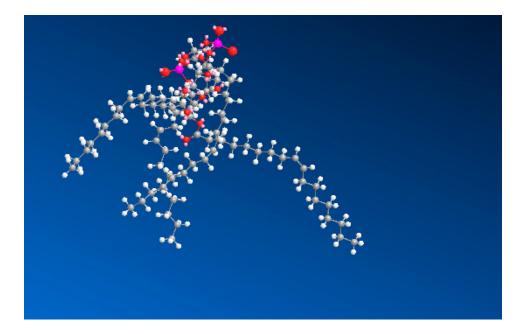

Supporting Information

Synthesis of CL-COONHS (12)


To a solution of cardiolipin (CL) **1** (10 mg, 6.66 μ mol) in 1.5 mL tBuOH 100 μ L aq. solution of NaHCO₃ (10 mg in 100 μ L) was added. Then the solutions of NaIO₄ (30 mg in 200 μ L water) and KMnO₄ (10 mg in 200 μ L water) were subsequently added. The reaction was mixed for 3 h and kept for 24 h at rt in dark. The reaction was controlled by TLC. After starting material was detected by TLC the reaction was quenched by adding 150 mg Na₂SO₃. After stirring for 5 min the reaction become colorless and two liquid phases separated. The mixture was acidified with 5% HCl til pH 3.0 and washed twice with *t*-BuOH. *t*-BuOH fraction was dried over Na₂SO₄, evaporated *in vacuo*. Yield 70%; *R*f 0.37 (chloroform:methanol:water 3:1.5:0.2, *v*/*v*/*v*), HRMS-ESI *m*/*z*: 1406.84772 ([M + Na]⁺, C₇₂H₁₃₀Na₂O₁₉P₂ calcd 1406.84766).

To a solution of oxidized CL (5 mg) in 1 mL DMSO 4 mg succinimide ester in 20 μ L DMSO and 8 μ L *N*,*N*'-diisopropylcarbodiimide were added. After keeping the reaction at rt overnight TLC showed complete conversion of the starting material. The product was analyzed by HRMS-ESI and used in further steps without purification. *R*_f 0.64 (chloroform:methanol:water 3:1.5:0.2, *v*/*v*/*v*), HRMS-ESI *m*/*z*: 1503.86409 ([M + Na]⁺, C₇₆H₁₃₃NNa₂O₂₁P₂ calcd 1503.86405).

According to TLC, a mono-oxidized CL **12** was exclusively formed. Having analyzed previous reports on CL structure and having built a molecular model, we concluded that the most sterically accessible group has been oxidized (Scheme S1, Figure S1).

Scheme S1. Synthesis of oxidized cardiolipin (CL) and its protein conjugates.

Figure S1. Molecular model of cardiolipin **1**. The model was build using MacroModel V9.1., and minimized using the Polak-Ribiere conjugate gradient method, the all-atom AMBER force field, and GB/SA solvation model [1].

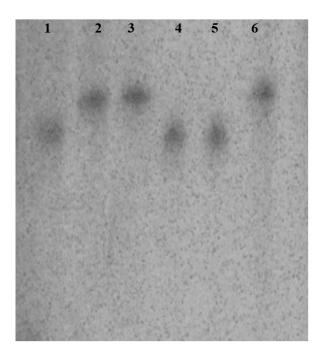
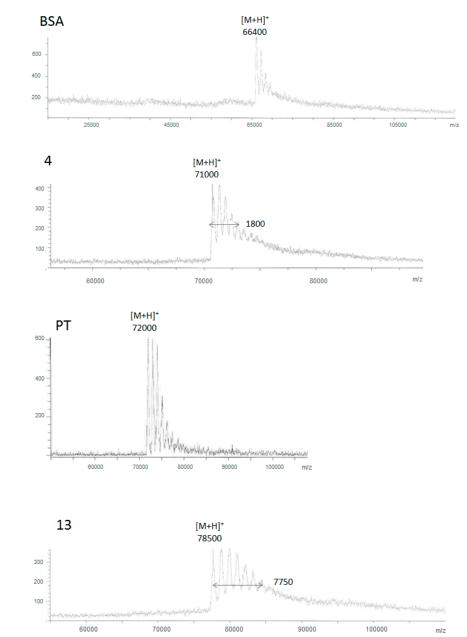
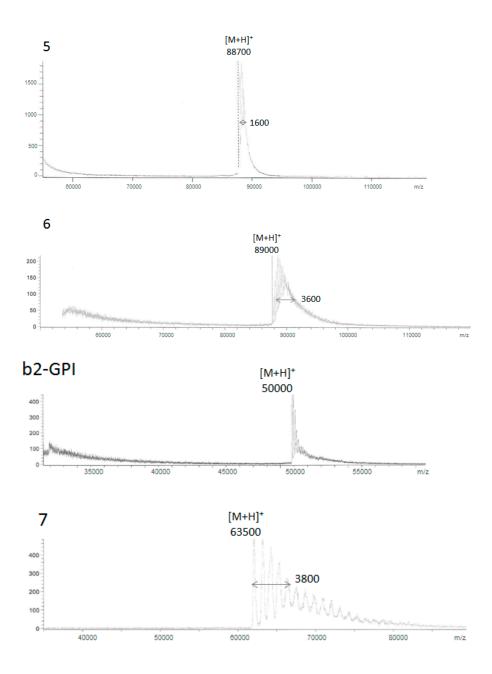
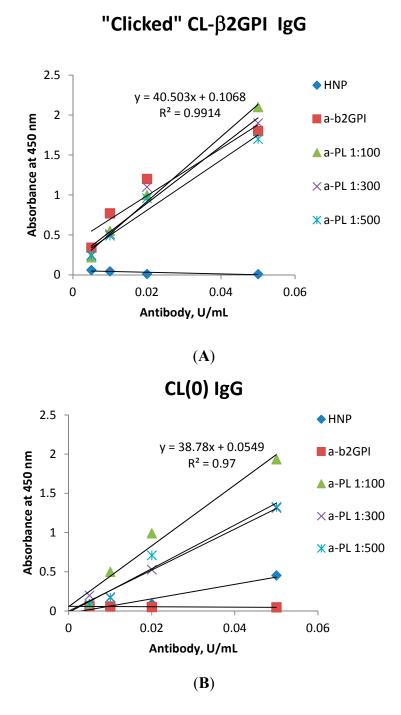



Figure S2. Representative SDS-PAGE gel electrophoresis of starting proteins (PT, BSA, lanes 1 and 4, respectively) and product conjugates 13 (lane 2), 6 (lane 3), 4 (lane 5), 5 (lane 6), using Coomassie stain.

Synthesis of Phosoholipid-Protein Conjugates (4, 13, 14)


Starting protein was dissolved in fresh 0.1 M bicarbonate buffer (0.2 mg in 180 μ L, pH 8.5) in 1.5 mL plastic Eppendorf tube. Cardiolipin NHS-ester (20 μ L of solution obtained in previous step) was added and the reaction was kept at rt overnight. The cardiolipin-labelled protein was precipitated from cold acetone, washed twice with acetone and re-dissolved in 200 μ L of 1× PBS.

MALDI MS results (conjugate/unmodified protein, kDa (estimated amount of attached modifications, n)): 4/BSA, 71.0–72.8/66.4 (n = 3–4); 13/PT, 76.6–84.4/72.0 (n = 3–5); 14/ β 2GPI, 53.1–55.0/50.0 (n = 2–3);



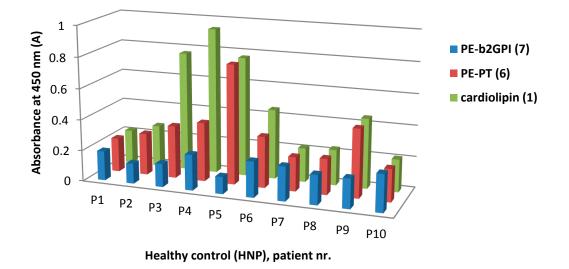
5/BSA, 88.7–90.3/66.4 (*n* = 8–9); **6**/PT, 88.0–91.6/72.0 (*n* = 6–7); 7/β2GPI, 63.5–67.3/50.0 (*n* = 5–6).

Figure S3. Cont.

Figure S3. Representative mass spectra of proteins and phospholipid-protein conjugates prepared in this study. Double-headed arrows indicate approximate peak widths at half-height for the corresponding conjugates.

Figure S4. Representative determination of linear range of IgG ELISA assay using conjugate 7 (A) and unmodified CL (B). HNP = human normal plasma; a- β 2GPI and a-PL are controls containing antibodies toward human β 2-GPI and PLs.

	Absorbance at 450 nm						
Antigen	IgM						
	a-PL	a-β2GPI	a-ssDNA	a-dsDNA	HNP ($n = 10$)		
CL	0.65	0.11	0.45	0.32	0.11		
β2GPI	0.52	0.55	0.43	0.21	0.32		
CL:β2GPI [§]	0.50	0.45	0.39	0.15	0.40		
РТ	0.33	0.20	0.50	0.14	0.22		
BSA	0.22	0.28	0.43	0.33	0.20		
PE azide	0.40	0.10	0.32	0.11	0.09		
5 (BSA-PE)	0.82	0.33	0.68	0.22	0.65		
6 (PT-PE)	1.01	0.24	0.79	0.15	0.74		
7 (β2GPI-PE)	0.99	1.11	0.82	0.22	0.26		


Table S1. Results of IgM ELISA assay using controls and conjugates prepared in this study *.

[§] β2GPI (0.001%) was added to CL under blocking conditions resulting in non-covalent binding. * a-PL, a-ssDNA and a-dsDNA = human plasma tested highly positive against phospholipids; single-stranded and double-stranded DNA, respectively; a-β2GPI is a monoclonal antibody towards β2-glycoprotein I (β2GPI). HNP = human normal plasma; averaged absorbance for n patients is presented ($\Delta \pm 0.20$). CL = cardiolipin, PT = prothrombin. Each sample was measured in the duplicate with resulting deviation in absorbance $\Delta \pm 0.20$.

Table S2. Results of IgG and IgM ELISA assay using conjugates 4, 13 and 14 containing oxidized cardiolipin *.

	Absorbance at 450 nm						
Antigen	IgG (IgM)						
	a-PL	a-β2-GPI	a-ssDNA	a-dsDNA	HNP $(n = 10)$		
4 (BSA-CL)	0.83 (1.12)	0.36 (0.43)	0.82 (0.70)	0.21 (0.52)	0.51 (0.89)		
13 (PT-CL)	0.71 (0.89)	0.44 (0.44)	1.01 (0.69)	0.72 (0.45)	0.45 (0.65)		
14 (β2GPI-CL)	0.77 (0.88)	1.21 (0.67)	0.54 (0.80)	0.47 (0.32)	0.55 (0.54)		

* For details see Tables 1 and S1.

Figure S5. Results of IgG ELISA assay of healthy control samples (HNP, n = 10) using CL and conjugates **6–7**. Weakly positive result: absorbance (A) > 0.4; medium range positive result: A > 0.65.

Reference

 Jørgensen, A.S.; Gupta, P.; Wengel, J.; Astakhova, I.K. "Clickable" LNA/DNA probes for fluorescence sensing of nucleic acids and autoimmune antibodies. *Chem. Commun.* 2013, 49, 10751–10753.