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Abstract: Duchenne muscular dystrophy (DMD) is a genetic muscle disorder caused by 

mutations in the Dmd gene resulting in the loss of the protein dystrophin. Patients do not 

only experience skeletal muscle degeneration, but also develop severe cardiomyopathy by 

their second decade, one of the main causes of death. The absence of dystrophin in the heart 

renders cardiomyocytes more sensitive to stretch-induced damage. Moreover, it 

pathologically alters intracellular calcium (Ca2+) concentration, neuronal nitric oxide 

synthase (nNOS) localization and mitochondrial function and leads to inflammation and 

necrosis, all contributing to the development of cardiomyopathy. Current therapies only treat 

symptoms and therefore the need for targeting the genetic defect is immense. Several 

preclinical therapies are undergoing development, including utrophin up-regulation, stop 

codon read-through therapy, viral gene therapy, cell-based therapy and exon skipping. Some 

of these therapies are undergoing clinical trials, but these have predominantly focused on 

skeletal muscle correction. However, improving skeletal muscle function without addressing 

cardiac aspects of the disease may aggravate cardiomyopathy and therefore it is essential 

that preclinical and clinical focus include improving heart function. This review consolidates 

what is known regarding molecular pathology of the DMD heart, specifically focusing on 

intracellular Ca2+, nNOS and mitochondrial dysregulation. It briefly discusses the current 

treatment options and then elaborates on the preclinical therapeutic approaches currently 

under development to restore dystrophin thereby improving pathology, with a focus on the heart. 
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1. Introduction 

Duchenne muscular dystrophy is a severe muscle wasting X-linked genetic disease which affects 1 in 

3500 children [1]. It is characterized by loss in muscle function leading to decreased ambulation and 

most patients succumb to cardiac or respiratory failure [2,3]. The disease is caused by the almost 

complete absence of the dystrophin protein due to out-of-frame mutations in the DMD gene [4]. 

Dystrophin is an important protein for cytoskeletal structure and normal muscle function and plays a 

vital role in membrane stability and signaling [5]. 

Patients with DMD suffer from severe cardiomyopathy. Although the degree of cardiac involvement 

varies between patients, cardiomyopathy generally manifests at about 10 years of age and is prevalent 

in most patients by 20 years of age [6]. These patients first exhibit left ventricle (LV) dilation and 

hypertrophy, which progresses to a stage known as dilated cardiomyopathy (DCM). Additional 

cardiomyopathic features include decreased fractional shortening and electrocardiogram (ECG) 

abnormalities [7–10]. Approximately 26% of patients also display tachycardia, and 51% exhibit an 

increase in pathological heart rate variability [7]. These ECG abnormalities are associated with 

morphological changes to cardiac muscle (thin and thick filaments of heart) [11], myocardial fibrosis 

and conduction defects [12]. Indeed, deep Q wave abnormalities have been associated with lateral wall 

scarring [13].  

The cardiac phenotype continues to deteriorate as dystrophic hearts undergo hypertrophy in an effort 

to cope with the increase in wall stress imposed by pressure/volume overload. The heart further 

undergoes maladaptive remodeling, developing DCM [6]. Approximately 25% of patients under the age 

of 6 present with DCM, which escalates to 59% by 10 years of age and is prevalent in all patients by 

adulthood [8]. Unfortunately, severe scoliosis hampers the ability to accurately measure cardiac function 

which results in late diagnosis and late employment of treatment [6,14,15].  

Marked decline in cardiac function correlates with increased fibrotic deposition, impeding normal 

heart contraction. Fibrotic involvement is prevalent from a young age (17% of patients under 10 years), 

and escalates with age (34% between 10–15 years and 59% older than 15 years of age) [16].  

The most widely used mouse model of DMD is the mdx mouse which has a point mutation in exon 

23, thus preventing the production of dystrophin protein [17,18]. This model exhibits an obvious skeletal 

phenotype including elevated creatine kinase (CK) plasma levels, irregular muscle histology [17], muscle 

necrosis [19], and a decline in specific force and power with age [20]. Additionally, respiratory function 

deteriorates and correlates with degeneration of the diaphragm as the disease progresses with age.  

Mdx mice also display a cardiac phenotype. Increased right ventricle (RV) systolic volume and 

subsequent reduction in RV ejection fraction (EF) is seen at 3 months [21]. An increase in myocardial 

fibrosis is apparent from 6 months of age, whilst LV cardiac output (CO) deteriorates. By 9 months of 

age, stroke volume (SV) is reduced followed by a reduction in LV EF at 12 months. Although this model 

has been criticized for the late onset cardiac phenotype, it should be noted that, at 1 month of age, mdx 
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mice exhibit early intolerance to dobutamine stress [21]. As with DMD patients, ECG recordings in 

conscious mdx mice revealed tachycardia, decreased heart rate variability [22], deep Q waves, 

diminished S:R ratios, polyphasic R-waves and shorter QT and PR intervals [23] compared to controls. 

The major disparity between mdx mice and DMD patients is that RV involvement does not occur in 

all DMD patients and cardiac complications contribute significantly to early mortality in patients. 

Interestingly BMD patients also exhibit RV changes prior to LV, analogous to mdx cardiac progression. 

DMD patients generally receive early ventilatory intervention due to the rapid deterioration in respiratory 

function. This intervention would be likely to improve pulmonary hypertension and thus may 

compensate for RV dysfunction.  

It is thus evident that the heart is an important system affected in DMD. More recently, research has 

focused on characterizing heart pathology and therefore this review focuses on the cardiac aspects of 

DMD. First the result of the absence of dystrophin on molecular heart pathology will be discussed, 

particularly concentrating on the role of intracellular calcium (Ca2+) increase, the perturbed nitric oxide 

(NO) signaling and neuronal NO synthase (nNOS) function and the role of mitochondria within DMD. 

It should be noted that many other cellular pathways are important in DMD pathology (e.g., 

inflammation, matrix metalloproteinase function, autophagy and apoptosis), but will not be discussed 

here (see e.g., Shin et al. [24] and Mosquiera et al. [25]). Additionally, current therapies involving 

corticosteroids, respiratory support, ACE-inhibitors, beta-blockers and cardiac resynchronization 

techniques are reviewed. Lastly, preclinical therapeutic approaches that are presently investigated, such 

as exon skipping and viral gene therapy, will be explored within the context of improving heart pathology. 

2. Molecular Pathology of DMD 

It is clear that dystrophin plays an important role in the cell. By connecting with laminin at the  

C-terminus through the dystroglycan complex, actin at the N-terminus, and spectrin-like repeat 11–17 in 

the rod domain, dystrophin provides stability to the cell and prevents damage from muscle  

contraction [5,26,27]. It is also involved in signaling through its association to the dystroglycan complex 

(DGC) at the cysteine-rich domain and C-terminus and neuronal nitric oxide synthase (nNOS) at its rod 

domain (see Figure 1) [5]. The location of mutation/deletion within the dystrophin gene correlates with 

the severity of cardiomyopathy. Deletions which affect the amino-terminal domain (muscle promoter, 

exon 1 or intronic regions) are associated with early-onset DCM, whereas deletions in the rod domain 

and hinge 3 region result in later onset DCM (mid-40’s) [8]. Absence of this protein, as is the case in 

DMD, renders both skeletal and cardiac cells more susceptible to damage upon muscle contraction. 

Increased permeability of the cell membrane has also been observed, possibly due to lipid peroxidation 

by phospholipase A2 or reactive oxygen species (ROS). This allows larger proteins, such as CK, to 

traverse the cell membrane [28]. Furthermore, many signaling pathways within the cell are affected and 

these factors lead to an imbalance in the intracellular environment, further resulting in cell muscle 

damage and eventually necrosis. The ensuing muscle pathology is characterized by cell degeneration 

and regeneration, whereby muscle cells are eventually replaced by fibrotic tissue [19].  
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2.1. Intracellular Ca2+ Increase  

One of the first events thought to influence molecular pathology is the increase in intracellular Ca2+. 

Given the importance of Ca2+ in excitation-contraction (E-C) coupling and as a signaling molecule, this 

has a detrimental effect on heart function and Ca2+ downstream pathways. The heart exhibits a smaller 

Ca2+ influx than skeletal muscle, but this smaller influx has a greater influence on cardiac cells, 

suggesting perhaps a more sensitive Ca2+-induced Ca2+ release [29]. Elevated intracellular Ca2+ in the 

heart leads to mitochondrial deregulation, protease calpain-mediated necrosis and NF-κB activation, 

which induces transcription of inducible NOS (iNOS)-mediated inflammation [24,30]. In addition, it 

activates Ca2+/calmodulin (CaM) and CaM kinase II (CaMKII) and protein kinase A (PKA) which 

hyper-phosphorylate Ca2+ channels [31–33]. Seval calcium binding proteins are known to be affected in 

the skeletal muscle phenotype. However, only two have been discussed in heart pathology in DMD, 

namely calsequestrin and sarcalumenin, which are involved in sequestration and SERCA Ca2+ uptake, 

respectively, and are both decreased in mdx hearts [34]. 

As of yet it is unclear how the increase in Ca2+ commences, particularly the initial entry of Ca2+. Many 

studies have focused on this topic and membrane tears and stretch-activated channels (SACs) have been 

proposed as possible mechanisms. More indirect entry of Ca2+ from the extracellular space is thought to 

be contributed by the Na+-Ca2+-exchanger (NCX) and voltage-gated Ca2+ channels (VGCC). The initial 

intracellular Ca2+ increase brings about the activation of store-operated channels (SOCs) such as 

sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA), the ryanodine receptor (RyR) and the 

inositol 1,4,5-triphosphate (IP3) receptor (IP3R), thereby further increasing the intracellular Ca2+ 

concentration ([Ca2+]i) (see Figure 1). 

2.1.1. Membrane Tears 

Membrane tears were suggested to arise from a fragile membrane due to the absence of dystrophin [35]. 

This would make the membrane leaky, allowing the influx and efflux of ions and proteins [28,36] (see 

Figure 1). Within the heart, a membrane sealant lowered, but not abolished, increased Ca2+ influx and 

improved left ventricular end diastolic volume in mdx mice [37,38]. More recently, the contribution of 

membrane tears to increased Ca2+ influx has been debated. In an extensive review, Allen and Whitehead 

indicated that the time required for Ca2+ to increase (10–20 min after contraction) did not correlate with 

membrane tears [39]. The leakage of ions and proteins through the membrane can also be explained by 

SACs and by lipid peroxidation [28]. Given these opposing results, more research is needed to elucidate 

these findings. 
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Figure 1. Molecular pathways involving Ca2+ and NO signaling in healthy and dystrophic 

cell. (A) Dystrophin present: Ca2+ is balanced by SACs, NCX and VGCC. nNOS is activated 

by Ca2+-dependent calmodulin [40–42]. NO is produced which is involved in many processes 

including normal E-C coupling, and S-nitrosylation of SERCA and RyR [25,40,42,43]. Upon 

E-C coupling, [Ca2+]i rises via opening of RyR and IP3 receptor. When the stimulus stops, 

intracellular Ca2+ returns to normal via SERCA and other cell membrane Ca2+-permeable 

channels. (B) Dystrophin absent: membrane tears, SACs, NCX and VGCC increase 

intracellular Ca2+ [28,35,36,38,44,45]. Elevated Ca2+ increases CaMKII and PKA which 

hyper-phosphorylate Ca2+ channels on the SR [31–33]. SERCA levels may decrease and 

RyR becomes sensitive to Ca2+ [31,32,46–48]. Mis-localization of nNOS disrupts NO signaling 

and function [49,50]. This combined with raised Ca2+ increases ROS production [28,51]. 

Increased [Ca2+]i elicits multiple detrimental events [24,30]. SACs: stretched-activated 

channels; NCX: Na+-Ca2+ exchanger; VGCC: Voltage-gated Ca2+ channels; nNOS: neuronal 

nitric oxide synthase; SERCA: Sarcoplasmic/endoplasmic reticulum Ca2+-ATPase; RyR: 

ryanodine receptor; NO: nitric oxide; IP3: inositol 1,4,5-triphosphate; SR: sarcoplasmic 

reticulum; CaMKII: calmodulin-kinase II; PKA: protein kinase A.  
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2.1.2. Stretched-Activated Channels (SACs) 

More recently, SACs have been investigated as a possible reason for the initial Ca2+ influx [36]. These 

channels open upon stretched muscle contraction and allow the influx of cationic ions [52]. Inhibition of 

SACs following exposure to mechanical stress significantly diminished the rise of [Ca2+]i in ventricular 

cardiomyocytes and restored protein kinase C (PKC) and phospholipase C (PLC) signaling [53,54]. It 

should be noted that the non-specificity of the blockers used means they may have also been blocking 

Na+ channels [53]. Therefore, the increase in [Ca2+]i could be mediated by both direct entry of Ca2+ ions 

through SACs, and indirect entry through the Na+/Ca2+-exchanger (NCX) or voltage-gated Ca2+ channels 

(VGCC) that open due to Na+-induced membrane depolarization (see Figure 1) [38,53,55–57]. SACs are 

composed of multiple channels and subunits, some of which have been implicated in the composition of 

these SACs and DMD pathology. These channels include the mechano-sensitive transient receptor 

potential cation (TRPC) channels, namely TRPC1, TRPC3, TRPC6 and TRPV2. 

TRPC1 channels are activated by the ROS-dependent Src kinase leading to an influx of Ca2+. Both 

the absence of dystrophin-associated nNOS [51] as well as the increase in [Ca2+]i [28] can induce 

increased ROS levels. The role of TRPC1 in the heart remains elusive, but the expression levels of this 

channel increase with age in the mdx mouse [53]. Interestingly, a more recent experiment did not see an 

involvement of TRPC1 channels in skeletal myotubes [54]. Whether this is also the case in 

cardiomyocytes is unclear. TRPV2 channels have also been implicated in DMD and upon activation 

migrate to the plasma membrane. Cultured mdx cardiomyocytes exhibit increased TRPV2 expression at 

the plasma membrane, and inhibition of these channels with non-specific blockers and targeted siRNAs 

reduced cellular Ca2+ influx upon osmotic stress [52]. TRPC6 channels are also sensitive to stretch 

contraction [58] and inhibition of this channel in the mdx heart reduced contractions and arrhythmias [59]. 

Finally, relevance of TRPC3 in the heart remains to be established as TRPC3 knock-out (KO) mice 

exhibit a dystrophic phenotype, but stretch-induced contraction of TRPC3-/- cardiomyocytes does not 

induce a Ca2+ response [59,60]. 

2.1.3. Voltage-Gated Ca2+ Channels (VGCC)—L-Type 

The voltage-dependent L-type Ca2+ channel has been implicated in the pathology of DMD. This Ca2+ 

channel is linked to F-actin by subsarcolemmal proteins including dystrophin and α-actinin [61,62] and 

is thought to be involved in contraction [63]. In mdx mouse hearts, the L-type Ca2+ channel exhibits a 

delayed inactivation rate and interestingly, even though action potential duration is not affected, 

significant ECG abnormalities are observed [64]. Additionally, Viola et al. showed that communication 

between L-type Ca2+ channels and mitochondria was important for metabolic function in healthy cells 

and this communication was altered in mdx cardiomyocytes, though the exact proteins involved are 

unclear [44,45].  

2.1.4. Store-Operated Ca2+ Release 

Other intracellular channels on the sarcoplasmic reticulum (SR) involved in regulating [Ca2+]i are 

SERCA, RyR and IP3 channels (see Figure 1). Being a major store of Ca2+, SERCA pumps Ca2+ back 

into the SR when [Ca2+]i increases [65]. Interestingly, expression levels of SERCA in the mdx heart 
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appear to be similar to that of wild-type (WT), though other reports have shown down-regulation [46,47]. 

This may be attributed to age, where older mice would exhibit a reduction in SERCA channels. RyRs 

are activated by Ca2+ binding, thereby leading to Ca2+-induced Ca2+ release stimulating excitation-contraction 

(E-C) coupling [65,66]. Hyper-phosphorylation of the channel, possibly by protein kinase A (PKA) or 

CaMKII, could make it more sensitive to Ca2+ [31,48,66]. Persistent hyper-phosphorylation of RyR leads 

to dissociation from calstabin 2, a stabilizing protein [67]. This in turn disrupts Ca2+ regulation whereby 

the SR becomes leaky, ultimately resulting in heart failure [33]. Indirect evidence of RyR involvement 

in the mdx heart is seen, whereby increased SR Ca2+ leak was observed in 3–4 and 12–15 month old 

mice, with a worsened pathology in the older mice [68]. These events are also observed in arrhythmias 

and heart failure [69]. Lastly, IP3 receptors are activated by IP3, a downstream product of PLC. 

Application of PLC inhibitors reduced the Ca2+ concentration in the heart of mdx mice compared to WT. 

Older mdx animals (9 and 12 months) showed a larger diastolic Ca2+ decrease upon inhibition compared 

to WT. These results indicate the involvement of PLC and its downstream effects on IP3 and diastolic 

Ca2+ concentration in the heart [69]. Moreover, it also indicates that age plays an important role in the 

increases of intracellular Ca2+ concentration.  

Much work has been done to elucidate the role of Ca2+ in DMD pathology, which suggests the 

interaction of multiple mechanisms. It is possible other uncovered avenues play an important role in 

addition to the mechanisms proposed so far. 

2.2. NO and NOS 

An important second messenger in cell physiology is the signaling molecule nitric oxide (NO). Its 

production is regulated by NO synthase (NOS) of which there are three isoforms: neuronal NOS (nNOS), 

endothelial NOS (eNOS) and inducible NOS (iNOS). nNOS and eNOS are both constitutively expressed 

in muscle and heart and activated by the Ca2+-dependent calmodulin. eNOS is associated with caveolin 

3 on the sarcolemma and nNOS is associated with the DGC and is in close proximity to SERCA and 

RyR [40–42,70]. Conversely, iNOS is only expressed in the cell during inflammation and partly 

responsible for the inflammatory response seen in DMD [40,41]. The localization of NOS enzymes 

within the cell is crucial to their function as NO is only active for several seconds and thus needs to reach 

its target quickly [42]. However, in DMD nNOS is displaced, with considerably lower nNOS activity 

levels in patients and mdx mice [49,50]. 

The function of nNOS in the heart is currently still being investigated. Several knock-out studies have 

implicated a role in LV systolic function and shortening of myocytes, but this remains elusive due to 

opposing results [42,71,72]. Overproduction of NO by nNOS is associated with cardiac depression, 

which increases the chances of heart failure [49]. Absence of nNOS impacts several downstream 

pathways, including the mitochondrial respiratory chain, RyR regulation and reactive oxygen species 

(ROS) control, which induces cell damage and further increases Ca2+ [25,40,41,72,73]. Transgenic  

up-regulation of nNOS in the mdx mouse restored heart phenotype, with a decrease in inflammatory 

markers, fibrosis and apoptosis. Some aspects of heart function also improved, such as stroke volume 

and ejection fraction [74]. Together these studies underscore the importance of nNOS and NO function 

and their interaction with [Ca2+]i in the heart and loss of these molecules results in worsening of heart 

function, though further research is needed to elucidate its exact function. 
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2.3. Mitochondrial Dysfunction 

In any cell, mitochondria are an important part of energy metabolism and healthy muscle contraction [65]. 

In addition to this role, it also functions as a Ca2+ store, supplying and taking up Ca2+ to and from the 

cell [75,76]. Furthermore, it is involved in ROS production and plays an important role in cell death 

through necrosis and apoptosis [77]. Mdx mice display disturbed mitochondrial function and thus these 

organelles are thought to play a role in DMD. 

Altered mitochondrial energy production is one of the first pathophysiological changes known to 

occur in mdx heart. Mdx mice were assessed at 10–12 weeks of age, considered the pre-cardiomyopathic 

stage, and revealed a slight shift in energy consumption, from the normally utilized fatty acids to a higher 

usage of carbohydrates [78]. The functional oxidative capacity of the mitochondria is also disturbed in 

the mdx mouse model. It is suggested that mild oxidative stress induces a reduction in oxidative 

phosphorylation, thereby reducing the production of ATP. Due to the energy demand of the cell and the 

inability of the mitochondria to supply the cell, cardiomyocytes are severely affected [43]. Mitochondria 

are also a target of NO signaling and its downstream effectors. Overexpression of guanylyl cyclase (GC; 

activated by cGMP), in 12 and 20 week old mdx mice improved muscle function and cardiac endurance 

and led to reduced heart production of lactate dehydrogenase, a marker for tissue damage. The GC 

transgenic mdx mouse heart still displayed a slight shift in energy metabolism from fatty acids to 

carbohydrate substrates, but mitochondrial function was enhanced as higher levels of the compounds for 

the citric acid cycle were observed [79]. Given this data, the lack of dystrophin seems to disrupt 

metabolism in the heart. However, it remains unclear what brings about this change in metabolism and 

whether this is a compensatory or detrimental mechanism [78]. 

In addition to the perturbed energy metabolism exhibited by mitochondria in dystrophin-deficient 

cells, the increased intracellular Ca2+ levels have a detrimental effect on the mitochondria. The rising 

[Ca2+]i is thought to induce a sudden increase in mitochondrial membrane permeability through the 

mitochondrial permeability transition pore (PTP). The PTP is a voltage-sensitive channel and an increase 

in the mitochondrial Ca2+ concentration induces the opening of this channel, leading to swelling. Short-term 

opening of these channels is thought to be beneficial as the mitochondria are able to regulate intracellular 

Ca2+ and ROS balance [80,81]. However, long-term opening of this channel is thought to be detrimental 

to the cell and induces necrosis of the mitochondria [82]. The ruptured mitochondria contributes to 

myofiber necrosis [56]. 

3. Current Clinical Disease Management and Application of Commercially Available Drugs 

There is currently no cure for DMD, and therefore therapy is limited to the management of symptoms. 

The three predominant treatment approaches include corticosteroids in order to ameliorate skeletal 

muscle phenotype, mechanical respiratory support and cardiac assessment and treatment. Corticosteroids 

have been shown to markedly improve muscle strength and function [83]. More recent studies have 

implicated corticosteroids in the stabilization of pulmonary function, prolonging ambulation and 

reducing the prevalence of scoliosis [84]. In addition they have been associated with delaying the onset 

of cardiomyopathy by 4% for each year of corticosteroid treatment [85]. However, the unfortunate side 
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effects including Cushing’s syndrome, short stature, hypertension, hyperglycemia, cataracts and 

osteoporosis, hampers the use of corticosteroids [86].  

Deterioration in respiratory muscles results in respiratory insufficiency and pulmonary hypertension. 

An increase in pulmonary hypertension compounds cardiac function leading to DCM [87]. Thus 

mechanical support is required as soon as nocturnal hypoventilation is apparent, in order to maintain 

adequate ventilation and coughing reflex [88]. A non-invasive positive-pressure ventilation (NIPPV) 

machine with a mechanical insufflation-exsufflation device is the preferred respiratory support device 

and has substantially reduced mortality in DMD patients [89]. 

Lastly, the approaches designed to specifically target cardiac involvement include angiotensin-converting 

enzyme (ACE) inhibitors, beta-blockers (β-blockers) and diuretics [90]. ACE inhibitors are generally 

implemented when LV systolic function declines [3]. These inhibitors prevent the conversion of 

angiotensin-I to angiotensin-II (Ang-II), thereby reducing circulating levels of the Ang-II. In addition, 

ACE inhibitors reduce kinase-II and increase bradykinin levels, which have been shown to reduce 

peripheral vascular resistance, improve endothelial function and prevent fibrosis. The use of ACE 

inhibitors for the treatment of DMD patients with an ejection fraction (EF) below 55%, showed a 

significant improvement in cardiac function (relative to the pre-therapy results; p < 0.0001) and delayed 

the progression of cardiomyopathy [91].  

Beta-Blockers prevent the binding of catecholamines by interfering with β-receptor binding, thus 

reducing sympathetic nervous system activity. They are therefore prescribed for arrhythmic patients, and 

those with symptomatic but stable systolic dysfunction. Clinicians often prescribe a cocktail of ACE 

inhibitors, β-blockers and diuretics which significantly improves cardiac function and survival in DMD 

patients [91,92]. However, regular cardiac assessments are imperative to ensure the correct treatment 

regimen, as it has been observed that administration of the β-blocker metoprolol was detrimental to RV 

function when administered at early stages of cardiomyopathic progression [93]. 

In DMD patients whom are unresponsive to pharmacological treatment, cardiac resynchronization 

therapy may be considered, i.e., patients with low LV EF, accompanied by ventricular dyssynchrony 

(QRS > 120 ms) [94]. These patients have a bi-ventricular pacemaker surgically installed, which allows 

the pacing of the septal and lateral walls of the LV. Other measures such as left ventricular assist devices 

HeartMate II and HeartWare, have also been employed in an effort to reduce heart failure [95]. In both 

cases these devices markedly improve cardiac function and quality of life, thus demonstrating their 

potential for DMD patients who do not respond to conventional interventional measures. 

Several drugs that are already commercially available may benefit DMD patients and have therefore 

been investigated in animal models of DMD to explore their therapeutic potential. The synthetic 

copolymer poloxamer P188, which stabilizes the sarcolemma, has been shown to improve the cardiac 

phenotype and even prevent isoproterenol/dobutamine-induced cardiomyopathy/death [37,96]. The 

phosphodiesterase 5 (PDE5) inhibitor, sildenafil, acts on the cGMP pathway, where it enhances NO-cGMP 

signaling. This signaling is impaired in mdx mice and administration of sildenafil improved contractile 

performance, cardiac metabolism and sarcolemmal integrity [97]. Furthermore, it reversed pathological 

cardiac dysfunction in mdx hearts [98], and improved diaphragmatic muscle strength thereby enhancing 

respiratory function [99]. Unfortunately, when translated to clinic, no cardiac function improvement was 

observed in patients and the clinical trial was terminated early [100,101]. It is important to note, however, 

that a relatively small cohort of patients was used in this study and higher numbers may better elucidate 
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the underlying mechanisms. In addition, the drugs losartan and pirfenidone have been investigated for 

their anti-fibrotic properties. These drugs inhibit TGF-β expression, thereby reducing fibrosis and they 

were seen to improve cardiac pathology and function [102,103]. Pharmacological measures to target the 

NO signaling pathway have also been utilized and shown to slower the muscular dystrophy progression. 

Indeed, histone deacteylase activity (HDAC), which is perturbed in DMD may be inhibited with the use 

of NO donors, and has also been shown to benefit heart pathology [104]. In addition the combination of 

a non-steroidal anti-inflammatory drug, ibuprofen, and an NO donor, isosorbide dinitrate, were capable 

of preventing morphological changes in the heart of mdx mice [105]. A recent phase 1 clinical trial using 

this combinatory therapy, demonstrated an excellent safety profile in healthy patients [106]. This 

provides a solid basis for further trials in muscular dystrophy patients. 

These drugs have demonstrated encouraging results in animal models of DMD and it is hoped that 

they will infer some clinical benefit in patients. Furthermore, these drugs may present viable 

combinatory therapies which may be administered in conjunction with treatments specifically aimed at 

correcting/compensating for the dystrophin mutation. 

4. Preclinical Therapeutic Approaches 

Given that current treatment strategies are limited to reducing the symptoms of the disease, it is vital 

that new therapies are developed that directly target the underlying mutation. Several very promising 

strategies currently under investigation for treating DMD also have potential for treating the heart. This 

review will discuss some of these most promising therapies, namely; utrophin up-regulation, ribosomal 

read-through therapy, stem cell therapy, viral gene therapy delivering mini/micro-dystrophin and exon 

skipping antisense oligonucleotides. Not all experiments regarding the different approaches are 

discussed in this review, but a summary of selected references are cited in Table 1.
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Table 1. DMD therapies under development. Several strategies have been employed to further develop the different types of therapies (specific 

strategy), which are in different stages of research, either clinical or pre-clinical (research stage and selected models). A brief summary of the 

results of these strategies is mentioned (results of therapy) with selected references. IV: Intravenous; IM: intramuscular; IP: intraperitoneal. 

Therapy Specific Strategy 
Research Stage and Selected 

Models 
Results of Therapy Selected References 

Utrophin up-

regulation 
Utrophin transgene Preclinical—mdx/utrn−/− Transgenic utrophin expression which improved pathology in skeletal muscle, but not heart. [107–109] 

 Zinc fingers 

Preclinical— 

cultured cells, 

mdx muscle 

Successful activation of utrophin improved muscle function and reduced pathology in TA. No 

heart data. 
[110–112] 

 Biglycan Preclinical—mdx  
Localizes utrophin to sarcolemma. Treatment reduced pathology in quadriceps and diaphragm 

and improved physiology in EDL. No heart data. 
[113] 

 SMT C1100 
Preclinical—mdx; 

Clinical trials—Phase Ia and Ib 

Preclinically: increased RNA and protein of utrophin in skeletal and cardiac muscle. Reduced 

pathology and improved muscle function in skeletal muscle. Phase Ia: mild side-effects at higher 

dose. Phase Ib: no data. 

[114,115] 

Read-through 

therapy 
Gentamicin 

Preclinical—mdx; Clinical 

trials—Phase I 

Preclinically: Low levels of dystrophin expression, including in heart, protection against muscle 

damage in EDL. Clinical trials: inconclusive. 
[116,117] 

 Negamycin Preclinical—mdx 
Antibiotic drug to reduce side effects seen in gentamycin. Subcutaneous injections negamycin 

safer than gentamycin, but induced low dystrophin expression in skeletal muscle and heart. 
[118] 

 PTC124 

Preclinical—HEK293 cells 

and mdx; 

Clinical trials—Phase I, 2a/b 

Preclinically: 20%–25% increase in dystrophin in TA, diaphragm and heart. Improved 

physiological function of EDL. Clinical trials: Generally well tolerated. Overall no significant 

improvement, but certain subgroups responded well to treatment. 

[119–122] 

 
RTC13/ 

RTC14 
Preclinical—mdx 

RTC13 demonstrated better efficacy (restored dystrophin in skeletal muscle and heart) than 

gentamicin, PTC124 and RTC14. Improved muscle function and decreased serum CK. 
[123] 
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Table 1. Cont. 

Therapy Specific Strategy 
Research Stage and 

Selected Models 
Results of Therapy 

Selected 

References 

Viral gene therapy Lentivirus 

Preclinical—myotubes, 

primary myoblasts and 

mdx 

Transfection with mini- or microdystrophin: 20%–25% dystrophin expression in TA muscles (for 2 year 

period). Less central nucleation, but no protection from muscle injury. Able to transfect TA myogenic 

progenitor cells. 

[124–126] 

 ‘Gutted’ adenovirus Preclinical—mdx 
IM with full dystrophin cDNA displayed dystrophin expression, improved muscle force and protected 

against muscle damage. 
[127] 

 
rAAV2/ 

AAV8 
Preclinical—mdx 

Chimeric vector containing codon-optimized micro-dystrophin. IV injection resulted in almost 100% 

transfection, effective dystrophin expression in skeletal muscle and heart and improved muscle function. No 

immunological response was observed. 

[128] 

 rAAV6 
Preclinical—

mdx/utrn−/− and mdx 

Microdystrophin rAAV6 administered in 1 month old mdx/utrn−/− increased life span, improved pathology 

and dystrophin (1 year post-injection). Dystrophin restored in heart and heart mass normal, but function not 

recovered. 20 mo mdx (4 months after injection) showed dystrophin expression in skeletal muscle and heart 

and improved pathology. 

[129,130] 

 AAV9 
Preclinical—GRMD 

and mdx 

IV mini-dystrophin administration to GRMD revealed varied dystrophin expression, also in heart. Micro-

dystrophin administration in young mdx induced dystrophin expression and slowed progression of cardiac 

phenotype. 10 mo mice expressed dystrophin and cardiac function improved. 

[131–133] 

Cell-based 

therapy 
Myoblasts 

Preclinical—mdx 

Clinical trials 

Ability to differentiate into myotubes. 

Preclinically: partial dystrophin expression in mdx mice. No heart data. Clinical trial: no beneficial effects 
[134,135] 

 Fibroblasts Preclinical—mdx 
Ability to differentiate into myotubes. 

Effective transfection with dystrophin expression in immunocompromised mice. No heart data. 
[136] 

 
Bone marrow-derived 

stem cells 

Preclinical—mdx and 

GRMD 

Migrate to damaged muscle areas, differentiate into myogenic cells and aid regeneration. Substantial 

dystrophin restoration in skeletal muscle of mdx, but no restoration in GRMD dogs. No heart data. 
[137,138] 

 Cd133+ stem cells 
Preclinical—scid/mdx; 

Clinical trial Phase I 

Ability to differentiate into myocytes.  

Preclinically: effective dystrophin restoration in scid/mdx. No heart data.  

Clinical trial demonstrated safety. 

[139,140] 

 Mesangio-blasts Preclinical—GRMD Improved functional mobility and partial dystrophin restoration in skeletal muscle. No heart data. [141] 

 iPS cells 
Preclinical—immuno-

compromised mdx 

Differentiating iPS cells into muscle precursor cells followed by injection into TA induced dystrophin 

expression. Cells integrated with muscle cells and settled in satellite cell population. Improved TA function. 

No heart data. 

[142–144] 
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Table 1. Cont. 

Therapy 
Specific 

Strategy 

Research Stage and 

Selected Models 
Results of Therapy 

Selected 

References 

Antisense 

oligonucleo-

tides 

2′O MePS 

Preclinical—mdx;  

Clinical trial Phase 

III 

Preclinical: IM revealed low dystrophin restoration, even with multiple high doses. Clinical: 6 mg/kg was maximal 

tolerated dose in patients. Phase III trial did not meet 6MWD endpoint. 
[145–148]  

 PMO 

Preclinical—mdx; 

Clinical trial Phase 

IIb 

Preclinical: repeat IV administrations of high dose restored dystrophin in multiple skeletal muscles of the mdx mouse, 

<2% in heart. Clinically: well tolerated and dystrophin present after 48 weeks. At 84 weeks stabilization in the 6MWD; 

120 weeks stabilized pulmonary function.  

[149–153]  

(Sarepta press 

release, February 

2014) 

 Tricyclo-DNA Preclinical- mdx 
Multiple IV administrations and very high doses (200 mg/kg per week) resulted in dystrophin in skeletal muscle and 

heart, with low levels in the brain and improvements in cardiac and pulmonary function.  
[154] 

 

Octa-guanidium 

conjugated 

PMO 

Preclinical- mdx and 

GRMD 

Capable of restoring dystrophin in skeletal muscle and hearts of mdx mice. This has further been demonstrated in 

dystrophic dogs. High doses led to adverse events in GRMD. 
[155,156] 

 
CPP-AOs- 

Arginine rich 

Preclinical—mdx 

and mdx/utrn−/− 

(RXR)4 multiple IP produced ~100% dystrophin in diaphragm and low levels in skeletal muscles. Single IV restored 

dystrophin in skeletal muscle and diaphragm, ~50% in the heart. Improved mortality rate and corrected kyphosis in 

mdx/utrn−/−. (RXRRBR)2: Less toxic, repeat and high dose IV illustrated impressive exon skipping notably in heart 

(72%). Improvements in cardiac function, with preserved diastolic function after 6 months  

[157–164]  

 CPP-AOs- Pips  Preclinical—mdx 

Pip2a and Pip2b: strong exon skipping following IM. Following IV, Pip5e induced high dystrophin restoration body wide 

including heart. Pip6-PMO series: Pip6a, Pip6b and Pip6f exhibited best dystrophin expression in heart. Long-term IV 

administration prevented deterioration in heart function in the event of exercise.  

[165–167]  

 
CPP-AOs- 

Phage Peptides 
Preclinical—mdx 

MSP enhanced in vivo skeletal and cardiac muscle binding capacity. B-MSP-PMO showed 2–5 fold improvement in 

skeletal muscle compared to B-PMO (no dystrophin in heart). T-9 (SKTFNTHPQSTP) specificity in mdx quad and 

improved specificity over MSP. 12-mer phage resulted in ~25% dystrophin expression in skeletal muscle (75 mg/kg). 

A 7-mer phage conjugated to 2′OMePS resulted in exon skipping in multiple tissues including heart and diaphragm. 

[168–172]. 
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4.1. Utrophin Up-Regulation 

Utrophin up-regulation was one of the first therapeutic strategies developed to compensate for the 

lack of dystrophin in the cell. In the adult cell, utrophin is mainly found in regenerating cells and at the 

neuromuscular and myotendinous junctions [173]. It is thought that utrophin could be important for 

determining actin filament length during development [174]. Utrophin is a homologue of dystrophin 

with a molecular weight of 395 kDa and a similar amino acid composition, although the rod domain is 

significantly shorter [175]. Despite functional differences, utrophin appears to have many of the same 

binding proteins, including certain components of the DAPC and F-actin [173,174,176]. Given these 

characteristics, it is believed that utrophin could partially compensate for dystrophin function and as 

such it has been considered a viable option for therapeutic purposes. 

Consequently, up-regulation of utrophin to ameliorate DMD pathology and improve the functional 

deficit is being investigated. Evidence supporting this concept comes from the dystrophin/utrophin 

double knockout (mdx/utrn-/−) mouse model. These animals exhibit worsened skeletal muscle and 

cardiac pathology and have a life span of only 2–3 months [162,177–179], indicating that utrophin 

compensates for the absence of dystrophin in these animals. The positive effects of utrophin  

up-regulation are also seen in mdx skeletal muscle, though it should be noted that the heart is not 

corrected [107–112]. Another strategy called biglycan localizes utrophin to the sarcolemma, though no 

new utrophin is generated [113] (Tivorsan Pharmaceuticals: www.trivorsan.com). 

The most promising utrophin targeting drug is SMT C1100, a drug discovered from a small molecule 

screen, currently undergoing clinical trials. Application of this drug in mdx mice increased utrophin RNA 

and protein levels, and the mice exhibited a reduced pathology and improved muscle function. The heart 

also displayed the presence of utrophin, but no functional tests were performed [114]. Phase Ia and Ib 

clinical trials have been performed, where the phase Ia trials showed that mild side-effects only occurred 

at higher doses [115]. The phase Ib trials have been completed, but results have yet to be published 

(clinicaltrials.gov, identifier: NCT02056808) (see Table 1).  

It should be noted that utrophin compensation is unable to completely restore pathology. For instance, 

utrophin is unable to bind nNOS, a key factor in DMD pathophysiology [180]. Therefore, given the 

structural differences compared to dystrophin, it is not yet clear if utrophin can fully compensate for the 

absence of dystrophin. Nevertheless, utrophin up-regulation remains a very valuable therapeutic option 

as it could benefit all patients, irrespective of the underlying mutation causing the disease. 

4.2. Stop Codon Read-Through Therapy 

A small number of patients have a nonsense mutation which leads to a premature stop-codon (about 

10%–15%) thereby disrupting the open reading frame [181,182]. Antibacterial drugs called 

aminoglycosides are able to ‘read-through’ these premature stop codons without affecting normal stop 

codons, thereby restoring the reading frame and generating a functional dystrophin protein [119,181,183]. 

Both gentamicin and negamycin have been examined in mdx mice, whereby low levels of dystrophin 

expression are observed. Gentamycin has been tested in DMD patients, where earlier clinical trials saw 

contradictory and inconclusive results and later trials saw only low levels of dystrophin expression in 

50% of patients [117]. 
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Subsequently, a high-throughput screen has identified PTC124, a small-molecule able to induce  

read-through of premature stop codons, which has shown significant promise in both in vitro and in vivo 

studies [119]. A major concern of this drug is the possibility of off-target effects [183], though there is 

no indication of this as of yet [119]. Nonetheless, positive preclinical results have led to PTC124, or 

ataluren, undergoing clinical trials, whereby the drug was well tolerated and most importantly, read-through 

of normal stop codons did not occur [120]. Further trials showed no significant functional outcome, 

though interestingly, several subgroups were positively affected by treatment. There was no mention of 

the heart [121,122] (clinicaltrials.gov, identifier: NCT01826487) (see Table 1). The results from this 

clinical trial clearly show that a better understanding regarding subgroups of patients and their functional 

outcomes is needed. 

Other studies have aimed at identifying more effective drugs to induce read-through. A sensitive 

small-molecule screen was performed, which identified compounds RTC13 and RTC14. These 

compounds were subsequently administered intramuscularly and intravenously in mdx mice, and RTC13 

demonstrated better efficacy (restoring dystrophin in skeletal muscle and especially the heart) than 

gentamicin, PTC124 and RTC14. In addition, muscle function was improved and serum CK levels were 

decreased in mdx mice treated with RTC13 [123]. RTC13 provides a promising new therapeutic 

molecule for patients with a premature stop codon. 

4.3. Viral Gene Therapy 

Another therapeutic strategy undergoing development is the use of viral vectors to deliver a 

dystrophin transgene to the cell. Given dystrophin’s enormous size, multiple studies have endeavored to 

distinguish the integral components of the dystrophin gene to develop a shortened truncated version that 

may be inserted into the viral capsid (mini- or microdystrophin) [184]. Several viruses have been 

considered as a potential delivery vector, including lentivirus, adenovirus and adeno-associated virus 

(AAV; see Table 1).  

In order to safely apply the AAV virus, it has been modified to exclude all viral genes, but leave 

essential repeats for replication (recombinant AAV, rAAV) [182]. The AAV vector requires co-transfection 

of a vector carrying components necessary for replication. Different AAV serotypes exhibit different 

tropism [185], of which rAAV2/AAV8, rAAV6 and rAAV9 have shown particular promise in the mdx 

heart when using mini- or micro-dystrophin. rAAV6 microdystrophin was successful at transfection and 

induction of dystrophin in TA, diaphragm and heart in young mdx mice. Interestingly, however, heart 

function did not recover even though dystrophin was restored in the heart and heart mass was  

normal [129]. Injection of old mdx mice also produced positive results [130], suggesting that even though 

mdx muscles had been significantly damaged by the disease, treatment was still capable of improving 

some muscle pathology [130].  

rAAV9 has proven to be particularly efficient in transfecting the heart [132]. Mini-dystrophin rAAV9 

administered intravenously in golden retriever muscular dystrophy (GRMD) dogs revealed varied 

dystrophin expression (between 15% and 100% depending on the muscle analyzed) and was also present 

in the heart [131]. Micro-dystrophin rAAV9 administration in young and adult mdx mice also induced 

dystrophin expression and improved cardiac function [132,133]. Despite these positive results, 

immunological responses to the AAV virus have still been observed in larger animals and humans [180,186]. 
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Moreover, high titers of virus are necessary to induce effective dystrophin expression in muscle cells. In 

an effort to reduce this, chimeric vectors such as rAAV2/8 vector containing a codon-optimized 

microdystrophin have been generated and intravenously injected in 10 week old mdx mice. Lower titer 

levels of the virus resulted in almost 100% transfection, effective dystrophin expression in both skeletal 

muscle and heart and improved muscle function. Moreover, no immunological response was  

observed [128]. 

Overall, viral vectors are promising candidates for the delivery of the dystrophin gene. However, 

special care should be taken regarding immunogenicity as the human population carries antibodies 

towards many prevalent viruses, such as AAV [182,187], though immunosuppression may be 

implemented to reduce this risk [188]. Moreover, incorrect insertions of the virus into the host genome 

may occur with vectors such as lentiviruses [182]. Lastly, repeat administration is problematic due to 

the presence of neutralizing antibodies from the first administration [180]. Further research is needed to 

eliminate these concerns. 

4.4. Cell-Based Therapy 

With cell-based therapy, healthy dystrophin-expressing cells are transplanted into DMD patient tissue 

which not only integrate into healthy adult muscle cells, but ideally also co-populate the satellite cells. 

These cells can be derived either from healthy precursor cells or from patient cells that are genetically 

modified in vitro [189]. Several different muscle precursor cells have been explored for therapeutic 

purposes in DMD, namely myoblasts, fibroblasts, bone-marrow derived stem cells, CD133+ stem cells 

and mesangioblasts (see Table 1) [134–141,190,191]. 

A more recent shift to the use of induced pluripotent stem (iPS) cells has been observed. Indeed, 

human iPS cells have been differentiated into muscle precursor cells and injected into TA muscles of 

immunocompromised mdx mouse models [143]. Following injection, dystrophin protein was restored, 

regeneration led to higher dystrophin levels and functional tests showed improvement [143,144]. These 

experiments illustrated that iPS cells were able to integrate with muscle cells and settle in the satellite 

cell population.  

Several groups have aimed at utilizing genetically modified patient precursor cells as treatment. This 

would circumvent immunological suppression needed when introducing foreign material into the body. 

The genome of the cells are modified in vitro with the use of nucleases [192–195], whereby more 

recently, TALENs and CRISPR-cas9 have been used for splicing correction of the dystrophin gene. They 

were utilized in iPS cells in vitro to induce exon skipping, shift the reading frame or insert the missing 

exon with successful results. Subsequently, these iPS cells were differentiated into skeletal muscle cells 

and dystrophin expression was observed. The knock-in of the missing exon was most effective [193]. 

Given the novelty of the work, the study focused on skeletal cells and did not encompass the 

cardiomyocytes, but the results offer interesting prospects for dystrophin heart restoration. 

Overall, utilizing genetically modified cells from patients would be a more valuable treatment when 

considering immunological responses. However, the ability to induce and sustain adequate  

dystrophin levels remains difficult. Currently, delivery of progenitor cells is most successful if done  

intramuscularly [182], yet this would only allow the treatment of one muscle at a time and muscles like 

the diaphragm and the heart would not be restored. Additionally, high titers of modified cells are needed 
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to significantly alter the phenotype and functionality. Several obstacles are yet to overcome, but this 

technique appears promising and may prove to be very effective.  

4.5. Antisense Oligonucleotides 

Antisense oligonucleotides (AONs) are another viable approach for treating DMD patients, and are 

specifically utilized in the skipping of exons with mutations or deletions in the dystrophin gene in order 

to correct the aberrant reading frame [196]. AONs are short, single stranded DNA sequences which are 

complementary to a target pre-mRNA splice site, thereby sterically blocking splice enhancers and 

skipping the desired exon which produces a functional, albeit shorter, dystrophin protein [197]. This 

therapy is capable of treating ~83% of DMD patients with dystrophin mutations, specifically 79% of 

patients with deletions, 91% with small mutations and 73% with duplications [198]. A significant 

shortfall of this therapy is that AONs can only specifically target one exon at a time and therefore current 

efforts are focused on exons which would assist the greatest numbers of patients [198].  

The predominant AON chemistries which are currently undergoing clinical evaluation are 

phosphorodiamidate morpholino oligomers (PMOs) [149] and 2′O methyl phosphorothioate  

(2′OMePS) [146] and both have shown promising results in the clinic (see Table 1) [146,149,153,199]. 

Although these chemistries demonstrate potential for treating DMD, the confounding issues are their 

relatively poor systemic delivery and their inability to restore dystrophin in the heart [146,149,200,201]. 

More recently, a new AON chemistry, tricyclo-DNA, has demonstrated marked preclinical success and 

was capable of restoring dystrophin in skeletal muscle and heart, with low levels in the brain of DMD 

mouse models. However, it should be noted that these positive findings required multiple dose 

administration and very high doses (200 mg/kg per week) [154].  

In an effort to improve the delivery capacity of AONs and reduce the dose required, short peptide 

sequences, ‘cell penetrating peptides’ (CPPs), have been chemically conjugated to neutral AONs such 

as PMO to facilitate their delivery across the plasma membrane. A multitude of studies have investigated 

peptide conjugated AONs in the context of DMD and can broadly be classified into 3 distinct groups 

namely arginine rich, Pip (PNA/PMO internalization peptide), and phage and chimeric peptides.  

Most importantly the arginine rich and Pip peptides have demonstrated cardiac dystrophin expression. 

Arginine rich CPPS conjugated to PMO were the first to show activity in the heart [163] and indeed 

further showed that sustained treatment improved cardiac function and resistance to dobutamine  

stress [158]. More recently, the Pip6 series has demonstrated dystrophin expression in the heart at very 

low doses (12.5 mg/kg) [166] and prevented exercise-induced cardiomyopathy following long-term 

treatment [167]. The phage peptides have been less successful in restoring cardiac dystrophin and 

function, with the exception of a 7-mer phage (conjugated to 2′OMePS), which resulted in exon skipping 

in multiple tissues including heart [172].  

Another method to improve delivery of charged AONs is to encapsulate them in liposomes [202] or 

nanoparticles. More recent advancements have given rise to ZM4 nanoparticles bound to AONs which 

demonstrated widespread distribution to skeletal muscle and heart, thus highlighting the potential of this 

delivery method. Other new and innovative technologies being investigated include bispecific splice 

oligonucleotides targeting dystrophin and myostatin regulation [203], and knocking-in of deleted exons 
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using meganucleases [195]. Given the current developments of AON therapy in the DMD field, it is no 

surprise that such a variety of novel approaches are being developed for the treatment of DMD.  

To summarize, with the exception of tricyclo-DNA, naked AONs have demonstrated limited systemic 

delivery and an inability to restore dystrophin in the heart, whereas conjugation to CPPs or the use of 

encapsulation technologies have significantly improved upon this. From a CPP perspective, both  

poly-arginine and Pip CPPs have displayed widespread dystrophin restoration in multiple skeletal 

muscle tissues and the heart. Nanoparticles are another promising delivery strategy, particularly for 

charged AONs such as 2′OMePS. This field is rapidly evolving and it is hoped that one or more of these 

technologies is advanced to clinical trial in the near future. 

Whilst these experimental therapies have inspired new hope for patients and families affected by 

DMD, the feasibility of clinically translating some of these therapies has been brought into question. Not 

only should species differences be considered in terms of cellular processes and pathways, but also 

concerning immunological responses. Mouse models of DMD are somewhat resilient, and studies in dog 

models have highlighted inevitable obstacles particularly due to our complex immune system. This is 

impossible to avoid given the requirement of a systemic approach to treat a disease which is devastating 

to the entire body. Not only is preventing an immunological response particularly relevant for cell-based 

therapies and viral vectors, but also for peptide-conjugated AONs which may cause complications. 

Certainly, long term administration of ‘naked’ PMO did not elicit an immunological response. Other 

therapies such as aminoglycosides may induce off-target or other toxicological affects. Ultimately, in 

order to substantially ameliorate or abrogate this disease, targeting the underlying defect, specifically 

the lack of dystrophin protein, is required. Current pharmacological interventions can only delay or 

partially ameliorate the symptoms of this disease. Therefore it is imperative that one or more, or indeed 

a new therapy altogether, is able to overcome these obstacles and by-pass our innate immune system. 

5. Conclusions 

Our current understanding of Duchenne muscular dystrophy has increased significantly over the last 

few decades. The absence of the dystrophin protein gives rise to a complex pathology with the 

involvement of many different processes in the cell all playing an intricate part in further disease 

progression. Much research has already been performed which indicate the importance of Ca2+, NO, 

mitochondria and other second messengers and organelles in the cell. However, given the gaps that still 

remain in our knowledge, it seems likely that other unknown proteins or pathways also affect disease 

pathology. Furthermore, as dystrophin is expressed body-wide, it is important that individual systems 

such as the heart are considered, as specific mechanistic findings from skeletal muscle pathology may 

not necessarily be applied to the heart. Moreover, the comparison of molecular aspects of dystrophin 

function between different cell types could provide valuable information.  

The knowledge gained from improved understanding of molecular pathological pathways provides 

more ways of developing and assessing the effectiveness of treatment. With the availability of steroids 

and other drugs, improvements have been made to ameliorate the skeletal muscle phenotype. Whilst 

pharmacological treatments to stabilize cardiac function, such as ACE inhibitors and beta-blockers, are 

in use, mortality from cardiorespiratory complications in DMD patients remains high. Moreover, whilst 

some experimental therapies are under development, these may not benefit cardiac aspects of the disease 
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and most clinical trials to date have focused exclusively on the beneficial effects of drug treatment on 

skeletal muscle function, without considering the impact on heart function. Therefore, an increased focus 

on the heart is essential, both in terms of existing treatments and the effects on heart function, but also 

more critically on novel treatments that could be developed to specifically restore dystrophin or 

upregulate utrophin in cardiac muscle, resulting in clinical benefit for patients.  
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