Supplementary Discussion: Design Consideration ACPP-C

Initially ACPP-C was synthesized on the solid phase with a tyrosine residue at the N-terminus. Incubation of this peptide in PBS in a Pierce iodination tube (Thermo Scientific) resulted in oxidation of the C_{mob} residue as was indicated by LC-MS (+16 Da, and +2*16 Da adducts were observed (Supplementary Figure S7). To prevent oxidation of C_{mob}, ¹²⁵I was intended to be introduced via an ¹²⁵I-labeled SHPP-*N*-hydroxysuccinimide ester residue. We initially tested ACPP-C without SHPP for MT1-MMP sensitivity, while ACPP-C with a non-radioactive SHPP moiety was used for the enzyme specificity assay.

Supplementary Material and Methods: Iodination Strategies ACPP-B

Direct labeling in iodination tube: ¹²⁵I (PerkinElmer) in PBS (6.0 μ L, 11.5 MBq) was mixed with ACPP-B in MilliQ water (10.4 μ L, 45 nmol), and PBS (433.6 μ L) in an Iodogen iodination tube (Pierce) for 20 min, at 600 rpm and 23 °C, and transferred to a siliconized 1.5 mL tube. The ¹²⁵I labeling yield was determined by radio-TLC, using iTLC-SG strips eluted with 20 mM citric acid at pH 5.2. A >95% radiochemical purity was observed. As control, ACPP-B in MilliQ water (10.4 μ L, 45 nmol) was mixed with PBS (433.6 μ L) in an Iodogen iodination tube for 5 min, at 600 rpm and 23 °C, followed by LC-MS analysis. Found mass: 9197.7 Da, Calc. MW: 9197.8 Da for ACPP-B peptide dimer.

Indirect labeling: ¹²⁵I (PerkinElmer) in PBS (439.6 μ L, 11.5 MBq) was activated in an Iodogen iodination tube for 7 min according to vendor's protocol, and transferred to a siliconized 1.5 mL tube containing ACPP-B in MilliQ water (10.4 μ L, 45 nmol) and mixed for 20 min. As control PBS incubated in an Iodogen iodination tube for 7 min was transferred to a siliconized 1.5 mL tube containing ACPP-B in MilliQ water (10.4 μ L, 45 nmol), and mixed for 20 min. As control PBS incubated Siliconized 1.5 mL tube containing ACPP-B in MilliQ water (10.4 μ L, 45 nmol), and mixed for 20 min, followed by LC-MS analysis. Found mass: 4597.3 Da, Calc. mass: 4597.3 Da for ACPP-B.

For this indirect labeling procedure, a ~60% labeling yield was typically observed by radio-TLC as described before. Impure ¹²⁵I-ACPP-B, mixed with 500 uL 0.1% TFA in MilliQ, was purified by solid phase extraction on a light C₈ Sep-Pak cartridge (Waters). Unfortunately, a >95% radiochemical purity could not be achieved. In detail, the cartridge was washed with $5 \times 1 \text{ mL } 0.1\%$ TFA in MilliQ after peptide loading. Subsequently, the cartridge was washed with 1 mL 20% EtOH in MilliQ, 1 mL 30% EtOH in MilliQ, 1 mL 70% EtOH in MilliQ, and 1 mL 96% EtOH in MilliQ. All solutions contained 0.1% TFA. Radioactivity (in MBq) of all fractions was determined, followed by radiochemical purity analysis of fractions of interest using radio-TLC.

Figure S1. Molecular structure of (**A**) Ac-y-e₉-X-C^{*}PKESC^{*}NLFVLKD-X-r₉-dab(DOTA)-NH₂ (ACPP-A), (**B**) Ac-y-e₉-X-CRPAHLRDSG-X-r₉-k(DOTA)-NH₂ (ACPP-B), and (**C**) SHPP-e₉-X-PLAC_{mob}WAR-X-r₈-k(DOTA)-NH₂ (ACPP-C). The arrows indicate the MT1-MMP cleavage sites. In ACPP-A, the two cysteines, indicated by C^{*}, form an intramolecular disulfide bridge. X represents 3-oxapentanoic acid (O1Pen).

characterization cyclic ACPP-A Figure S2. LC-MS of analog Ac-y-e9-C*PKESC*NLFVLKD-r9-dab(DOTA)-NH2 and linear ACPP-A analog Ac-y-e9-CPKESCNLFVLKD-r9-dab(DOTA)-NH2 (0.1 mM) (A & C) before and (B & D) after 19h incubation with MT1-MMP (0.13 µM), respectively. The left and right graphs show the UV absorbance chromatogram and the mass spectra, respectively. C* represents cysteine residues that are linked via an intramolecular disulfide bridge. (A) MS spectrum of Ac-y-e9-C*PKESC*NLFVLKD-r9-dab(DOTA)-NH2, obsd. 4749.4 Da, calcd. 4749.3 Da. (B) MS spectra at 8.9 min (Neutralizing domain, obsd. 2143.8 Da, calcd. 2143.7 Da for Ac-y-e9-C*PKESC*N-COOH), and at 9.6 min (CPP, obsd. 2623.7 Da, calcd. 2623.7 Da for H₂N-LFVLKD-r9-dab(DOTA)-NH2). (C) MS spectrum of Ac-y-e9-CPKESCNLFVLKD-r9dab(DOTA)-NH₂, obsd. 4751.4 Da, calcd. 4751.4 Da. (D) MS spectra at 8.9 min (cyclic neutralizing domain, obsd. 2143.8 Da, calcd. 2143.7 Da for Ac-y-e9-C*PKESC*N-COOH), at 9.1 min (linear neutralizing domain, obsd. 2145.8 Da, calcd. 2145.8 Da for Ac-y-e9-CPKESCN-COOH), and at 9.6 min (CPP, obsd. 2623.7 Da, calcd. 2623.7 Da for H2N-LFVLKD-r9-dab(DOTA)-NH2).

Figure S3. iTLC and γ -HPLC spectra of (**A**) uncleaved ¹⁷⁷Lu-ACPP-B and (**B**) ¹⁷⁷Lu-CPP-B. (**C**) γ -HPLC spectrum of pre-activated ¹⁷⁷Lu-ACPP-B, showing >95% cleavage. Radiochemical purities were >99% as assessed by iTLC. The upper panel shows the UV absorbance chromatogram at 212 nm and the lower panel shows the γ -radiation monitored by a γ -detector.

Figure S4. Cellular uptake of ¹⁷⁷Lu-non-ACPP, ¹⁷⁷Lu-ACPP-B in the presence of 50 μ M GM6001 (from 50 mM stock in DMSO), and ¹⁷⁷Lu-ACPP-B in the absence of GM6001 after 3h incubation with HT-1080 cells, assessed by γ -counting. Final concentration of DMSO was 0.1% v/v for both ACPP-B groups. Data are presented as mean ± SD.

Figure S5. Radio-TLC analysis of ¹²⁵I iodination of ACPP-B. (A) Direct iodination of ACPP-B in an iodination tube results in >95% radiochemical purity, but also in ACPP-B peptide dimer formation. (B) Prior activation of ¹²⁵I and subsequent iodination in an siliconized tube resulted in ~60% labeling yields. (C) iTLC results for solid phase extraction fractions of unpure ACPP-B. Maximum obtained purity was <90%.

Figure S6. LC-MS characterization of ACPP-B incubated in PBS in an iodination tube for 5 min in the absence of ¹²⁵I. The left and right graphs show the UV absorbance chromatogram and the mass spectrum of the UV-peak bracketed by the arrowheads, respectively. Observed mass of 9194 Da corresponded to the calculated mass of an ACPP-B peptide dimer linked to each other via a intermolecular disulfide bridge (calc. mass 9193 Da).

Figure S7. (**A**) γ -HPLC spectra of ACPP-C analog y-e₉-x-PLAC_{mob}WAR-x-r₈-k(DOTA)-NH₂ labeled with ¹²⁵I in an iodination tube for 50 min, 500 rpm, RT. The upper panel shows the UV absorbance chromatogram at 212 nm and the lower panel shows the γ -radiation monitored by a γ -detector. The panels show shoulder peaks indicative for a non-homogeneous product. (**B**) LC-MS characterization of the same peptide (encoded as svd077) incubated in an iodination tube in PBS for 50 min, 500 rpm, RT in the absence of ¹²⁵I. The UV absorbance chromatogram (left) and the mass spectrum (right) of the UV-peak (11.2–12.0 min) are shown. (**C**) Zoomed-in mass spectra for the 4+ (left) and 3+ (right) ion set. Observed masses: 4290.4 Da (y-e₉-X-PLAC_{mob}WAR-X-r₈-k(DOTA)-NH₂, calc. mass 4290.4 Da), 4306.4 Da (y-e₉-X-PLAC_{mob}WAR-X-r₈-k(DOTA)-NH₂ + 16 Da), and 4322.4 Da (y-e₉-X-PLAC_{mob}WAR-X-r₈-k(DOTA)-NH₂ + 2 × 16 Da). (**D**) Schematic representation of oxidation of C_{mob} amino acid. x represents amino-hexanoic acid.

	¹⁷⁷ Lu-CPP-B
	(n = 5)
Blood	0.14 ± 0.06
Heart, infarct	1.69 ± 0.50
Heart, remote	0.32 ± 0.11
Muscle	0.10 ± 0.02
Lung	0.67 ± 0.25
Spleen	4.17 ± 0.82
Liver	33.2 ± 3.98
Kidney	10.1 ± 1.61
Fat	0.16 ± 0.07
Thigh bone	2.61 ± 0.25
Brain	0.01 ± 0.01

Table S1. Biodistribution results of 10 nmol ¹⁷⁷Lu-CPP-B 5h post-injection in MI-mice. The data are mean %ID/g \pm SD. ¹⁷⁷Lu-CPP-B uptake in infarct was significantly higher in infarct compared to remote (p < 0.01).