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Abstract: The metabotropic glutamate subtype 1 (mGluR1), a member of the metabotropic 

glutamate receptors, is a therapeutic target for neurological disorders. However, due to the 

lower subtype selectivity of mGluR1 orthosteric compounds, a new targeted strategy, known 

as allosteric modulators research, is needed for the treatment of mGluR1-related diseases. 

Recently, the structure of the seven-transmembrane domain (7TMD) of mGluR1 has been 

solved, which reveals the binding site of allosteric modulators and provides an opportunity 

for future subtype-selectivity drug design. In this study, a series of computer-aided drug 

design methods were utilized to discover potential mGluR1 negative allosteric modulators 

(NAMs). Pharmacophore models were constructed based on three different structure types 

of mGluR1 NAMs. After validation using the built-in parameters and test set, the optimal 

pharmacophore model of each structure type was selected and utilized as a query to screen 

the Traditional Chinese Medicine Database (TCMD). Then, three different hit lists of 

compounds were obtained. Molecular docking was used based on the latest crystal structure 

of mGluR1-7TMD to further filter these hits. As a compound with high QFIT and LibDock 

Score was preferred, a total of 30 compounds were retained. MD simulation was utilized  

to confirm the stability of potential compounds binding. From the computational results, 
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thesinine-4ʹ-O-β-D-glucoside, nigrolineaxanthone-P and nodakenin might exhibit negative 

allosteric moderating effects on mGluR1. This paper indicates the applicability of molecular 

simulation technologies for discovering potential natural mGluR1 NAMs from Chinese herbs. 

Keywords: mGluR1; NAMs; virtual; pharmacophore; docking; MD; TCM 

 

1. Introduction 

G protein-coupled receptors (GPCRs) are seven transmembrane proteins, which contain the largest 

class of drug targets and almost take part in every physiological process in the human body. According 

to their functional similarity and sequence homology, GPCRs can be divided into six classes: class A, B, 

C, D, E and F [1,2]. The metabotropic glutamate receptors (mGluRs), which belong to Class C GPCRs, 

are expressed in neuronal and glial cells widely, and divided into three groups (I–III) based on their 

sequence similarity, pharmacological profiles and transduction mechanisms [3]. mGluR1, a member of 

the group I mGluRs, is considered as a promising therapeutic target as well as mGluR5 to treat diseases 

including depression, anxiety, chronic pain and Alzheimer’s disease [4]. 

Initially, drug development efforts of mGluRs have focused on developing candidate compounds that 

act at the orthosteric site. However, high failure rates occurred and it was attributed to a lack of receptor 

subtype selectivity derived from the highly conserved orthosteric binding site. For example, the key 

residues in the orthosteric binding sites of mGluR1 and mGluR5 are 100% conserved, suggesting that 

subtype selectivity would be very difficult to achieve [5]. This problem can be overcome by developing 

allosteric modulators that act on alternative binding sites. These modulators binding predominantly 

within the 7TMD of the class C receptors can alter the affinity or efficacy of native ligands in positive, 

negative, or neutral ways, which results in a spectrum of activity that cannot be achieved by orthosteric 

ligands alone [6]. In recent years, computer molecular simulation technologies, such as pharmacophore 

modeling and homology modeling, have been used to identify modulators of mGluR1 [7–10]. However, 

there are still some limitations in that the information derived from both the receptor structure and the 

receptor-ligand interactions is insufficient in terms of ligand-based virtual screening; in addition, the 

sequence similarity between the mGluRs and the other released GPCRs is less than 20% [11], which 

implies that there will be a great deal of difference between the homology model of mGluR1 and the 

actual structure. Fortunately, the crystal structure of the human mGluR1 7TMD bound to a NAM was 

reported by Wu et al., which was the first crystal structure of 7TMD of class C GPCRs [12]. This 

structure may provide a basic model for all Class C GPCRs and mGluRs drugs with better properties or 

novel scaffolds will be designed or discovered more successfully [13]. For example, the three dimensional 

structure of mGluR5 was constructed based on this structure and then novel mGluR5 PAMs were 

successfully found [14,15]. 

The purpose of this study was to screen potential NAMs of mGluR1 from TCMD (Version 2009) by 

using a series of molecular simulation method. It has been reported that, some ingredients of Chinese 

medicine produce the healing efficacy though the allosteric way. For instance, tetrandrine can exert 

allosteric effect by targeting on calcium channels [16], magnolol and honokiol act through an allosteric 

site in GABAA to treat anxiety and convulsions [17]. In addition, Chinese herbs have been widely used 
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to treat various nervous system diseases with good effect [18,19]. Thus, mGluR1 NAMs are likely to 

be discovered from Chinese herbs. In this study, a combination of ligand- and structure-based methods 

were utilized to screen mGluR1 NAMs, including pharmacophore modeling, molecular docking and 

molecular dynamics (MD) simulations. It is worth mentioning that previous research has shown that subtle 

structural changes to allosteric ligands of mGluRs result in unexpected changes in their pharmacology, 

such as changing NAM into positive allosteric modulator (PAM) [20]. In this case, in order to increase 

the specificity of virtual screening, ligand-based pharmacophore models aiming at different structure 

types of mGluR1 NAMs were built. After validated by the built-in parameters and test set, the best 

hypothesis for each structure type served as template to search potential mGluR1 NAMs from the 

TCMD. Moreover, the crystal structure of human mGluR1-7TMD (PDB ID: 4OR2) in the RCSB Protein 

Data Bank was utilized for the first time in this study to perform molecular docking [21]. With the 

complementary three-dimensional structure information and the receptor-ligand interaction information, 

the false positive rate of database screening should be decreased. MD simulations were employed to 

examine the stabilizing interactions between potential mGluR1 NAMs and 4OR2. Finally, three potential 

compounds which can be used in future mGluR1 NAMs design were obtained. 

2. Results and Discussion 

2.1. Pharmacophore Model Studies 

Seventy four mGluR1 NAMs collected from the Allosteric Database can be classified into three groups 

(Group A, Group B and Group C) based on their different structure types. The number of compounds 

in each group is 12, 16 and 46, respectively. 

Then, six high active molecules from each group were selected as training set compounds to construct 

an exclusive GALAHAD model for each group. During this process, the maximum number of 

pharmacophore hypotheses to generate was set up to 20 for each group. Chemical information from the 

training sets is shown in Figure 1. 

 

Figure1. Structures of six high active mGluR1 NAMs derived from each group. The 

superscripts a, b and c represent the corresponding Groups A, B and C. Each six mGluR1 

NAMs represented a specific chemical structure type and were defined as the training set 

to build an exclusive GALAHAD model. 
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The generated models were firstly evaluated using the built-in parameters and the top five models of 

each group were selected based on two criteria: (1) Number of “hits” should be equal or near to the 

number of active molecules, which in this case was six. (2) Smaller value of Energy and higher value of 

Specificity were desired for the best model [22]. Thus, 74 active compounds and 222 inactive compounds 

formed a test set to validate the selected pharmacophore models constructed for three structure types. 

Initially, the evaluation results of the selected pharmacophore models were analyzed comprehensively, 

but none of hypotheses possessed eligible A% and CAI (Table 1), which indicates that these models 

cannot identify active compounds and exclude inactive compounds well. As a result, it was difficult for 

each model to cover the whole pharmacophore features of three types of mGluR1 NAMs. 

Table 1. The pharmacophore model validation results of each group. 

Model Specificity Energy N_Hits Ha a Ht b Ht-Ha c A% d N e CAI f 

Model_A018 4.33 2.89 6 12 29 17 16.22% 1.66 0.27 

Model_A014 3.97 3.57 6 58 154 96 78.38% 1.51 1.18 
Model_A010 3.96 3.80 6 20 124 104 27.02% 0.65 0.17 
Model_A009 3.97 3.97 6 57 141 84 77.02% 1.62 1.25 
Model_A002 3.97 4.06 6 57 148 91 77.02% 1.54 1.19 

Model_B014 3.81 1.76 5 11 13 2 14.87% 3.39 0.50 

Model_B013 3.81 2.20 6 10 13 3 13.52% 3.08 0.42 
Model_B008 3.81 1.01 6 14 31 17 18.92% 1.81 0.34 
Model_B015 3.66 3.33 6 11 20 9 14.87% 2.20 0.33 
Model_B006 3.81 2.01 4 14 48 34 18.92% 1.17 0.22 

Model_C002 4.02 13.66 4 39 41 2 52.70% 3.81 2.00 

Model_C001 4.02 19.73 4 39 42 3 52.70% 3.71 1.96 
Model_C003 4.02 13.87 4 39 44 5 52.70% 3.55 1.87 
Model_C004 4.02 12.78 4 39 45 6 52.70% 3.47 1.83 
Model_C010 4.02 14.99 4 40 46 6 54.05% 3.48 1.88 

a Ha is the number of active hits using pharmacophores to search. b Ht is the number of hits using pharmacophores 

to search. c Ht-Ha represents the number of false positive hits using pharmacophores to search. d A% represents 

the ability to identify active compounds from the test database. e N represents the ability to identify active 

compounds from inactive compounds. f CAI is the Comprehensive Appraisal Index. 

However, the goal of pharmacophore model generation is to construct an exclusive hypothesis model 

of each group to gather a certain structure type of active compounds rather than build a single model 

with low specificity to hit three different types of compounds. Thus, Model_A018, Model_B014 and 

Model_C002 achieved the expected goal were discovered. To be specific, Model_A018 with the smallest 

value of Energy and the highest value of Specificity could hit all 12 active compounds of Group A  

and only 17 inactive compounds in the test set, whereas, other models which hit too many inactive 

compounds to collect active compounds with the strucuture type of Group A were rejected. Also, the 

Specificity and Energy of Model_B014 as well as Model_C002 were all reasonable. Eleven active 

compounds of Group B were well mapped with Model_B014, while only two inactive compounds 

were hit by Model_B014. Similarly, 39 active compounds of Group C were filtered by Model_C002, 

whereas only two inactive compounds were hit. In addition, 41 mGluR1 PAMs were used as external 

test set to further evaluate the identification ability of the three optimal models, two PAMs mapped 
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with model_C002, and none PAM could map model_A018 and model_B014. Therefore, these three 

pharmacophore models have better specificity and can distinguish NAMs from PAMs efficiently. To 

sum up, Model_A018, Model_B014, and Model_C002 were chosen as the best pharmacophore models 

to further screen the TCMD, respectively. 

The selected pharmacophore models are shown in Figure 2. Model_A018 consisted of five features, 

including one hydrogen bond donor (DA_1), two hydrogen bond acceptors (AA_2, AA_5) and two 

hydrophobic features (HY_3, HY_4). Model_B014 consisted of seven features, including one hydrogen 

bond donor (DA_1), two hydrogen bond acceptors (AA_2, AA_3) and four hydrophobic features (HY_4, 

HY_5, HY_6, HY_7). Model_C002 consisted of ten features, including two hydrogen bond donors 

(DA_1, DA_7), three hydrogen bond acceptors (AA_2, AA_3, AA_8) and five hydrophobic features 

(HY_4, HY_5, HY_6, HY_9, HY_10). The compounds in the training set which were not well mapped 

with the optimal model were marked with purple lines. In Model_B014 and Model_C002, a green sphere 

covered a purple sphere because the acceptor atom and the donor atom are in the same position in  

this compound. 

 

 

Figure 2. Cont. 
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Figure 2. Pharmacophore models and molecular alignment of the compounds used to 

elaborate the model. In order, they are Model_A018, Model_B014, and Model_C002, 

respectively. Cyan indicates hydrophobic features, green indicates hydrogen bond acceptors, 

and purple indicates hydrogen bond donors. 

2.2. Database Searching 

The screening of the three pharmacophore queries yielded a total of 4042 hits that met the specific 

requirements. A query fit value (QFIT) was computed for each hit to rank the matching rate of its 

required structural features to the pharmacophoric query, so a high QFIT score corresponds to a good 

alignment between pharmacophore model and compound conformer [23]. However, choosing all these 

natural compounds for the next study was not a wise strategy, as only parts of compounds in the 

TCMD were drug-like. Therefore, in the first step of drug discovery it was necessary to apply some 

drug-like filters to eliminate the non-drug-like molecules and then only focus on drug-like molecules. 

The hits were then subjected to drug-likeness filters. In this study, one violation was tolerated when 

using Lipinski’s rule, so as to retain as many potential lead compounds as possible. Thus, a total of 642 

potential drug-like mGluR1 NAMs satisfied four rules of Lipinski’s rule of five, including 256 hits by 

Model_A018, 289 filtered by Model_B014 and 97 obtained by Model_C002. Further screening of the 

filtered hits were carried out using the docking algorithm in DS. 

2.3. Molecular Docking and Database Search 

4OR2 is a homodimer structure of mGluR1. The binding pocket A was created with a sphere radius 

of 14.60 Å around the initial compound (FITM) present in 4OR2_A, and the radius of pocket B was 

14.70 Å in 4OR2_B. Three docking algorithms in DS, LibDock, CDOCKER, and Flexible Docking, 

were used to evaluate their applicability of pocket A and B. The scores of initial compounds and the 

RMSD values between the re-docked FITM and the crystal structure are listed in Table 2. The smaller 

the RMSD value the better, so 4OR2_A with LibDock, which produced the smallest RMSD value of 

0.56 Å (<2.00 Å), was the optimal combination [24]. Besides, the LibDock Score of FITM was 143.730, 

which was set to be the threshold in identifying mGluR1 NAMs by molecular docking. The comparisions 

between the initial binding pose interactions and the docked pose interactions of FITM in 4OR2_A are 

presented in Figure 3. As Figure 3A shows, there is a favorable superimposition between the binding 
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pose and the docked pose. Besides, according to Figure 3B,C, the interactions of the binding pose were 

similar to that of the docked one. To be specific, both poses can form hydrogen bond interactions  

with THR794, SER822 and THR815, and form hydrophobic interactions with PRO756, LEU757and 

TRP798. The only difference is that the initial binding pose can also form a hydrophobic interaction 

with ARG661, however, there is no experimental support with respect to mutations confirming that 

interaction with ARG661 is crucial to activity. Therefore, it can be concluded that the docked pose of 

FITM predicted by LibDock was consistent with the binding pose. 

 

(A) (B) (C) 

Figure 3. The comparison between the initial binding pose interactions and the docked pose 

interactions of FITM in crystal structure 4OR2_A. (A) The pose of FITM initially binding  

to 4OR2_A was compared with that of the one predicted by molecular docking (yellow); 

(B) The initial binding pose interactions in the allosteric binding site; (C) The docked  

pose interactions. 

Table 2. The corresponding score and RMSD value of FITM with three docking algorithms. 

Indexes 4OR2_A 4OR2_B 

LibDock 
RMSD 0.56 Å 3.89 Å 

LibDock Score 143.73 146.22 

CDOCKER 

RMSD 1.18 Å 1.12 Å 

-CDOCKER_ENERGY 40.80 43.90 

-CDOCKER_INTERACTION_ENERGY 55.74 58.46 

Flexible Docking 

RMSD 1.17 Å 1.21 Å 

-CDOCKER_ENERGY 44.15 38.56 

-CDOCKER_INTERACTION_ENERGY 58.36 55.79 

LibDock Score 127.83 139.35 

Active NAMs of three groups were docked into the binding site A, respectively. The three-dimensional 

binding poses and the corresponding docking schematic diagrams of FITM and three experimental 

active compounds which have higher LibDock Score in different groups are illustrated in Figure 4. 

They all fit tightly into the same long and narrow binding pocket. The binding modes and key residues of 

the experimental NAMs for human mGluR1 were further analyzed. Key residues, namely high-frequency 

amino acid residues, are listed in Table 3. The binding mode of the active NAMs in three groups were 
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similar to each other. Moreover, all these active NAMs can form hydrogen bonds with LEU757, 

THR815 and hydrophobic interactions with VAL664, LEU757, VAL753, and PRO756. Thus it can be 

seen that, even though the mGluR1 NAMs have different structures, they form similar interactions with the 

crystal structure of mGluR1. 

Hydrogen bonds and hydrophobic contacts were the main ligand-receptor interactions and this  

was consistent with the GALAHAD pharmacophore modeling results. Moreover, the key interactions 

between active compounds and mGluR1 predicted by the docking study were also congruent with the 

mutagenesis studies. Fukuda suggested that the modulation effects of mGluR1 NAMs were significantly 

affected in point mutations of ASN760, TRP798, PHE801, TYR805 and THR815 [25]. They also 

confirmed that the THR815 mutation attenuated activities of all active compounds although the shift of 

the modulatory potencies of compounds was varied [25,26]. In addition, residue LEU757, the only 

residue in the active site that differs between the rat and human receptors, plays an important role in the 

activity of active compounds [27]. Thus, the above results confirmed that the approaches used in this 

study were rational and reliable. 

 

  

Figure 4. Docking results between FITM, three active NAMs from three groups and 4OR2_A. 

Table 3. Key interaction and the crucial residues between mGluR1 NAMs and 4OR2_A. 

Hydrogen Bonding Interactions Hydrophobic Interactions 

Group A TRP798 LEU757 ARG661 THR815 THR794 VAL664 LEU757 PHE801 VAL753 PRO756 

Group B LEU757 TRP798 GLY665 ARG661 THR815 VAL664 VAL753 LEU757 ALA818 PRO756 

Group C ARG661 GLY752 THR815 LEU757 ASN760 VAL664 VAL753 PRO756 LEU757 ARG661 
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Next, 642 drug-like compounds were docked into the mGluR1 protein, to select the compounds on the 

basis of their ability to form favorable interactions with the active site. Thus 127 potential compounds 

which got a higher score than FITM were retained. Taking the QFIT into consideration, the top ten 

compounds in each group with high-scoring function values were retained for further study. Among the 

30 potential compounds, thesinine-4ʹ-O-β-D-glucoside, nigrolineaxanthone-P and nodakenin, which had 

a higher QFIT and LibDock Score according to the database search results and similar interaction 

modes with mGluR1 to active NAMs, were regarded as possible novel mGlur1 NAM lead candidates. 

Thesinine-4ʹ-O-β-D-glucoside mapped four features with pharmacophore model_A018 and the QFIT 

was 30.91, while AA_5 was unmatched. This potential compound got the highest LibDock Score, 174.93, 

and formed a hydrogen bond network at the mGluR1 active site with the amino acids THR815 and 

CYS746, also formed hydrophobic interactions with TRP798, LEU757, and ARG661 and so on, which 

were consistent with experimental active NAMs. In addition, the atoms which mapped with DA_1 and 

AA_2 also formed hydrogen bonds with THR815 and GLN660, respectively. Nigrolineaxanthone-P, 

which scored a QFIT of 24.86 and a LibDock Score of 170.09, formed a strong hydrogen bond interaction 

with THR815 and hydrophobic interactions with ILE764, TRP798, and LEU757. In the case of the 

pharmacophore model_B014 mapping result, DA_1 and AA_3 were not mapped, while other features 

were almost the same as the non-bond interactions. Nodakenin scored a QFIT of 45.73 and a LibDock 

Score of 153.22, and formed a strong hydrogen bond interaction with GLN660 and hydrophobic 

interactions with ILE661, TRP798, and LEU757. HY_6, AA_8 and HY_10 were not mapped by 

nodakenin. The chemical groups within this compound which formed a hydrophobic interaction  

with 4OR2 were also mapped with the corresponding hydrophobic features. Thus it can be seen that 

these three hits satisfied the expected interactions as defined by the pharmacophore models and their 

binding modes were similar to the initial compound in the crystal structure. Furthermore, the results of 

pharmacophore model were almost consistent with that of molecular docking. The three hits mapped 

with the corresponding pharmacophore models and the interactions with 4OR2 are shown in Figure 5. 

2.4. Molecular Dynamics Simulation 

Molecular dynamics (MD) simulation was conducted to evaluate stability of mGluR1-ligand complexes 

under dynamic conditions. The initial conformations of FITM and the three hits were acquired from  

the molecular docking experiments by LibDock. The RMSD curves of the receptor structures from each 

complex, potential energy profiles and interaction energy profiles of each complex are shown in Figure 6. 

The RMSD, potential energy and interaction energy of the models gets stabilized with the time, 

trajectories of complexes reached equilibrium after 4ns. The H-bond distances formed between FITM, 

thesinine-4ʹ-O-β-D-glucoside, nigrolineaxanthone-P and THR815 were within a range around 2.75, 

2.50 and 2.00 Å and the distance trajectories also show that the H-bond of nodakenin with GLN660 

averaged around 2.75 Å. THR815 was the key residue, which was identical with that reported in the 

literature [25,26]. The binding free energy values between ligands and mGluR1 were calculated. All 

three potential compounds have lower binding free energy values compared with the initial compounds. 

Taking all the evaluation indexes into consideration, those three compounds might have potential negative 

modulation effects on mGluR1. 
  



Molecules 2015, 20 12778 

 

 

 

 

Figure 5. Pharmacophore mapping results and molecular docking results of thesinine-4ʹ-O-

β-D-glucoside, nigrolineaxanthone-P and nodakenin. 

(A) (B) 

Figure 6. Cont. 
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(C) (D) 

Figure 6. Results of the MD simulation of four complexes. (A) Average backbone RMSD; 

(B) Potential Energy; (C) Distance of hydrogen bond; (D) Interaction energy. Blue indicates 

FITM, red indicates thesinine-4ʹ-O-β-D-glucoside, green indicates nigrolineaxanthone-P, and 

purple indicates nodakenin. 

3. Experimental Section 

3.1. Data Collection and Preparation 

By entering “metabotropic glutamate receptor 1” as a search term in the Allosteric Database [28], 

85 mGluR1 NAMs were obtained. After removing all the compounds whose active values were not 

recorded, 74 mGluR1 NAMs were retained and then divided into three groups based on different structural 

types for further study [29–31]. The top six active molecules of each group were used as training sets 

for running GALAHAD models. Seventy four active compounds and 222 inactive compounds formed 

a test set to validate the selected pharmacophore models. In addition, 41 mGluR1 PAMs were used as 

external test set. 

In case of pharmacophore modeling, the molecular geometry of each compound was minimized 

using the standard Tripos’ molecular mechanics force field. Partial atomic charges were added by  

the Gasteiger-Hückel method and the Conjugate Gradient method was used to perform the energy 

minimizations study with 1000 iterations. 

For molecular docking, diverse conformations of all ligands were created by the BEST conformation 

generation method in Accelrys Discovery Studio 4.0 (DS) within the relative energy threshold of  

20 kcal/mol [32]. Maximum number of conformations was set to 255. All other parameters were 

automatically set to the default value.  

3.2. Pharmacophore Model Studies 

3.2.1. GALAHAD Pharmacophore Hypotheses Generation 

Genetic Algorithm with Linear Assignment of Hypermolecular Alignment of Datasets (GALAHAD) 

that is embedded in the SYBYL 7.0 package employs Tripos’ proprietary technology to generate 

pharmacophore hypotheses and alignments from sets of compounds that bind at a common target site. 
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There are two steps during GALAHAD operation. First, the compounds in the training set are 

aligned flexibly to each other in internal coordinate space. In this step, a genetic algorithm (GA) [33] 

was used to identify a set of conformations of compounds in the training set with minimized energy 

and maximized pharmacosteric similarity. Second, the conformations of the compounds produced are 

treated as rigid bodies and aligned in Cartesian space. This step makes use of linear assignment 

methodology and geometric heuristics to identify optimal feature correspondences between ligands [34]. 

Then, correspondences that are conserved are used to do a least-square alignment of the two ligands, and 

they are merged into a single hypermolecule. The procedure can then be applied to the hypermolecule 

produced and a third molecule, or to another hypermolecule. The end result of such an agglomerative 

process is a single master hypermolecule that incorporates information from each of the structures in the 

training set. Accordingly, the best models are carried forward into the second stage, multiplemodels are 

produced because a multi-objective fitness function is used in the GA, and every model represents a 

different trade-off among the competing criteria [35], but rarely do models achieve optimum values in 

all parameters. Additionally, it is important to add that the features which were considered during the 

development of models include hydrogen bond donor atoms, hydrogen bond acceptor atoms, hydrophobic 

and charged centers and so on. 

3.2.2. Validation of the Pharmacophore Model 

The generated models were firstly evaluated by built-in parameters (Energy and Specificity). Besides, 

the top five models of each group would be selected and then evaluated by a test set using UNITY 

module. The test database composed of 74 experimentally known mGluR1 NAMs and 222 inactive 

compounds selected from DrugBank [36]. The evaluation indicators were presented as follows: Ha, 

Ht-Ha, A%, N, CAI [37,38]. Ha is the number of active hits using pharmacophores to search. Ht-Ha 

represents the number of false positive hits using pharmacophores to search. A% (the effectively hit 

ratio of active compounds) indicates the ability of pharmacophore model to identify active compounds 

from the test set. With a high value of A%, a pharmacophore model shows a strong ability to identify 

active compounds. N (namely the identified effective index) represents the ability to distinguish active 

compounds from inactive compounds. A hypothesis that possesses a high N value has a strong ability 

to distinguish active compounds from inactive ones. Then, Comprehensive Appraisal Index (CAI), which 

considers A% and N at the same time, is proposed to evaluate of the models comprehensively. In addition, 

41 mGluR1 PAMs were using as external test set to further evaluate the identification ability of the 

optimal model. After considering every factor, the three best pharmacophore models for each structure 

type were utilized as queries to screen the compounds in the TCMD. 

3.3. Database Search 

The selected pharmacophore models were validated and converted into a UNITY query for 

pharmacophore-guided virtual screening studies. The “flexible database search” option was implemented 

to perform virtual screening. TCMD, which contains 233,033 natural compounds from 6735 medicinal 

plants, was the object of this screening. Moreover, the identified ligands were filtered by four rules of 

“Lipinski’s rule of five” in order to be further analyzed by the docking studies. The retained ligands must 

meet the following rules: MWT ≤ 500, LogP ≤ 5, H-bond donors ≤ 5, and H-bond acceptors ≤ 10 [39]. 
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3.4. Molecular Docking Studies 

3.4.1. Define Binding Site 

4OR2, a complex of the human mGluR1 receptor with a NAM in the RCSB Protein Data Bank, was 

used as a reference model. Common problems, such as incomplete residues, nonstandard atom order in 

amino acids, the lack of hydrogens and the existence of crystallographic waters, were automatically 

cleaned up by Prepare Protein protocol in DS. The protein-binding site was determined by combining 

results from experimental data and the Define and Edit Binding Site tools in DS. Meanwhile, all of the 

ligands used for the docking studies and the receptor 4OR2 were all assigned to their respective charge 

status corresponding to pH 7.0. 

3.4.2. Docking Strategy 

LibDock, CDOCKER and flexible docking, three docking algorithms within DS, were used to 

evaluate their applicability for the binding site defining of 4OR2. After being extracted from the binding 

site, the initial compound FITM was re-docked into the crystal structure, and then, the RMSD was 

calculated. In general, an RMSD of less than 2.00 Å indicated it was highly reliable that a docking 

module would reproduce the experimentally observed binding mode for mGluR1 NAMs. The docking 

algorithm which obtained the smallest RMSD was selected for further utilizing. The molecular 

docking score of FITM was set to be the threshold in identifying mGluR1 NAMs. 

In order to further analyze the different binding mode of three structure types of mGluR1 NAMs, 

active compounds in Group A, B and C were docked into the binding site, respectively. Then, the poses 

of the docked compounds were analyzed and the key residues of each structure type were obtained. 

Finally, potential compounds were selected on the basis of molecular docking score and favorable 

interaction with key residues. 

3.5. Molecular Dynamics Simulation 

Three potential NAMs of mGluR1 were chosen through the appraisal method mentioned above.  

The best binding conformation of them among the poses predicted by the molecular docking program 

was selected and the protein-NAM complexes were used as MD simulation starting points. In order to 

simulate the actual environment, implicit biological membranes were added to the protein-NAM 

complexes by using Generalized Born with Implicit Membrane (GBIM) model. Then, the system was 

subjected to the CHARMm force-field and relaxed by energy minimization (10,000 steps of steepest 

descent and 10,000 steps of conjugated gradient). The system was slowly driven from an initial 

temperature of 50 K to the target temperature of 300 K for 100 ps and equilibration simulations were 

run for 300 ps. The MD simulations (production) were performed for 600 ps with the NVT system at  

a constant temperature of 300 K and the results were saved at a frequency of 5000 ps. All the other 

parameters were set as defaults. The initial complex, protein-FITM, was set as a reference. 

The MD trajectory was determined for structural properties, root mean-square deviation (RMSD), and 

potential energy by using the Discovery Studio 4.0 analyze trajectory protocol. The interaction energy 
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between ligands and 4OR2 was then calculated using the calculate interaction energy protocol. All 

parameters were set as defaults. 

4. Conclusions 

In recent years, because of the decreased side effects, improved subtype selectivity and development 

of patient tolerance, allosteric modulator drug discovery has gradually gained great attention. 

Computational approaches, such as ligand-based pharmacophore modeling, molecular docking and 

structure-based homology modeling, are gaining importance as valuable methods to perform drug 

discovery. In this study, a series of computational methods were used to discovery potential mGluR1 

NAMs from Traditional Chinese Medicines. To be specific, this work first attempted to build three 

pharmacophore models based on the different structure types of mGluR1 NAMs. The best pharmacophore 

model of each type which can distinguish NAMs not only from inactive compounds but also from 

PAMs is selected based on the validation with the test set and external test set. Then, the models were 

used for the TCMD virtual screening. Meanwhile, as the crystal structure of mGluR1-7TMD was 

obtained, detailed insight into the architecture of the transmembrane domains of class C GPCRs was 

provided, including the accurate location of the allosteric binding site and key residues that regulate 

receptor signaling. As a result, the development of allosteric modulator based on receptor structure is 

an effective method in this study. Thus, this paper represented the first successful attempt to use the 

resolved crystal structure of the mGluR1 to understand the ligand-receptor interactions and to reduce 

the false positive rate of ligand-based virtual screening. 30 potential mGluR1 NAMs were retained and 

the docking results suggested that several key residues (LEU757, ASN760, TRP798, PHE801, TYR805 

and THR815) in mGluR1-7TMD played important roles in NAMs selectivity. Moreover, all the docking 

studies mentioned in our paper were consistent with the mutant experiments. Then, with the further 

evaluation by molecular dynamics studies, thesinine-4ʹ-O-β-D-glucoside, nigrolineaxanthone-P and 

nodakenin may serve as potential mGluR1 NAMs leads. The authors expect that the information 

gained from this study could be further employed in the search for potential natural mGluR1 NAMs. 

The major shortcomings in this study are that some more complicated dynamic processes and the 

underlying mechanism of action of mGluR1 remain undiscovered because of the limitations of the 

current crystal structure. To be specific, firstly, the mechanism of allosteric modulators to modulate the 

affinity of orthosteric ligands is also unclear. Interestingly, however, as the orthosteric site and the 

allosteric site were both obtained in one crystal structure, there might be a deeper drug synergism 

contained in interactions of allosteric modulators and orthosteric compounds as described. A deeper 

drug synergism may be derived from the cooperativity of orthosteric and allosteric ligand binding which 

are electrostatic repulsion and the coupled conformations of the orthosteric and allosteric sites [40]. 

Secondly, although the NAMs screened by high specificity ligand-based pharmacophore models have 

been differentiated from PAMs, the binding modes of NAMs and PAMs under different conformational 

states are still unclear. 

In the future, it is expected that other mGluR structures, such as active state structures in complex 

with PAMs or even a full length dimeric receptor structure, will be solved. Ultimately, leveraging the 

structural information from these mGluR receptors will allow computational approaches to further our 
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understanding of class C GPCR activation mechanisms and promote the development process of 

allosteric modulators. 
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