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Abstract: Assessing the human placental barrier permeability of drugs is very important  

to guarantee drug safety during pregnancy. Quantitative structure–activity relationship 

(QSAR) method was used as an effective assessing tool for the placental transfer study of 

drugs, while in vitro human placental perfusion is the most widely used method. In this 

study, the partial least squares (PLS) variable selection and modeling procedure was used  

to pick out optimal descriptors from a pool of 620 descriptors of 65 compounds and to 

simultaneously develop a QSAR model between the descriptors and the placental barrier 

permeability expressed by the clearance indices (CI). The model was subjected to internal 

validation by cross-validation and y-randomization and to external validation by predicting 

CI values of 19 compounds. It was shown that the model developed is robust and has a good 

predictive potential (r2 = 0.9064, RMSE = 0.09, q2 = 0.7323, rp
2 = 0.7656, RMSP = 0.14). 

The mechanistic interpretation of the final model was given by the high variable importance 

in projection values of descriptors. Using PLS procedure, we can rapidly and effectively 
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select optimal descriptors and thus construct a model with good stability and predictability. 

This analysis can provide an effective tool for the high-throughput screening of the placental 

barrier permeability of drugs. 

Keywords: placental barrier permeability; descriptors based on Dragon software; PLS 

regression; variable importance in projection (VIP); validation; application domain 

 

1. Introduction 

More and more prescription and non-prescription drugs are directly used in pregnant women, which 

will cause fetuses exposed to the drugs from the mother transferring across the placental barrier [1–4].  

In the past decades, women who took one drug during pregnancy has accounted for 90% and at least 

10 drugs for 4% in China, according to the data of the Ministry of Health, while pregnant women 

consumed an average of 2.3 drugs in North America [5,6]. These drugs might cause fetal toxicity or 

teratogenicity but do not hurt the mother. As the pregnancy rates in women over the age of 40 have 

been continually growing [7], from now on, the mean of drugs consumed in pregnancy is expected to 

increase. Therefore, to guarantee drug safety during pregnancy, the urgent demand for accurate fetal 

health risk assessment has led to the development of in vitro and in vivo experimental models to 

research the human placental barrier permeability of drugs. 

Human placenta is a unique organ for feto-placental-maternal circulation in pregnancy [8,9]. 

Although animal experiments were applied to evaluate the placental barrier permeability of drugs, 

human tissue and cells are still the best choice [10,11]. However, the in vivo risk assessment studies of 

exposures to drugs are forbidden in humans due to ethical reasons. To avoid the ethical problems, 

several in vitro models emerged, including primary trophoblastic cells, immortal cell lines of placental 

origin and explants as human placental perfusion [10,12,13]. However, these in vitro experiments are 

time-consuming and demanding methods. 

Quantitative structure activity-property relationship (QSAR/QSPR) study has been extensively used 

to develop a model between the chemical structures of molecules and the available biological 

properties, and to predict the properties which must be obtained through in vivo or in vitro  

experiments [14–17]. For example, the QSAR technique has been used in the drug ADME/T 

assessment [18–26]. However, there is only a little literature on QSAR of placental barrier 

permeability. Hewitt et al. [27] established five different QSAR models, but all of them just carried out 

internal validating, not did external validation. Giaginis et al. [28] created a Partial Least Squares 

(PLS) regression model by the original 16 variables using Multivariate Data Analysis (MVDA). The 

model had lower r2 and bigger RMSE (in training set: r2 = 0.72, q2 = 0.69, RMSE = 0.16 and in test set: 

RMSP = 0.16). Meanwhile, the model was not defined with an appropriate application domain. 

It is well known there are two key steps in QSAR. One is creating the molecule descriptor, the other 

is modeling. As pointed out in our previous work [29], the first step is very easy because a great deal 

of descriptors can be rapidly acquired using software such as MOE [30] and DRAGON [31]. At 

present, there are many QSAR modeling techniques such as multiple linear regression (MLR), support 

vector machine (SVM), principal component analysis (PCA) and PLS regression [32–34]. However, 
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how to select the descriptors closely related to a required biological property from a big descriptor pool 

in order to establish a robust and predictable model is becoming a bottleneck problem. In the review 

written by Gonzalez et al. [35], different variable selection methods were discussed, including 

stepwise-regression, optimal subset, genetic algorithm (GA) and artificial neural network (ANN). 

MVDA [28] is commonly applied as a powerful conventional statistical tool for variable selection. 

However, many of the variable selection methods mentioned above have some defects. For example, 

the stepwise regression, optimal subset and conventional statistical method are relatively appropriate 

only for a few variables. In addition, ANN as a non-linear method creates difficulties in interpretation. 

Furthermore, the most well-known advantage of GA is in establishing a robust model, but the GA 

results very much depend on the number of generations allowed to evolve. Luckily, the PLS is a linear, 

numerous variable, and non-random variable selection and modeling method. PLS cannot only avoid 

collinearity or auto-correlation problems but also address the puzzles in ANN and GA. Therefore, PLS as a 

rapid and effective method was widely used to develop robust and predictable QSAR models [36–39]. 

In this study, the molecular descriptors are computed using DRAGON software and the PLS 

procedure [29,40] is chosen to select optimal descriptors and develop a QSAR model between the 

placental barrier permeability expressed by CI and the optimal descriptors. At the same time, the PLS 

regression model is subject to rigid internal and external validation and the optimal variables with high 

VIP values are rationally illustrated. 

2. Results and Discussion 

2.1. PLS Variable Selection 

The selection of optimal variables is performed step by step. When A = 8, the VIP values of  

396 descriptors are greater than 1.000 in the PLS model based on 620 original descriptors. Then, the 

396 descriptors with high VIPs act as new original ones and a new PLS model is developed in the 

same way. When A = 7, the VIP values of 286 descriptors are greater than 1.00 in the new PLS model. 

Again, when A = 8235, descriptors have high VIP values. Relevant statistical results in PLS variable 

selection were shown in Table 1. 

Table 1. The statistical results of variable selection by PLS method. 

m A r2 RMSE q2 RMSV 
620 8 0.9801 0.04 0.3715 0.25 
396 7 0.9716 0.05 0.5569 0.20 
286 8 0.9745 0.05 0.6532 0.18 
235 8 0.9751 0.05 0.6773 0.17 
195 7 0.9573 0.06 0.6984 0.16 
163 7 0.9651 0.06 0.7445 0.15 
137 7 0.9518 0.07 0.7153 0.16 
115 7 0.9368 0.07 0.6941 0.17 
100 7 0.9264 0.08 0.6831 0.17 
85 7 0.9302 0.08 0.7125 0.16 
79 7 0.9341 0.08 0.7560 0.15 
73 7 0.9258 0.08 0.7330 0.15 
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Table 1. Cont. 

m A r2 RMSE q2 RMSV 
67 7 0.9169 0.09 0.7022 0.16 
62 7 0.9138 0.09 0.7271 0.16 
58 7 0.9110 0.09 0.7208 0.16 
55 7 0.9115 0.09 0.7303 0.15 
48 7 0.9064 0.09 0.7323 0.15 
42 7 0.8525 0.11 0.6655 0.17 
39 5 0.8115 0.13 0.6350 0.18 
34 5 0.7845 0.14 0.6138 0.19 

From Table 1, when the number of selected variables, m = 163, 79, 62 and 48, the q2 values of the 

relevant models have maximum values. For example, when m = 55, q2 = 0.7303; m = 48, q2 = 0.7323; 

and m = 42, q2 = 0.6655, it means that the value of q2 was a peak at m = 48. Taking into account the 

number of samples is only 87 compounds, the fewer the number of variables, the better the model. 

Thus, 48 descriptors are chosen in the final PLS model. Categories and specific names of these 48 

optimal descriptors are shown in Table 2. 

Table 2. The names and types of selected 48 optimal descriptors. 

Type of Descriptor m Name of Descriptor 

Constitutional indices 4 Me, O%, nO, nHet 
Topological indices 3 DELS, DECC, Psi_i_A 
Connectivity indices 1 X0Av 
Information indices 3 SIC1,AAC, IC1 

2D matrix-based descriptor 5 TI2_L, SM5_X, Chi_Dz(p), SM1_Dz(p), SM6_B(s) 

2D autocorrelations 11 
MATS3v, GATS1e, ATSC2s, MATS1e, ATSC3e, ATSC1e, 
ATSC1s, ATSC3s, MATS8i, GATS3v, GATS1s 

Burden eigenvalues 1 SpMax3_Bh(s) 
P-VS-like descriptors 2 P_VSA_p_2, P_VSA_s_6 

Edge adjacency indices 4 Eig03_EA(dm), Eig05_EA(dm), Eig06_EA(dm), SpMAD_B(s) 
Functional group counts 3 nRNH2, nHDon, nPyrimidines 
Atom-centred fragments 1 O-057 

CAST 2D 5 
CATS2D_07_DD, CATS2D_04_DD, CATS2D_08_DA 
CATS2D_05_AP, CATS2D_04_LL 

2D atom pairs 2 T(O..O), F05[O-O] 
Molecular properties 2 MLOGP, SAdon 

Drug-like indices 1 LLS_01 

2.2. PLS Regression Model 

The model between the CIs and 48 descriptors of 65 training set samples was built by PLS regression. 

The corresponding experimental and calculated CI values of 65 compounds were summarized in Table 3. 
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Table 3. Eighty-eight compounds and their CI observed and calculated values where the 

compounds with an asterisk (*) refer to ones in the test set. 

No. Name CI-Obs. CI-Cal. No. Name CI-Obs. CI-Cal. 

1 * Abacavir 0.47 0.62 45 Mefloquine 1.57  

2 Acipimox 0.25 0.38 46 Meropenem 0.08 0.16 

3 * Acyclovir 0.17 0.09 47 Metaclopramide 0.40 0.65 

4 * Alanine 0.30 0.40 48 Metformin 0.34 0.44 

5 Alfentanil 0.75 0.68 49 Methadone 0.83 0.97 

6 PAH 0.47 0.41 50 * Mezlocilline 0.14 –0.08 

7 * Amprenavir 0.38 0.39 51 * Morphine 0.63 0.36 

8 * Azidothymidine 0.29 0.15 52 Naloxone 0.64 0.46 

9 Betamethasone 0.41 0.44 53 * Nicotine 0.93 0.54 

10 Biotin 0.35 0.43 54 Oseltamivir 0.13 0.28 

11 Bisheteroypiperazine 0.72 0.65 55 Hydroxyphenytoin 0.52 0.51 

12 Buprenorphine 0.29 0.32 56 PCB-52 0.74 0.62 

13 Cefoperazone 0.04 0.06 57 Pentamidine 0.04 0.04 

14 Cefpirome 0.20 0.02 58 Phenobarbitone 0.52 0.63 

15 * Ceftizoxime 0.12 0.04 59 * Prednisolone 0.38 0.46 

16 * Chloroprocaine 0.83 0.69 60 Propofol 0.51 0.58 

17 L-Leucine 0.62 0.55 61 Pyridoxal 0.37 0.40 

18 Lidocaine 0.91 0.96 62 Pyridoxal 5'-phosphate 0.07 0.06 

19 * Bupivacaine 0.73 0.91 63 Pyridoxine 0.56 0.45 

20 * Cimetidine 0.30 0.38 64 Pyrimethamine 1.00 1.03 

21 Clavulanic acid 0.06 0.11 65 Quabain 0.07 0.07 

22 Cocaethylene 0.78 0.82 66 Ribofl avin 0.69 0.74 

23 Cocaine 0.88 0.74 67 Rifabutin 0.37 0.42 

24 * Cortisol 0.50 0.54 68 * Rifampin 0.12 0.76 

25 Cortisone 0.74 0.63 69 Ritodrine 0.10 0.04 

26 Creatinine 0.31 0.36 70 Ritonavir 0.09 0.07 

27 D4T 0.24 0.25 71 * Ropivacaine 0.75 0.94 

28 DDE 0.61 0.68 72 Rosiglitazone 0.20 0.35 

29 Dexamethasone 0.37 0.44 73 Salbutamol 0.40 0.30 

30 Dichlorobenzene 0.98 0.99 74 Saquinavir 0.05 0.09 

31 Diclofenac 0.79 0.68 75 * S-Ketoprofen 0.39 0.91 

32 * Didanosine 0.31 0.29 76 SR49059 0.31 0.33 

33 Ethanol 1.07 1.05 77 Sufentanil 0.66 0.65 

34 Fenoterol 0.10 0.18 78 Sulindac 0.47 0.60 

35 Ganciclovir 0.17 0.08 79 Sulindac sulfide 0.81 0.64 

36 * Glucose 0.26 0.50 80 Theophylline 0.80 0.64 

37 Hydralazine 0.61 0.62 81 Thiopental 0.95 0.89 

38 Indinavir 0.39 0.34 82 Ticarcillin 0.04 0.14 

39 * Indomethacin 0.72 0.58 83 * Triameterene 0.85 0.80 

40 * L-Alpha-acetyl-N-normethadol 0.80 0.88 84 Trovafl oxacin 0.19 0.23 

41 L-Alphacetylmethadol 0.95 0.92 85 Urea 0.32 0.28 

42 Lamivudine 0.23 0.19 86 Valproic acid 0.95 0.93 

43 Lysine 0.35 0.29 87 Vinblastine 0.31 0.23 

44 Lopinavir 0.73 0.60 88 Zalcitabine 0.22 0.34 
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Some statistics obtained in modeling were given as follows, 

n = 65, A = 7, m = 48, r2 = 0.9064, RMSE = 0.09, F = 78.86 (modeling) 

This model has a good estimation ability (r2 = 0.9064, RMSE = 0.09). The plot of CI values 

calculated vs. those observed was shown in Figure 1. In Figure 1, the little black square is on behalf of 

the sample in the training set and all squares are evenly and almost symmetrically distributed around 

the diagonal line, which indicates that the model fit very well and PLS regression model based on 48 

optimal descriptors has good estimation ability for the placental barrier permeability of compounds. 
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Figure 1. Plot of the CI values calculated by the Partial Least Squares (PLS) models vs. 

those observed. 

2.3. Internal and External Validation 

In statistical prediction, the following three cross-validation methods are often used to examine  

a predictor for its effectiveness in practical application: independent dataset test, subsampling test  

(leave-many-out (LMO) or K-fold cross-validation), and jackknife test (or leave-one-out (LOO)  

cross-validation) [41]. (i) For the independent dataset test, although all the samples used to test the 

predictor are outside the training dataset used to train it so as to exclude the “memory” effect or bias, 

the method for selecting the independent samples to test the predictor could be quite arbitrary unless 

the number of independent samples is sufficiently large; (ii) For the subsampling test, the concrete 

procedure usually used in literatures is the five-fold, seven-fold or 10-fold cross-validation. Also, there 

is another usual procedure named LMO cross-validation. Subsampling covered global sampling in 

K-fold while there were only small sampling times in LMO cross-validation. The problem with this 

kind of subsampling test is that the number of possible selections in dividing a benchmark dataset is an 

astronomical figure even for a very simple dataset, as demonstrated by Equations 28–30 in [42]; (iii) In 

the jackknife test (or LOO), all the samples in the benchmark dataset will be singled out one-by-one 

and tested by the predictor trained by the remaining samples. During the process of jackknifing, both 
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the training dataset and testing dataset are actually open, and each sample will be in turn moved 

between the two. The jackknife test can exclude the “memory” effect. Also, the arbitrariness problem 

as mentioned above for the independent dataset test and subsampling test can be avoided because the 

outcome obtained by the jackknife cross-validation is always unique for a given benchmark dataset. 

Therefore, three test methods were complementary for testifying the QSAR model quality. To reduce 

the computational time, we adopted the independent testing dataset, LOO and LMO cross-validation in 

this study. 

The above PLS model was internally and externally validated by using the LOO and LMO  

cross-validation, y-randomization, and predicting the test set samples. It was shown that the model has 

high stability which is validated by the LOO cross-validation (q2 = 0.7323, RMSV = 0.15). Whether the 

model is robust or not is still need to do the LMO cross-validation. When M = 2, 3, 4, 5, and 6, 

respectively, the mean and 95% confidence intervals of the validated q2
LMO values were listed in  

Table 4. The maximum average value of q2
LMO is (0.6932 ± 0.0148) obtained in the L5O validation, 

while the minimum one is (0.5441 ± 0.0217) in the L6O. All average q2
LMO values in the LMO  

cross-validation are bigger than 0.5. Both the results of LOO and LMO cross-validation indicate that the 

model is very robust. 

Table 4. The statistical parameters and their values in PLS regression model.  

Model Parameter Value 

A 7 
r2 0.9064 

RMSE 0.09 
q2(LOO) 0.7323 
RMSV 0.15 

q2(L2O) 0.6620 (±0.0195) 
q2(L3O) 0.6496 (±0.0147) 
q2(L4O) 0.6638 (±0.0169) 
q2(L5O) 0.6932 (±0.0148) 
q2(L6O) 0.5441 (±0.0217) 

Y-Randomization 
r2

Yrand 0.3740 (±0.0152) 
q2

Yrand −1.1573 (±0.1952) 

rp
2 0.4201(np = 22) 0.7656(np = 19) 

RMSP 0.23 0.14 

Further internal validation of the model was performed using y-randomization (repeated 10 times). 

The result (r2
Yrand and q2

Yrand) obtained from the y-randomization is also displayed in Table 4. All of the 

q2
Yrand values are following negative values and the value of r2

Yrand is equal to 0.3740 (±0.0152), and 

they belong to the area of 0.3 ˂ r2
Yrand ˂ 0.4, which indicates that the variance of the model is acceptable 

accidental correlation [43]. Thus, the results of the internal validation indicate the model is still dependable. 

The model was externally validated by predicting 22 samples in the test set in order to assess the 

actual predictive power of the QSAR model. Then, the optimal set of 48 descriptors of 22 compounds 

in the test set was picked out from 620 descriptors. The PLS regression model was employed to predict 

the CI values of samples in the test set (np = 22, A = 7, m = 48, rp
2 = 0.4201, RMSP = 0.23). The 
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calculated CI values of 22 compounds were summarized in Table 3. The plot of CI values calculated vs. 

those observed was also shown in Figure 1 and the red circle is on behalf of the sample in the test set. 

As shown in Figure 1, there are only three particularly obvious red circles (representing the 

compounds of nos. 53, 68, and 75) far away from the diagonal line which indicated that the predicted 

CI values of these three compounds should be doubtful. Although the predicted rp
2 (0.4201) and RMSP 

(0.23) are unsatisfactory, the model can be considered to have predictive power when three outliers are 

taken into account. It is rational because the absolute predictive residuals of the outliers are higher than 

3 × RMSE, the residual being −0.39 for the compound of no. 53, 0.64 for no. 68, and 0.52 for no. 75 

(see Table 3). If these three compounds considered as outliers were deleted from the test set, the model 

has high predictive potential for the remaining 19 compounds (rp
2 = 0.7656, RMSP = 0.14). 

2.4. Application Domain 

The structure of application domain of the model was defined by leverage [44]. The leverage values 

are calculated for every compound and plotted vs. standard residuals referred to as the Willam’s  

plot [43,45]. The control leverage h* is fixed at 2.22 (=3 × 48/65). There are many biological and 

pharmaceutical uncertainties in the animal experiments, which generally cause bigger error in the data. 

The restrict residual is taken by the empirical value, defined as three times the deviation. The calculated 

values of the training set and the predicted values of the test set are displayed in the Willam’s plot in 

Figure 2. 
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Figure 2. Willam’s maps for model’s application domain. Plot of the LOO standardized 

residuals versus leverage of the PLS model. The small black circles represent samples of the 

training set, and the red up-triangle on behalf of the samples in test set. 

From Figure 2, all black circles (compounds in training set) follow the middle-left region,  

the best domain with appropriate leverages and residues. Some up-triangles are distributed in the 

middle-left region, which indicates that the predicted value of these compounds should be proposed. 

Some other up-triangles are distributed into the middle-right region, which indicates that the predicted 
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CI value can be extrapolated from the model. The leverages of these compounds are high, but the 

standard residual values of these compounds are less than 3. Therefore, these compounds are still kept 

in the model, and these predicted results must be used with great care. There are three up-triangles 

following the up and down regions in Figure 2, which means that the absolute standardized residual 

values of compound nos. 53, 68 and 75 are larger than 3. These three compounds are recognized 

outliers after the application domain is defined. Then, the structure of application domain of the QSAR 

model was defined perfectly and the external validation of model could be evaluated using the 

remaining 19 compounds in the test set (rp
2 = 0.7656, RMSP = 0.14). 

In addition, after the application domain of the model was well defined and three outliers were 

deleted from the test set, the results of the criteria proposed by Golbraikh and Tropsha [45] for the test set 

in the model are shown as follows, k = 0.9282 , k' = 1.0084 , (R2
o − R2)/R2 = –0.0115, (R'2o − R2)/R2 = 

−0.0378. Obviously, k and kʹ are in the domain of 0.85 ≤ k ≤ 1.15 or 0.85 ≤ k' ≤ 1.15, and all values of 

R2, Ro
2, and Roʹ2 nearly equal to 1. And (R2 − Ro

2)/R2 and (R2 − Ro'2)/R2 are less than 0.1, all are in 

appropriate zone. These results confirm that the model has a good predictive power for an external 

sample, which indicate that the model can be used as a great predictive model for the placental barrier 

properties analysis of drug molecules after the application domain is defined. 

There is a lot of literature on experimental determination of the placental barrier, but only four 

papers [27,28,46,47] mentioned high-throughput screening and the use of the QSAR method in studies 

on the placenta barrier. Giaginis et al. [28] created a PLS model with lower r2 and bigger s or RMSE. 

In our research, all compounds are directly derived from Giaginis’ data [28]. The method of PLS 

variable selection is employed to quickly select the optimal descriptor set from 620 DRAGON 

descriptors to build the PLS regression model. The data set is divided into 65 compounds in the 

training set and 19 components in the test set due to modeling and external validation. The statistics of 

the QSAR model in this study (n = 65, A = 7, m = 48, r2 = 0.9064, RMSE = 0.09, q2 = 0.7323; np = 19, 

rp
2 = 0.7656, RMSP = 0.14) ensure our models’ strong competitiveness compared with the results of 

Giaginis models [28]. Using PLS method, a good quality PLS regression model can be quickly 

established for 48 optimal descriptors from 3764 descriptors and the CI values of compounds. 

2.5. Mechanistic Interpretation 

To infer whether the optimal descriptors were selected reasonably, the mechanistic interpretation of 

QSAR model was carried out according to the definition of descriptors. As Wold [45] suggested, 

because the descriptor VIP value is larger, this indicates this descriptor is significant for the PLS model. 

After model generation and validation, we interpret the selected descriptors that were used in the PLS 

models according to the most important VIP value. Therefore, seven descriptors (nHDon, TI2_L, 

P_VSA_p_2, nRNH2, ATSC1s, CATS2D_08_DA and SM1_Dz(p)) were considered to be the most 

significant descriptors according to the VIP values. The seven selected descriptors are functional group 

counts (nRNH2 and nHDon), P_VSA-like descriptors (P_VSA_p_2), 2D matrix-based descriptors (TI2_L 

and SM1_Dz(p)), 2D auto-correlations (ATSC1s), and CATS 2D descriptor (CATS2D_08_DA) [48]. 

Among the more important factors affecting the placental barrier permeability, it can be found that 

the number of donor atoms for H-bonds(N and O) (nHDon) and CATS2D Donor-Acceptor at lag 08 

(CATS2D_08_DA) reflecting the polarity and hydrogen bonding capability of compounds are the most 
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important descriptors. Then, nRNH2 refers to number of primary amines (aliphatic), P_VSA_p_2 refers 

to P_VSA-like on polarizability (bin 2) and SM1_Dz(p) refers to spectral moment of order 1 from 

Barysz matrix weighted by polarizability. These three descriptors indicated that molecular polarity and 

lipophilicity are important factors for permeability. TI2_L refers to second Mohar index from Laplace 

matrix. ATSC1s refers to Centred Broto-Moreau autocorrelation of lag 1 weighted by I-state. Also, the 

compounds’ lipophilicity made a considerable contribution in the transport of compounds across the 

human placenta. Our given analyses are consistent with the literature results [28] that compounds which 

possess a relatively high number of hydrogen bond acceptor or donor sites and thereupon low 

lipophilicity may exhibit reduced transport across the placental barrier [49]. Thus, the PLS regression 

model whose descriptors were chosen by PLS variable selection method is feasible in predicting the 

placental barrier permeability. 

3. Experimental Section 

The procedure for developing the PLS models between the placental barrier permeability (CI) and 

molecular descriptors consists of data collection, descriptor calculation, variable selection, model 

development and validation, and application domain. The flow diagram of the procedure is shown in 

Figure 3. 
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Figure 3. Sketch map for modeling and validation process of the CI value. 
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3.1. Data Collection 

Eighty-eight compounds and their CI values are directly taken from the literature [28]. Here,  

CI = clearance of compound under study/clearance of a reference compound (antipyrine) [50–52]. The 

serial numbers, compound names and the experimental CI values of the compounds are listed in Table 3. 

The experimental CI values of 88 compounds are uniformly distributional (see Figure 4). From Figure 4, 

only one CI value is much bigger than others and the value is 1.57 (see mefloquine in Table 3), which 

indicates that the transport of mefloquine across the placenta exceed that of antipyrine. Mefloquine 

should be considered as an outlier and deleted from the data set. The other CI values are widespread 

and distributed in the range of 0.04–1.07. These compounds have diverse structures and belong to 

different drug genres, such as analgesic, antiviral, barbiturate, neuroleptic, and benzodiazepine, etc. 

0 20 40 60 80
0.0

0.5

1.0

1.5

Compound index 

CI
-v

al
ue

 o
b

s.

 

Figure 4. Distribution of the CI value observed of 88 drugs. 

3.2. Descriptor Calculation and Pretreatment 

Three thousand six hundred and seventy four molecular descriptors for each of 87 compounds were 

calculated by the Dragon software (version 6.0) [31]. The descriptors involve 19 categories, 

constitutional indices, ring descriptors, topological indices, walk and path counts, connectivity indices, 

information indices, 2D matrix-based descriptors, 2D autocorrelations, burden eigenvalues, P_VSA-like 

descriptors, ETA indices, edge adjacency indices, functional group counts, atom-centred fragments, 

atom-type E-state indices, CATS 2D, 2D atom pairs, molecular properties, and drug-like indices. 

The values of one or many descriptors could be zero or a constant for all molecules due to the absence 

of some special atoms and these descriptors should be deleted. Furthermore, the descriptor with  

a standard deviation of <0.001 should be deleted due to little statistical meaning. If the correlation 

coefficient between two descriptors is greater than 0.90, then remove any one of the two descriptors. 

Then, the remaining 620 descriptors are obtained. 
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3.3. Variable Selection 

The data set of 87 compounds is randomly divided into a training set of 65 samples and a test set  

of 22 ones. The PLS variable selection method [29] is selected to pick out optimal descriptors from  

the 620 descriptors in the training set. Taking the 620 descriptors as independent variable matrix (X) and 

CI values as dependent variable matrix (Y), the PLS variable selection and modeling are performed 

where the q2 obtained in the LOO cross-validation is taken as an objective function. Then, the variables 

with high VIP values (typically greater than 1) are extracted from X matrix as modeling variables [29,40,53]. 

The VIP value of the jth variable is defined as follows (Equation (1)) [40], 
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where m is the number of original variables, ω is a weight vector corresponding to the optimal latent 

variables (A), r(y, ta) is the correlation coefficient between Y vector and the score vector of the ath 

latent variable (Equation (2)) [40]. 

3.4. Model Development and Validation 

Taking a suitable latent variable number (A), a model between the CI values and optimal descriptors 

for 65 samples/drugs in training set is built by the PLS regression. The model is firstly internally validated 

by a LOO and LMO cross-validation. Here, the validated correlation coefficient (q2) (Equation (3)) is 

used to assess the quality of cross-validation [40,54–56]. 
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where yi and ŷ are the ith experimental CI and that predicted by the LOO or LMO validation, 

respectively; y  is the mean of CIs; n is the number of the samples in the training set. 

Unlike the LOO, the LMO cross-validation randomly picks out many samples (M) rather than one 

each time and the remaining (n-M) samples in the training set are used to develop a model and then the 

model is employed to predict the CI values of the M samples. The procedure is repeated many times. In 

this study, M = 2, 3, 4, 5, and 6, respectively, and LMO cross-validation repeated 10 times. If a model 

has a high q2
LOO (>0.5) in LOO validation or high average q2

LMO (>0.5) in LMO validation, the obtained 

model could be thought robust. 

Furthermore, the y-randomization test [43,45] is used to evaluate the possibility of chance correlation 

for a model. In this test, the dependent-variables (CI values) are firstly randomly shuffled, a model 

between the randomized CI values and the original independent-variables (descriptors) is developed [57]. 

In our study, the y-randomization test is repeated 10 times. If both the average values of r2s (r2
Yrand) and 
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q2
LOOs (q2

Yrand) obtained in y-randomization tests are low enough, it is indicated that the resulting  

model has no chance correlation. It is based on the following four criteria [43,45]: (i) q2
Yrand < 0.2 and  

r2
Yrand < 0.2, no chance correlation; (ii) any q2

Yrand and 0.2 < r2
Yrand < 0.3, negligible chance correlation; 

(iii) any q2
Yrand and 0.3 < r2

Yrand < 0.4, tolerable chance correlation; (iv) any q2
Yrand and r2

Yrand > 0.4, 

recognized chance correlation. 

A good result in the internal validation (LOO and LMO) could ensure that the model is robust but not 

ensure that the model has high predictive power for an external sample. It is necessary to execute an 

external validation. In this study, the model developed in the training set of 65 samples was used to 

predict the CI value of 22 drugs in the test set. The predictive correlation coefficients (rp
2) and root mean 

square error (RMSP) are used to evaluate the predictive power of the model. 

Though high rp
2 and low RMSP can interpret that the model is predictable, Golbraikh and Tropsha 

recommended the other statistical parameters to assess the model predictive ability [40,45]. The 

statistical parameters include (i) correlation coefficient R between the predicted and observed activities; 

(ii) coefficients of determination (predicted versus observed activities R0
2, and observed versus  

predicted activities R'02); (iii) slopes k and k' of the regression lines through the origin. They considered 

a model to be well predictable, if the following four conditions are satisfied: Q2 (the validated  
correlation coefficient) > 0.5; R2 > 0.6; 2 2 2

0( ) / 0.1− <R R R  or 2 2 2
0( ' ) / 0.1− <R R R ; 0.85 ≤ k ≤ 1.15 or 

0.85 ≤ k' ≤ 1.15. 

3.5. Application Domain 

The application domain of a model is defined by a leverage [40,45], hi (Equation (4)). 
1( )−= T T

i i ih x X X x  (i = 1, …, n) (4)

where xi is the descriptor row vector of the ith compound; X is the n × k matrix of k descriptor values for 

n training set compounds, where k is the number of model variables, and n is the number of the samples 

in training set. The superscript “T” refers to the matrix/vector transpose. The control leverage h* is set  

as 3k/n. 

4. Conclusions 

An optimal descriptor set with 48 descriptors is rapidly derived from a large number of DRAGON 

descriptors according to descriptor VIP values by the PLS variable selection method. Then, a QSAR 

model based on an optimal descriptor set and the CI value of 65 compounds were built and used to 

predict the CI of 19 compounds with a well-defined application domain. The model presented excellent 

internal fitness and external prediction power by regression statistical parameters. The results of LOO 

and LMO cross-validation show the model is robust. The performance in y-randomization demonstrates 

the model does present acceptable chance correlation. The external prediction powers were evaluated as 

well as the criteria proposed by Golbraikh and Tropsha, and the results show the good statistical quality 

and predictive ability of the model. Therefore, it is expected that the QSAR model could be used to 

predict the placental barrier permeability of drug candidates with a well-defined application domain 

without experimental values. 
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