand (**4c**, 0.10 mmol) were dissolved in 2.0 mL toluene, and the mixture was stirred for 2 h at room temperature, then aniline (1.1 mmol) and ethyl glyoxalate (1 mmol) were added into the mixture, and the result system was stirred for 30 mins. Finally epoxide (0.12 mmol) and TFA (0.5 mol %) were added into the system and were stirred at -40 °C for 4 days. Then the solvent was evaporated under vacuum. The residue was purified by silica gel column chromatography using 1:5 ethyl acetate/petroleum ether as eluent, giving a light yellow liquid. Enantiomeric excess (*ee*) were determined by HPLC analysis on a L-7420 (UV-VIS Detector with an L-7110 pump and a Chiralcel OD-H column.

3. Characterization Data of 1,3-oxazolidine Derivatives

Ethyl 5-(chloromethyl)-3-(4-methoxyphenyl)oxazolidine-2-carboxylate (**3a**₁). Light yellow liquid; $R_f = 0.46$ (1:5 ethyl acetate:petroleum ether); 48% yield (pure **3a**₁). The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 95/5, flow rate 0.5 mL/min, $\lambda = 254$ nm), $t_R = 8.92$ min (major), $t_R = 10.397$ min (minor), 43% *ee*; ¹H-NMR (400 MHz, CDCl₃) δ 6.82 (d, J = 6.8 Hz, 2H), 6.69 (d, J = 6.8 Hz, 2H), 5.42 (s, 1H), 4.58–4.55 (m, 1H), 4.18–4.16 (m, 2H), 3.84–3.80 (m, 1H), 3.78–3.72 (m, 5H), 3.56–3.52 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 170.2, 153.9, 138.7, 116.0, 115.0 89.7, 78.6, 61.6, 55.8, 51.5, 44.834, 14.2. HRMS (EI⁺) exact mass calculated for C₁₄H₁₈ClNO4 [M]⁺ requires *m/z* 299.0924, found *m/z* 299.0937.

Ethyl 5-(chloromethyl)-3-(4-methoxyphenyl)oxazolidine-2-carboxylate (**3a**₂). Light yellow liquid; $R_f = 0.36$ (1:5 ethyl acetate:petroleum ether); 4% yield (pure **3a**₂). ¹H-NMR (400 MHz, CDCl₃) δ 6.84 (d, J = 6.8 Hz, 2H), 6.67 (d, J = 6.8 Hz, 2H), 5.46 (s, 1H), 4.92–4.88 (m, 1H), 4.22–4.16 (m, 2H), 3.78–3.69 (m, 5H), 3.65–3.60 (m, 1H), 3.43–3.39 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 169.3, 152.6, 138.3, 114.5, 114.0, 88.3, 77.6, 60.9, 55.2, 49.6, 44.3, 13.7. HRMS (EI⁺) exact mass calculated for C₁₄H₁₈ClNO₄ [M]⁺ requires *m/z* 299.0924, found *m/z* 299.0937.

Ethyl 5-(chloromethyl)-3-(4-chlorophenyl)oxazolidine-2-carboxylate (**3b**₁). Light yellow liquid; $R_f = 0.57$ (1:5 ethyl acetate:petroleum ether); 46% yield (pure **3b**₁). The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 95/5, flow rate 1 mL/min, $\lambda = 254$ nm), $t_R = 12.13$ min (major), $t_R = 8.09$ min (minor), 61.1% *ee* (minor); ¹H-NMR (400 MHz, CDCl₃) δ 7.19 (d, J = 6.8 Hz, 2H), 6.59 (d, J = 6.8 Hz, 2H), 5.45 (s, 1H), 4.63–4.59 (m, 1H), 4.19–4.17(m, 2H), 3.83–3.79 (m, 2H), 3.76–3.71 (m, 1H), 3.56–3.52 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 169.8, 142.695, 129.4, 124.5, 115.0, 88.5, 78.8, 61.9, 50.5, 44.7, 14.2. HRMS (EI⁺) exact mass calculated for C₁₃H₁₅Cl₂NO₃ [M]⁺ requires *m/z* 303.0429, found *m/z* 303.0424.

Ethyl 5-(chloromethyl)-3-(4-chlorophenyl)oxazolidine-2-carboxylate (**3b**₂). Light yellow liquid; R_f = 0.46 (1:5 ethyl acetate:petroleum ether); 4% yield (pure **3b**₂). ¹H-NMR (400 MHz, CDCl₃) δ 7.21 (d, *J* = 6.8 Hz, 2H), 6.62 (d, *J* = 6.8 Hz, 2H), 5.48 (s, 1H), 4.97–4.94 (m, 1H), 4.23–4.21 (m, 2H), 3.79–3.72 (m, 2H), 3.68–3.64 (m, 1H), 3.45–3.42 (m, 1H), 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 170.8, 144.2, 130.7, 125.3, 115.6, 89.4, 79.3, 63.1, 50.9, 45.8, 15.5. HRMS (EI⁺) exact mass calculated for C_{13H15}Cl₂NO₃ [M]⁺ requires *m/z* 303.0429, found *m/z* 303.0424.

Ethyl 5-(chloromethyl)-3-(4-ethoxyphenyl)oxazolidine-2-carboxylate (**3c**₁)

Light yellow liquid; $R_f = 0.48$ (1:5 ethyl acetate:petroleum ether); 47% yield (**3c**₁). The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 95/5, flow rate 0.5 mL / min, $\lambda = 254$ nm), $t_R = 7.79$ min (major), $t_R = 8.57$ min (minor), 39% *ee*; ¹H-NMR (400 MHz, CDCl₃) δ 6.83 (d, J = 6.8 Hz, 2H), 6.65 (d, J = 6.8 Hz, 2H), 5.45 (s, 1H), 4.93–4.87 (m, 1H), 4.20–4.16 (m, 2H), 4.00–3.94 (m, 2H), 3.79–3.69 (m, 2H), 3.64–3.61 (m, 1H), 3.43–3.39 (m, 1H), 1.38 (t, J = 7.2 Hz, 3H), 1.24 (t, J = 7.2 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃) δ 169.9, 152.5, 138.8, 115.9, 114.6, 88.9, 78.1, 64.2, 61.5, 50.2, 44.7, 15.1, 14.3. HRMS (EI⁺) exact mass calculated for C₁₅H₂₀ClNO₄ [M + H]⁺ requires *m/z* 314.1154, found *m/z* 314.1155.

Above products of **3a**, **3b** and **3c** as pure chiral compounds could be successfully separated as single isomers, but below products **3d**, **3e**, **3f**, **3g**, **3h**, **3i**, **3j** couldn't be separated as single isomers from their stereoisomers.

Ethyl 5-(isopropoxymethyl)-3-(4-methoxyphenyl)oxazolidine-2-carbo-xylate (3d) (diasteroisomers)

Light yellow liquid; $R_f = 0.33$ (1:5 ethyl acetate:petroleum ether); 56% yield. The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 95/5, flow

rate 0.5 mL/min, $\lambda = 254$ nm), t_R = 18.40 min (major), t_R = 19.12 min (minor), 41.5% *ee* (minor); ¹H-NMR (400 MHz, CDCl₃) δ 6.85–6.81 (m, 2H[2H']), 6.66–6.63 (m, 2H[2H']), 5.39 (s, 1H) and 5.42, (s, 1H')], 4.84–4.80 (m, 1H[1H']), 4.21–4.13 (m, 2H[2H']), 3.75 (s, 3H), 3.68–3.60 (m, 2H), 3.59–3.55 (m, 2H), 3.43–3.25 (m, 1H[1H']), 1.25 (t, *J* = 7.2 Hz, 3H), 1.21–1.15 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ 170.2 153.0, 139.3 115.0 and [115.4, (1C')], 114.3 88.7and [88.8, (1C')], 78.0, 72.5, 69.and [69.8 (1C')], 61.3, 55.8, 49.6 and [49.8, (1C')], 22.1, 14.2 HRMS (EI⁺) exact mass calculated for C_{17H25}NO₅ [M]⁺ requires *m/z* 323.1733, found *m/z* 323.1743.

Ethyl 5-(butoxymethyl)-3-(4-methoxyphenyl)oxazolidine-2-carboxylate (3e) (diastereoisomers)

Light yellow liquid; $R_f = 0.44(1:5 \text{ ethyl acetate:petroleum ether})$; 46% yield. The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 95/5, flow rate 0.5 mL/min, $\lambda = 254 \text{ nm}$), $t_R = 19.49 \text{min}$ (major), $t_R = 22.00 \text{ min}$ (minor), 71% *ee*; ¹H-NMR (400 MHz, CDCl₃) δ 6.876.83(m, 2H[2H']), 6.68–6.66 (m, 2H[2H']), 5.41 (s, 1H) and 5.44 (s, 1H'), 4.874.50 (m, 1H[1H']), 4.224.15 (m, 2H[2H']), 3.77 (s, 3H), 3.68–3.62 (m, 2H[2H']), 3.543.50 (m, 2H[2H']), 3.43–3.27 (m, 2H[2H']), 1.68–1.57 (m, 4H), 1.42–1.35 (m, 3H), 1.29–1.21 (m, 3H[3H']). ¹³C-NMR (100 MHz, CDCl₃) δ 169.7, 152.3, 138.9, 114.4 and [115.0, (1C')], 113.8, 88.1 (1C) and [88.6, (1C')], 77.2, 70.9, 60.7, 55.2, 50.4 and [49.8, (1C')], 48.9, 43.780, 31.3, 18.7, 13.4. HRMS (EI⁺) exact mass calculated for C₁₈H₂₇NO₅ [M]⁺ requires *m/z* 337.1889, found *m/z* 337.1886.

Ethyl 5-(butoxymethyl)-3-(4-ethoxyphenyl)oxazolidine-2-carboxylate (**3f**) (diastereoisomers)

Light yellow liquid; $R_f = 0.43$ (1:5 ethyl acetate:petroleum ether); 53% yield. The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 95/5, flow rate 1 mL/min, $\lambda = 254$ nm), $t_R = 7.94$ min (major), $t_R = 8.47$ min (minor), 34.5% *ee* (minor); ¹H-NMR (400 MHz, CDCl₃) δ 6.84–6.80 (m, 2H[2H']), 6.64–6.61 (m, 2H[2H']), 5.38 (s, 1H) and [5.41, (s, 1H')], 4.84–4.45 (m, 1H[1H']), 4.21–4.16 (m, 2H[2H']), 3.99–3.93 (m, 2H), 3.68–3.60 (m, 2H[2H']), 3.51–3.47 (m, 2H), 3.40–3.25 (m, 2H[2H']), 1.59–1.54 (m, 4H), 1.40–1.33 (m, 6H), 1.27–1.1837 (m, 3H[3H']). ¹³C-NMR (100 MHz, CDCl₃) δ 170.37, 152.2, 139.4, 115.8, 114.2, 88.7 and [88.7, (1C')], 77.8, 71.5, 64.13, 61.3, 51.0 and [50.4, (1C')], 49.4, 44.4, 31.7, 19.3, 15.0, 14.0. HRMS (ESI⁺) exact mass calculated for [M + Na]⁺ requires *m/z* 374.1944, found *m/z* 374.1935.

Ethyl 3-(4-ethoxyphenyl)-5-(isopropoxymethyl)oxazolidine-2-carboxylate (3g) (diastereoisomers)

Light yellow liquid; $R_f = 0.43$ (1:5 ethyl acetate:petroleum ether); 53% yield. The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 95/5, flow rate 1 mL/min, $\lambda = 254$ nm), $t_R = 6.59$ min (major), $t_R = 7.90$ min (minor), 72% *dr*; ¹H-NMR (400 MHz, CDCl₃) δ 6.85–6.81 (m, 2H[2H']), 6.66–6.62 (m, 2H[2H']), 5.40 (s, 1H) and [5.42, (s, 1H')], 4.82–4.81 (m, 1H[1H']), 4.22–4.14 (m, 2H[2H']), 4.00–3.94 (m, 2H[2H']), 3.69–3.65 (m, 2H[2H']), 3.64–3.55 (m, 2H[2H']), 3.29–3.26 (m, 1H[1H']), 1.38 (t, *J* = 7.2 Hz, 3H), 1.27–1.23 (m, 3H), 1.20–1.16 (m, 6H). ¹³C-NMR (100 MHz, CDCl₃) δ 169.8, 151.6, 138.9, 115.3, 113.7, 88.1 and [88.2, (1C')], 77.4, 71.9, 68.4 and [69.2, (1C')], 63.6, 60.7, 49.0 and [50.0, (1C')], 21.5, 14.5, 13.6. HRMS (EI⁺) exact mass calculated for C₁₈H₂₇NO₅ [M]⁺ requires *m/z* 337.1889, found *m/z* 337.1881.

Ethyl 5-(butoxymethyl)-3-(4-chlorophenyl)oxazolidine-2-carboxylate (**3h**) (diastereoisomers)

Light yellow liquid; $R_f = 0.57$ (1:5 ethyl acetate:petroleum ether); 48% yield. The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane / isopropanol = 95/5, flow rate 1 mL/min, $\lambda = 254$ nm), $t_R = 4.74$ min (major), $t_R = 6.18$ min (minor), 69.4% *ee* (major); ¹H-NMR (400 MHz, CDCl₃) δ 7.20–7.17 (m, 2H[2H']), 6.59–6.54 (m, 2H[2H']), 5.40 (s, 1H) and [5.44, (s, 1H')], 4.87–4.53 (m, 1H[1H']), 4.23–4.15 (m, 2H[2H']), 3.67–3.61 (m, 2H[2H']), 3.52–3.47 (m,2H), 3.41–3.28 (m, 2H[2H']), 1.60–1.53 (m, 4H), 1.40–1.31 (m, 3H), 1.28–1.20 (m, 3H[3H']). ¹³C-NMR (100 MHz, CDCl₃) δ 169.8, 143.3, 129.2, 123.5 and [123.9, (1C')], 114.1 and [114.7, (1C')], 87.1 and [88.0, (1C')], 77.8, 71.8, 71.2, 61.6, 48.8 and [49.5, (1C')], 31.7, 19.3, 14.2, 14.0. HRMS (EI⁺) exact mass calculated for C₁₇H₂₄ClNO₄ [M]⁺ requires *m/z* 341.1394, found *m/z* 341.1397.

Ethyl 3-(4-chlorophenyl)-5-(isopropoxymethyl)oxazolidine-2-carboxylate (3i) (diastereoisomers)

Light yellow liquid; $R_f = 0.52$ (1:5 ethyl acetate:petroleum ether); 54% yield. The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 95/5, flow rate 1 mL/min, $\lambda = 254$ nm), $t_R = 6.73$ min (major), $t_R = 7.82$ min (minor), 90% *ee*; ¹H-NMR (400 MHz, CDCl₃) δ 7.20–7.17 (m, 2H[2H']), 6.59–6.54 (m, 2H[2H']), 5.40 (s, 1H) and [5.43, (s, 1H')], 4.86–4.82 (m, 1H[1H']), 4.22–4.15 (m, 2H[2H']), 3.75–3.64 (m, 2H[2H']), 3.63–3.57 (m, 2H[2H']), 3.31–3.27 (m, 1H[1H']), 1.31–1.24 (m, 3H[3H']), 1.22–1.16 (m, 6H[6H']), ¹³C-NMR (100 MHz, CDCl₃) δ 169.8, 143.4, 129.2, 123.5, 114.1 and [114.7, (1C')], 87.9 and [88.0, (1C')], 78.0, 72.6, 68.7 and [69.6, (1C')], 61.6, 49.0 and [49.7, (1C')], 22.1, 14.2. HRMS (ESI⁺) exact mass calculated for [M+Na]⁺ requires *m/z* 350.1130, found *m/z* 350.1131.

Ethyl 3-(4-methoxyphenyl)-5-phenyloxazolidine-2-carboxylate (3j) (diastereoisomers):

Light yellow solid; M.P: 53–56 °C; $R_f = 0.50$ (1:5 ethyl acetate:petroleum ether); 42% yield. The enantiomeric excess (*ee*) was determined by HPLC on a Chiralcel OD-H column (*n*-hexane/isopropanol = 99/1, flow rate 0.30 mL/min, $\lambda = 254$ nm), $t_R = 28.61$ min (major), $t_R = 30.667$ min (minor), 84.6% *ee*; ¹H-NMR (400 MHz, CDCl₃) δ 7.50–7.48 (d, 2H), 7.33–7.32 (m, 3H), 6.79–6.73 (m, 2H), 6.71–6.66 (m, 2H), 5.50 (s, 1H) 4.36–4.27 (m, 2H), 4.24–4.16 (m, 2H), 4.05–4.02 (m, 1H), 3.72 (s, 3H) 1.40–1.37 (m, 3H), ¹³C-NMR (100 MHz, CDCl₃) δ 170.70, 153.06,139.84, 139.19, 128.91, 127.83, 126.52, 114.88, 114.65, 90.85, 75.37, 63.75, 61.53, 55.59, 14.21. HRMS (EI⁺) exact mass calculated for C₁₉H₂₁NO4 [M]⁺ requires *m/z* 327.1471, found *m/z* 327.1471.

NOESY experiment and HMBC experiment also identified the structure of products, see the spectra in Supporting Information.

4. ¹H-NMR and ¹³C-NMR Spectra and HPLC of Products

Figure S3. ¹H-NMR spectrum of product 3a₂.

Figure S4. ¹³C-NMR spectrum of product 3a₂.

Column	CHIRALCEL OD-H(ODH0CE-LA084)
Column size	0.46 cm I.D.*25 cm L
Injection	20 µL
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)
Flow rate	0.5 mL/min
Wave length	UV 254 nm
Temperature	25 °C
Solvents	Hexane, 2-propanol: HPLC grade

Figure S6. Cont.

Figure S7. ¹³C-NMR spectrum of product 3b₁.

S14

Figure S8. ¹H-NMR spectrum of product 3b₂.

Figure S9. ¹³C-NMR spectrum of product 3b₂.

S16

Table S2.HPLC analysis of product **3b**.

Column	CHIRALCEL OD-H(ODH0CE-LA084)
Column size	0.46 cm I.D.*25 cm L
Injection	20 µL
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)
Flow rate	1.0 mL/min
Wave length	UV 254 nm
Temperature	25 °C
Solvents	Hexane, 2-propanol: HPLC grade

Figure S11. Cont.

Figure S11. ¹H-NMR spectrum of product 3c₁.

Figure S12. ¹³C-NMR spectrum of product 3c₁.

 $C_{15}H_{20}ClNO_{4}\\$

3c. C₁₅H₂₀ClNO₄ **HRMS** (ESI⁺) exact mass calculated for $[M + H]^+$ requires *m/z* 314.1154, found *m/z* 314.1155.

Figure S13. HRMS spectrum of product 3c.

Column	CHIRALCEL OD-H(ODH0CE-LA084)
Column size	0.46 cm I.D.*25 cm L
Injection	20 µL
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)
Flow rate	0.5 mL/min
Wave length	UV 254 nm
Temperature	25 °C
Solvents	Hexane, 2-propanol: HPLC grade

Table S3. HPLC analysis of product **3c**.

Figure S14. Cont.

Figure S14. ¹H-NMR spectrum of product 3d.

Column	CHIRALCEL OD-H(ODH0CE-LA084)		
Column size	0.46 cm I.D.*25 cm L		
Injection	20 µL		
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)		
Flow rate	0.5 mL/min		
Wave length	UV 254 nm		
Temperature	25 °C		
Solvents	Hexane, 2-propanol: HPLC grade		
Solvents	Hexane, 2-propanol: HPLC grade		

Figure S17. Cont.

Figure S17. ¹H-NMR spectrum of product 3e.

Table	S 5.	HPLC	analysis	of	product	3e
Table	00.	III LC	anarysis	U1 P	Jouuci	50

Column	CHIRALCEL OD-H(ODH0CE-LA084)		
Column size	0.46 cm I.D.*25 cm L		
Injection	20 µL		
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)		
Flow rate	0.5 mL/min		
Wave length	UV 254 nm		
Temperature	25 °C		
Solvents	Hexane, 2-propanol: HPLC grade		

Figure S20. Cont.

Figure S21. ¹³C-NMR spectrum of product 3f.

3f. C₁₉H₂₉NO₅ **HRMS** (ESI⁺) exact mass calculated for $[M + Na]^+$ requires *m*/*z* 374.1944, found *m*/*z* 374.1935.

Figure S22. HRMS spectrum of product 3f.

Column	CHIRALCEL OD-H(ODH0CE-LA084)		
Column size	0.46 cm I.D.*25 cm L		
Injection	20 µL		
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)		
Flow rate	1.0 mL/min		
Wave length	UV 254 nm		
Temperature	25 °C		
Solvents	Hexane, 2-propanol: HPLC grade		

Table	S6 .	HPLC	analysis	oft	product	3f.
1 4010	~ • •	111 20	anaryono	~ 1	JI O G G G C C	• • •

Figure S23. Cont.

Figure S23. ¹H-NMR spectrum of product 3g.

Figure S24. ¹³C-NMR spectrum of product 3g.

Table 57. III LC analysis of product 32 .	Table S7.	HPLC	analysis	of pro	duct 3g .
---	-----------	------	----------	--------	------------------

Column	CHIRALCEL OD-H(ODH0CE-LA084)
Column size	0.46 cm I.D.*25 cm L
Injection	20 µL
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)
Flow rate	1.0 mL/min
Wave length	UV 254 nm
Temperature	25 °C
Solvents	Hexane, 2-propanol: HPLC grade

Figure S26. Cont.

Figure S26. ¹H-NMR spectrum of product 3h.

Figure S27. ¹³C-NMR spectrum of product 3h.

Table S8. HPLC	analysis	of product	3h.
----------------	----------	------------	-----

Column	CHIRALCEL OD-H(ODH0CE-LA084)
Column size	0.46 cm I.D.*25 cm L
Injection	20 µL
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)
Flow rate	1.0 mL/min
Wave length	UV 254 nm
Temperature	25 °C
Solvents	Hexane, 2-propanol: HPLC grade

Figure S29. Cont.

Figure S29. ¹H-NMR spectrum of product 3i.

Figure S30. ¹³C-NMR spectrum of product 3i.

3i: C₁₆H₂₂ClNO₄ **HRMS** (ESI⁺) exact mass calculated for $[M + Na]^+$ requires m/z 350.1130, found *m*/*z* 350.1131.

 Table S9. HPLC analysis of product 3i.

Column	CHIRALCEL OD-H(ODH0CE-LA
olumn size	0.46 cm I.D.*25 cm L
Injection	20 JI

Column	CHIRALCEL OD-H(ODH0CE-LA084)
Column size	0.46 cm I.D.*25 cm L
Injection	20 µL
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)
Flow rate	1.0 mL/min
Wave length	UV 254 nm
Temperature	25 °C
Solvents	Hexane, 2-propanol: HPLC grade

Figure S32. Cont.

Figure S32. ¹H-NMR spectrum of product 3j.

Elemental Composition Report

Column	CHIRALCEL OD-H(ODH0CE-LA084)
Column size	0.46 cm I.D.*25 cm L
Injection	20 µL
Mobile phase	n-Hexane/2-propanol = 99/1 (v/v)
Flow rate	0.30 mL/min
Wave length	UV 254 nm
Temperature	25 °C
Solvents	Hexane, 2-propanol: HPLC grade

Figure S35. HRMS spectrum of product 3j.

Page 1

Peak NO.	Time	Height	Area	Area%
1	29.052	307,163	11,977,399	16.07
2	30.214	440,021	19,850,261	26.63
3	32.473	456,516	30,064,715	40.33
4	35.636	246,908	12,657,319	16.97

Table S11. HPLC analysis of product 3j.

Figure S36. HRMS spectrum of product 3j.

Peak NO.	Time(min)	Height	Area	Area%
1	27.747	652,411	23,859,811	34.40
2	28.612	747,186	33,725,572	48.62
3	30.667	70,090	2,814,584	4.06
4	33.720	194,969	8,960,056	12.92

Т	able	S12 .	HPLC	analysis	of proc	luct 3j .
---	------	--------------	------	----------	---------	------------------

5. HPLC Analysis for Epoxystyrene

 Table S13. HPLC analysis for epoxystyrene (racemic).

Column	CHIRALCEL OD-H(ODH0CE-LA084)
Column size	0.46 cm I.D.*25 cm L
Injection	20 µL
Mobile phase	n-Hexane/2-propanol = 95/5 (v/v)
Flow rate	0.5 mL/min
Wave length	UV 254 nm
Temperature	25 °C
Solvents	Hexane, 2-propanol: HPLC grade

Figure S37. HPLC analysis for epoxystyrene (racemic).

Peak NO.	Time	Height	Area	Area%
1	23.712	81,939	4,057,522	49.12
2	25.800	65,677	4,203,137	50.88

 Table S14. HPLC analysis for epoxystyrene (racemic).

Figure S38. HPLC analysis for (*R*)-epoxystyrene.

Table S15	. HPLC	analysis	for (R)-epox	ystyrene.
-----------	--------	----------	--------	--------	-----------

Peak NO.	Time	Height	Area	Area%
1	24.700	3302	138,449	3.25
2	25.505	97,642	8,387,937	96.75

Figure S39. HPLC analysis for epoxystyrene (reclaimation from the system).

	Table S16.	HPLC analysi	s for epoxystyren	e (reclaimation	from the system)
--	------------	--------------	-------------------	-----------------	------------------

Peak NO.	Time	Height	Area	Area%
1	23.850	36,923	1,203,119	16.05
2	25.523	15,166	6,291,923	83.95

6. HMBC Spectrum of Product 3a

Figure S40. HMBC Spectrum of Product 3a.

7. NOESY Spectrum of Product 3a

Figure S41. NOESY Spectrum of Product 3a.