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Abstract: Docking scoring functions can be used to predict the strength of protein-ligand 

binding. It is widely believed that training a scoring function with low-quality data is 

detrimental for its predictive performance. Nevertheless, there is a surprising lack of 

systematic validation experiments in support of this hypothesis. In this study, we 

investigated to which extent training a scoring function with data containing low-quality 

structural and binding data is detrimental for predictive performance. We actually found 

that low-quality data is not only non-detrimental, but beneficial for the predictive 

performance of machine-learning scoring functions, though the improvement is less 

important than that coming from high-quality data. Furthermore, we observed that classical 

scoring functions are not able to effectively exploit data beyond an early threshold, 

regardless of its quality. This demonstrates that exploiting a larger data volume is more 

important for the performance of machine-learning scoring functions than restricting to a 

smaller set of higher data quality. 
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1. Introduction 

The development of machine-learning scoring functions (SFs) for docking has become a vibrant 

research area. Machine-learning SFs employ non-parametric machine learning techniques to predict 

the binding affinity of a protein-ligand complex from a description of its structure. Such a description 

takes the form of a set of features, also called descriptors or energetic contribution terms, which are 

usually derived from an X-ray crystal structure. In contrast, classical SFs, either force-field, empirical 

or knowledge-based, assume a predetermined additive functional form relating structure and binding 

affinity, typically using Multiple Linear Regression (MLR). 

There are now many machine-learning SFs, mostly designed to be applied to either virtual screening [1–3] 

or binding affinity prediction [4–7]. SFs for virtual screening aim at discriminating between binders 

and non-binders in large data sets of candidate molecules, whereas SFs for binding affinity prediction 

are designed to provide the most accurate estimate of the strength with which a molecule binds to a 

macromolecular target. The objective is, therefore, to design the most predictive SF for the intended 

application. Here we focus on the second application where the SF has to provide the best possible 

prediction of binding affinity, typically in terms of pKd or pKi, the negative logarithm of binding or 

inhibition constants. This SF is immediately useful to calculate a reliable estimate of the binding 

strength of protein-ligand complexes from their X-ray crystal structures, which would add value to 

structural interactomics databases [8–10]. Another use of accurate binding affinity prediction is in 

identifying the most potent chemical derivatives of a drug lead or fragment by ranking these molecules 

by their predicted affinity, thus reducing the time and financial costs that would be incurred by 

experimentally measuring the binding affinity of all the derivatives instead. SFs for binding affinity 

prediction can also be used to find those derivatives with less affinity for an off-target, which is helpful 

to design more selective chemical probes or reduce the side effects associated to an off-target.  

User-friendly re-scoring software implementing machine-learning SFs for these prospective applications 

is now freely available [11]. 

In constructing machine-learning SFs, we have favored the use of Random Forest (RF) [12] as  

the regression model, which, in our experience, has provided better results than Support Vector  

Regression (SVR) [13]. RF-Score [4] was the first machine-learning SF to achieve a substantial 

improvement over classical SFs at binding affinity prediction. RF-Score has been since then successful in 

prospective virtual screening [14], implemented in a large-scale docking web server called istar at 

http://istar.cse.cuhk.edu.hk/idock [15], and further improved [11,16,17]. 

It has been claimed elsewhere (e.g., [18]) that the quality of protein-ligand structures is essential to 

the development of methods for predicting binding affinity. There is, nevertheless, a surprising lack of 

systematic validation experiments in support of this hypothesis. Instead, such statements are often 

backed up with merely a few selected cases that agree with the presented hypothesis, an approach that 

is prone to confirmation bias. In a recent publication [17], the factors that contribute the most to 

predictive performance have been analyzed. One important finding is that a more precise chemical 

description of the complex does not generally lead to a more accurate prediction of binding affinity.  

This result is not so surprising once one reflects on the fact that a binding constant is experimentally 

determined in solution along a trajectory in the co-dependent conformational space of the interacting 

molecules, whereas the X-ray crystal structure just represents a possible final state of that dynamic 
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process in a crystallized environment. Hence, there is no reason to think that very precise descriptors 

calculated from the crystal structure are necessarily more representative of the dynamics of the binding 

molecules than less precise descriptors. A corollary of this finding is that adding low-quality 

complexes to the training set, instead of being detrimental for the development of scoring functions as 

widely assumed, might actually be beneficial. 

Consequently, this study investigates whether training a SF with data containing low-quality 

structures and binding measurements is detrimental or beneficial for predictive performance. We are 

adopting the widely-used quality criteria of the PDBbind database [19,20], where the refined set 

compiles high-quality complexes for the development and validation of SFs, and the general set also 

contains many more complexes of lower quality. The rest of the paper is organized as follows. Section 

2 introduces models, data quality, benchmarks, and performance metrics. Section 3 discusses the 

results. Lastly, Section 4 presents the conclusions of this study. 

2. Methods 

2.1. Models 

The four models that were evaluated and compared in a recent study [11] will be also used in this 

study to analyze new high-quality and low-quality training data. Model 1 is AutoDock Vina [21], 

which constitutes a demanding performance baseline given its condition as one of the best classical 

SFs at predicting binding affinity [11]. The only difference between models 1 and 2 is that the latter is 

recalibrated on each training set using Multiple Linear Regression (MLR). Thus, model 2 will allow us 

to observe the effect of training a classical SF with increasingly-sized data sets. The substitution of 

model 2’s MLR with RF regression gives rise to model 3. Likewise, model 3 will allow us to observe 

the effect of training a machine-learning SF with increasingly-sized data sets. Consequently, models  

1–3 employ the same set of six features (five Vina energy terms and the number of rotatable bonds of 

the ligand). Lastly, model 4 only differs from model 3 in that it adds the 36 features from the original 

version of RF-Score [4] to the 6 Vina features used in models 1 to 3. Note that models 1 and 2 are 

classical SFs, whereas models 3 and 4 are machine-learning SFs. 

Models 3–4 are stochastic and thus their performance on a test set has a slight dependence on the 

random seed with which RF training is carried out. To investigate this variability, for each RF model 

and training set, 10 random seeds were employed to give rise to 10 slightly different trained RF 

models. For each seed, we built a RF model using the default number of trees (500) and values of the 

mtry control parameter from 1 to 6 for model 3, and from 1 to 42 for model 4. The selected model for a 

given seed will be that with the mtry value providing the lowest RMSE (root mean square error, see 

Section 2.3) on the subset of training data known as the Out-of-Bag (OOB) data [12]. Thus, each 

combination of RF model and training set gives rise to 10 instances of the trained model with their 

corresponding predictions, i.e., a boxplot of predictions. In this way, SFs can be compared by the 

median performance of their 10 RF model instances, which is a more accurate assessment than the 

usual procedure of basing the comparison on a single model instance from each SF. 

This experimental setup was designed to address the following questions: 

• How test set performance varies when Vina is tailored to the training set? (model 1 vs. model 2). 
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• How test set performance varies when a classical SF is converted into a machine-learning SF by 

substituting MLR with RF? (model 2 vs. model 3) 

• How test set performance of a machine-learning SF varies with additional features? (model 3 vs. 

model 4) 

Together with the increasingly-sized training sets that will be next introduced, these models explore 

the interplay of three major factors for performance: the regression model, the features and training  

data size. 

2.2. Benchmarks 

Four benchmarks were assembled from the PDBbind database. This database is commonly used to 

design and validate SFs for binding affinity prediction [19,22]. Only high-quality data is considered in 

the first three benchmarks, whereas the fourth also includes training data with lower degrees of quality. 

2.2.1. PDBbind Data Quality 

We adopted the widely-used PDBbind definition of high-quality data for the development of 

scoring functions (high-quality complexes are placed in the PDBbind refined set) [19]. Here, a protein 

complex is considered to be of high-quality for the purpose of developing and validating scoring 

functions if all the following conditions are met: 

(a) the resolution of the structure is better than 2.5 Å 

(b) the structure has been determined by X-ray crystallography 

(c) both the protein and the ligand are complete in the structure 

(d) protein and ligand are non-covalently bound 

(e) the ligand molecule does not contain uncommon elements such as Be, B, Si, and metal atoms 

(f) in case of peptide ligands, these are oligo-peptides (i.e., have less than 10 peptide residues) 

(g) in case of nucleotide ligands, these are oligo-nucleotides (i.e., have less than four  

nucleotide residues) 

(h) binding data must be either a dissociation constant (Kd) or an inhibition constant (Ki) 

(i) it is a binary complex (i.e., those proteins with multiple ligands bound in close vicinity at the 

common binding site are discarded) 

By definition, any complex that is not of high-quality is a low-quality complex (of course, the 

degree of quality of a complex within each group will be unavoidably different). The PDBbind general 

set adds low-quality complexes to those in the refined set. While we recognise that there are alternative 

definitions of what a high-quality complex is, some of these definitions are far more restrictive than the 

one we have adopted (e.g., [18]). 

2.2.2. Benchmarks Using High-Quality Data for Training 

The first two benchmarks aimed at investigating the validity of previous results for machine-learning 

SFs in the light of newly released data. Specifically, the first benchmark consists in testing previously 

developed SFs, which were trained on the PDBbind v2013 refined set (n = 2959 complexes), on the 
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PDBbind v2014 refined set minus v2013 refined set (n = 546). Therefore, this is a blind test in that 

only data available until 2013 was exclusively used to build the SF that predicts the binding affinities 

of the ‘future’ complexes that appeared in 2014. The second benchmark was recently constructed [11] 

to investigate how binding affinity prediction improves with training data size. This benchmark 

constructed the test set by comparing different time-stamped releases of the PDBbind database.  

In particular, the test set was the PDBbind v2013 refined set minus v2012 refined set (n = 382), and the 

four training sets of approximately equally incremental size were PDBbind v2002 refined set (n = 792), 

v2007 refined set (n = 1300), v2010 refined set (n = 2059) and v2012 refined set (n = 2897). Here, a 

fifth training set, PDBbind v2014 refined set minus the test set (n = 3076), is added to find out whether 

the conclusions of that study hold in the light of new data. By construction of each of these two blind 

benchmarks, the test set does not overlap with any of the training sets (this is also the case for the rest 

of benchmarks in this study). Furthermore, we had no control over the composition of training or test 

sets, as we either take all the complexes in the refined set or in the intersection of two database 

releases. It is worth noting that all test sets are naturally diverse, thus avoiding previous criticisms 

regarding the use of a test set connected by protein homology to the training set [22]. 

The third benchmark compares the resulting machine-learning SFs against a set of widely-used 

classical SFs. These were tested by others on the CASF-2013 [23], a updated version of the widely-used 

PDBbind benchmark [4] (this benchmark was introduced by Cheng et al. [19] but only recently named 

CASF-2007 [23]). CASF-2013 was chosen because it had been recently utilised to evaluate 20 SFs, 

mostly implemented in commercial software packages. The test set was PDBbind v2013 core set (n = 195) 

and the training set was PDBbind v2013 refined set minus v2013 core set (n = 2764). In this study, a 

second training set, PDBbind v2014 refined set minus v2013 core set (n = 3249), was included to 

examine how the predictive performance of the four models changes with new high-quality data. 

2.2.3. Benchmarks Including Low-Quality Data for Training 

Finally, the fourth benchmark is intended to evaluate how SF performance depends on the  

volume and quality data. From the PDBbind v2012 general set, which consists of 9308 biomolecular 

complexes with different degrees of structural and interaction data quality, four filters were applied to 

remove 2234 non-protein-ligand complexes, 2 protein-ligand complexes that failed PDB-to-PDBQT 

conversion, 99 approximate binding affinity measurements (e.g., Kd ≤ 100 µM, Ki ~0.1 pm) and 92 

NMR structures. After this initial filtering, 6881 X-ray crystal protein-ligand complexes were retained. 

We henceforth refer to this set as general12. From general12 complexes, we generated six training sets 

depending on interaction data quality (Kd/Ki or not) and structural data quality (three ranges in 

structure resolution). The largest training set is general12 itself, including all filtered data regardless of 

its quality. The second training set is formed by the 6719 general12 complexes containing crystal 

structures with resolutions ≤3.0 Å (general12 ≤ 3.0 Å), which discards 162 complexes with resolution 

between 3.0 Å and 4.6 Å. The third training set is made of the 5752 general12 complexes with resolutions 

≤2.5 Å (general12 ≤ 2.5 Å). 

The remaining three training sets are constructed in an analogous way, but starting from the 4449 

general12 complexes with Kd/Ki as interaction data (i.e., discarding the 2432 complexes with IC50s, 

which constitute lowest-quality interaction data). This is the fourth training set of this benchmark 
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(general12_Kd/KiOnly). Thereafter, the fifth training set is formed by the 4356 general12_Kd/KiOnly 

with resolutions ≤ 3.0 Å (general12_Kd/KiOnly ≤ 3.0 Å). Next, the sixth training set is made of the 

3809 general12_Kd/KiOnly with resolutions ≤ 2.5 Å (general12_Kd/KiOnly ≤ 2.5 Å). Lastly, the 

seventh training set is the 2897 refined12 complexes for comparison purposes. Note that complexes 

from both general12_Kd/KiOnly ≤ 2.5 Å and refined12 have Kd/Ki only and resolutions ≤ 2.5 Å, but 

the former set contains 912 complexes that are of low quality because of not meeting at least of the 

other quality criteria (see Section 2.2.1). 

The test set is the PDBbind v2013 refined set minus v2012 refined set (n = 382), the same set as in 

the second benchmark to allow comparison with SFs trained exclusively on high-quality complexes. 

There were no overlapping complexes between the test set and any of the seven training sets. Table 1 

summarizes the training and test sets and the purpose of the four benchmarks. Note that refined14 is an 

abbreviation for PDBbind v2014 refined set. Other abbreviations can be similarly interpreted. 

Table 1. Summary of the four benchmarks (number of complexes between brackets). 

Benchmark Test Set Training Sets Purpose 

1 refined14\refined13 (546) refined13 (2959) 

To validate previous results for 

machine-learning SFs in the 

light of newly released data. 

2 refined13\refined12 (382) 

refined02 (792) 

refined07 (1300) 

refined10 (2059) 

refined12 (2897) 

refined14\(refined13\refined12) (3076) 

To study how performance 

varies given more high-quality 

training data. 

3 core13 (195) 
refined13\core13 (2764) 

refined14\core13 (3249) 

To compare machine-learning 

SFs to classical SFs on  

CASF-2013. 

4 refined13\refined12 (382) 

refined12 (2897) 

general12_Kd/KiOnly ≤ 2.5 Å (3809) 

general12_Kd/KiOnly ≤ 3.0 Å (4356) 

general12_Kd/KiOnly (4449) 

general12 ≤ 2.5 Å (5752) 

general12 ≤ 3.0 Å (6719) 

general12 (6881) 

To investigate how 

performance changes when 

adding low-quality training 

data. 

2.3. Performance Measures 

Predictive performance was quantified through root mean square error RMSE, standard deviation 

SD in linear correlation, Pearson correlation coefficient Rp and Spearman correlation coefficient Rs 

between the measured and predicted binding affinities of the test set complexes. Specifically, for a 

given model f, ݌(௡) =  Ԧ(௡) characterizingݔ is the predicted binding affinity given the features (Ԧ(௡)ݔ)݂

the nth complex and the performance metrics are defined as: 
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(1) 

where N is the number of complexes in the set, a and b are the intercept and coefficient of the linear 

correlation between {݌(௡)}௡ୀଵே  and {ݕ(௡)}௡ୀଵே  on the test set, whereas {݌௥(௡)}௡ୀଵே  and {ݕ௥(௡)}௡ୀଵே  a are the 

rankings of {݌(௡)}௡ୀଵே  and {ݕ(௡)}௡ୀଵே , respectively. 

Therefore, lower values in RMSE and SD and higher values in Rp and Rs indicate better  

predictive performance. 

3. Results and Discussion 

3.1. Evaluating RF-Score-v3 in a Blind Test on New Data Released in 2014 

RF-Score-v3 [11], a new version of RF-Score [4], was recently built and validated. RF-Score-v3 is 

essentially RF::VinaElem trained on PDBbind v2013 refined set (n = 2959). The RF-Score-v3 

software is freely available [11]. Since a new release of the PDBbind database is now available, we can 

further evaluate this software by testing RF-Score-v3 on this new data set (v2014 refined set minus 

v2013 refined set, n = 546). The results are RMSE = 1.39, SD = 1.39, Rp = 0.724, Rs = 0.717,  

whereas those of Vina are RMSE = 2.22, SD = 1.77, Rp = 0.481, Rs = 0.481. These results show that  

RF-Score-v3 exhibits remarkable performance on a blind test comprising such a diverse set of  

protein-ligand complexes. 

3.2. Training with New High-Quality Data Stills Improves Predictive Performance 

The PDBbind 2013 blind benchmark was introduced in a recent study [11]. Here, we used the same 

test set as well as the same four training sets comprising structural and interaction data up to a certain 

year. In addition, we added a larger training set comprising new high-quality data. The performances 

of the four models are shown in Figure 1 (Vina was executed off-the-shelf without re-training). It is 

observed that with more high-quality training data, the performance of MLR::Vina stayed nearly flat or 

even declined slightly, whereas the performance of RF::Vina and RF::VinaElem kept improving. As 

we anticipated [11], the performance gap between classical and machine-learning SFs increases with 

more training data. Notably, RF::VinaElem trained on the newly-added dataset of 3076 complexes led 

to a remarkable performance with RMSE = 1.41, SD = 1.41, Rp = 0.699, Rs = 0.680, the best results on 

this benchmark thus far. 
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(a) (b) 

(c) 

Figure 1. Performance of the four models with five training sets of incremental size on the 

test set of PDBbind v2013 refined set minus v2012 refined set (n = 382) according to 

RMSE (a); Rp (b) and Rs (c). Models: 1 (Vina), 2 (MLR::Vina), 3 (RF::Vina) and  

4 (RF::VinaElem). 

Figure 2 presents the two correlation plots comparing Vina and RF::VinaElem on this test set. Vina 

is one of the best classical SFs at binding affinity prediction [11] but its performance is substantially 

lower. See for instance the complexes with measured pKd of around 6 in Figure 2. For these 

complexes, Vina predicted a pKd between 1.7 and 9, whereas RF::VinaElem predicted the same 

complexes to have a pKd between 4.3 and 8, much closer to the measured affinity. Although there are 

some notable errors for each SF, overall the RMSE of RF::VinaElem is much lower than that of Vina, 

i.e., 1.41 << 2.30. 
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Figure 2. Correlation plots of measured and predicted binding affinities by AutoDock Vina 

(model 1; (Left)) and RF::VinaElem (model 2; (Right)) trained on the largest dataset 

comprising new high-quality data (n = 3076) tested on PDBbind v2013 refined set minus 

v2012 refined set (n = 382). 

3.3. Comparing Machine-Learning SFs to More Classical SFs on CASF-2013 

The PDBbind benchmark [19] is a popular benchmark on which many SFs have been tested. 

Recently, an update of this benchmark has been introduced, the so-called CASF-2013 benchmark [20] 

for binding affinity prediction. Totally 20 SFs, e.g., X-Score, ChemScore, were benchmarked [23] on 

PDBbind v2013 core set (n = 195). 

First, we evaluated the performance of the four models on PDBbind v2013 core set. The two 

training sets were v2013 refined set minus v2013 core set (n = 2764) and v2014 refined set minus 

v2013 core set (n = 3294). Figure 3 shows that more training data resulted in better predictive 

performance of machine-learning SFs, a conclusion consistent with previous studies [11,16]. 

RF::VinaElem achieved RMSE = 1.55, SD = 1.49, Rp = 0.752, Rs = 0.756 when trained on v2013 

refined set minus v2013 core set (n = 2764), and RMSE = 1.54, SD = 1.47, Rp = 0.759, Rs = 0.763 

when trained on v2014 refined set minus v2013 core set (n = 3294). 

Figure 4 presents the two correlation plots comparing Vina and RF::VinaElem (model 4) trained 

with the 2764 complexes and tested on v2013 core set (n = 195). 

Next, we compared the performance of Vina and RF::VinaElem to that of 20 other previously-tested 

classical SFs on the CASF-2013 benchmark by Li et al. [20] (Table 2). Some of these SFs were not 

able to score all the 195 test set complexes (this is not uncommon and is due to a range of reasons such 

as being unable to handle a particular atom type in the complex) and, thus, we provided this 

information by stating the number of test set complexes that were scored for each SF (N in Table 2). 

Table 2 shows that RF::VinaElem strongly outperformed all the previously-tested SFs, including those 

implemented in main-stream commercial software. The two baseline SFs by NHA (number of heavy 

atoms) and MWT (molecular weight) are first reported here in this study. The CASF-2013 benchmark 

paper [23] also reported ΔSAS, which is the buried solvent accessible surface area of the ligand 

molecule upon binding (i.e., an estimation of the size of the protein-ligand binding interface). 
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(a) (b) 

(c) 

Figure 3. Performance of the four models trained on PDBbind v2013 refined set minus 

v2013 core set (n = 2764) and v2014 refined set minus v2013 core set (n = 3249) tested on 

v2013 core set (n = 195) according to RMSE (a), Rp (b), and Rs (c). Models: 1 (Vina),  

2 (MLR::Vina), 3 (RF::Vina) and 4 (RF::VinaElem). 

 

Figure 4. Correlation plots of measured and predicted binding affinity by AutoDock Vina 

(Left) and RF::VinaElem (Right) trained on PDBbind v2013 refined set minus v2013 core 

set (n = 2764) tested on v2013 core set (n = 195). 
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Table 2. Performance of 22 scoring functions and 3 baselines on PDBbind v2013 core set (n = 195). 

Scoring Function N Rp SD 

RF::VinaElem 195 0.752 1.49 
X-ScoreHM 195 0.614 1.78 
ΔSAS 195 0.606 1.79 

ChemScore@SYBYL 195 0.592 1.82 
ChemPLP@GOLD 195 0.579 1.84 

PLP1@DS 195 0.568 1.86 
AutoDock Vina 195 0.564 1.86 

G-Score@SYBYL 195 0.558 1.87 
ASP@GOLD 195 0.556 1.88 
ASE@MOE 195 0.544 1.89 

ChemScore@GOLD 189 0.536 1.90 
D-Score@SYBYL 195 0.526 1.92 
Alpha-HB@MOE 195 0.511 1.94 

LUDI3@DS 195 0.487 1.97 
GoldScore@GOLD 189 0.483 1.97 
Affinity-dG@MOE 195 0.482 1.98 

NHA 195 0.478 1.98 
MWT 195 0.473 1.99 

LigScore2@DS 190 0.456 2.02 
GlideScore-SP 169 0.452 2.03 

Jain@DS 191 0.408 2.05 
PMF@DS 194 0.364 2.11 

GlideScore-XP 164 0.277 2.18 
London-dG@MOE 195 0.242 2.19 

PMF@SYBYL 191 0.221 2.20 

3.4. Training with Low-Quality Data also Improves Predictive Performance 

We have established in a recent publication [24] that root mean square deviation RMSD generally 

has a small impact on binding affinity prediction, therefore there should be further gains by 

incorporating low-quality data for training. Again, as in the blind benchmark in Section 3.2, the test set 

was PDBbind v2013 refined set minus v2012 refined set (n = 382), and the training sets were six 

purposely-partitioned subsets of PDBbind v2012 general set according to the quality of structural and 

interaction data as explained in Section 2.2.1 as well as the v2012 refined set for comparison purposes. 

The results are shown in Figure 5. RF::VinaElem trained with 6881 complexes of both high- and  

low-quality achieved the best performance with RMSE = 1.42, SD = 1.42, Rp = 0.697, Rs = 0.684. 

These results are comparable to those obtained by the same SF trained with the newly-added dataset of 

3076 high-quality structures (see right most column of results within each plot in Figure 1) and 

substantially better than those obtained by training on the 2897 high-quality complexes from the 2012 

refined set only (see left most column of results within each plot in Figure 5). The latter demonstrate 

that adding low-quality structural and interaction data to the training set of a SF improve its performance. 
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(a) (b) 

(c) 

Figure 5. Performance of the four models trained with seven purposely-partitioned subsets 

of PDBbind v2012 general set on the test set of v2013 refined set minus v2012 refined  

set (n = 382) according to RMSE (a); Rp (b); and Rs (c). Models: 1 (Vina), 2 (MLR::Vina), 

3 (RF::Vina) and 4 (RF::VinaElem). 

These numerical experiments were repeated after subtracting the refined12 structures from each of 

the six training sets, which led to six new training sets of 915, 1462, 1555, 2857, 3824, and 3986 

complexes. Thus, we analyze the level of performance that a SF can attain when trained exclusively on 

low-quality data (Figure 6), which is still quite high after removing the 2897 high-quality complexes. 

Again, the largest training set containing data of any quality leads to the best performance and the RF 

models still present an upward trend as more low-quality data is used for training, as it can observed in 

the results shown in the last and first column of each plot. We have also analyzed the impact of both 

types of data quality separately. In Figure 6, the test set performance from the sixth training set is 

significantly better than that from the fourth training set (3986 and 2857 training complexes, 

respectively), which means that adding training complexes with lower structural data quality (i.e., 

resolution worse than 2.5 Å) improves test set performance. Likewise, the test set performance from 

the fourth training set is significantly better than that from the first training set, which means that 

adding training complexes with lower binding data quality (i.e., IC50s) also improves test set performance. 
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(a) (b) 

(c) 

Figure 6. Performance of the four models trained with six subsets of PDBbind v2012 

general set after subtracting refined12 on the test set of v2013 refined set minus v2012 

refined set (n = 382) according to RMSE (a); Rp (b); and Rs (c). Models: 1 (Vina),  

2 (MLR::Vina), 3 (RF::Vina) and 4 (RF::VinaElem). 

4. Conclusions 

We have presented comprehensive numerical experiments demonstrating that low-quality data is 

not only non-detrimental, but beneficial, for the predictive performance of scoring functions (SFs). 

This is true even when including in the training set complexes with resolution worse than 3 Å and 

IC50s instead of binding constants Kd/Ki, at least when having Random Forest as the regression model 

(we did not observe improvement with the linear regression model employed by classical SFs). 

However, the improvement coming from including low-quality data in the training set is smaller than 

that coming from high-quality data. 

It is generally believed that removing low-quality data to focus on a training set of the highest 

quality is the best strategy to improve SFs. We have shown here that actually the opposite is true. The 

reason is that the quality of training data is not the only factor that affects SF performance, as data 

volume and diversity also play an important role. For instance, test set complexes can be outside the 
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applicability domain of the model because of no similar high-quality data being included in the 

training set. In these cases, including similar low-quality training data should be better for performance 

than relying on the extrapolation of the model outside its applicability domain, as our results suggest. 

As a byproduct of this study, we have also seen that a recently presented machine-learning SF,  

RF-Score-v3, achieves a very high performance on new test data, not available when this SF was 

constructed. Furthermore, new high-quality data for training continues to increase performance as 

anticipated. Lastly, we have shown that RF-Score-v3 performs substantially better than 20 classical 

SFs on the recently presented benchmark CASF-2013. 
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