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Abstract: A new trinuclear oxo-centered chromium(III) complex with formula 

[Cr3O(CH3CO2)6(L)(H2O)2] (L = 5-hydroxyflavone, known as primuletin) was synthetized 

and characterized by ESI mass spectrometry, thermogravimetry, and 1H-NMR, UV-Vis, 

and FTIR spectroscopies. In agreement with the experimental results, DFT calculations 

indicated that the flavonoid ligand is coordinated to one of the three Cr(III) centers in an 

O,O-bidentate mode through the 5-hydroxy/4-keto groups. In a comparative study involving 

the uncoordinated primuletin and its corresponding complex, systematic reactions with the 

free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) showed that antiradical activity increases 

upon complexation. 

Keywords: antiradical activity; chromium(III) complexes; flavonoids; metal-oxo cluster; 
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1. Introduction 

Polyphenolic compounds abound in nature and are found in fruits and vegetables, as well as in 

green and black tea, olive oil, wine and chocolate. The main compounds within this group are the 

flavonoids, which possess C6-C3-C6 units with each C6 representing an aromatic ring. Several reported 

studies have demonstrated that such compounds show cytoprotective and antioxidant properties [1]. 

Among the accepted mechanisms to explain the antioxidant activity of polyphenols is the involvement 

of metal coordination and scavengers of reactive oxygen species produced in living organisms [2]. The 

hydroxyl groups of flavonoids can bind to metal ions and, as a result, lead to an enhancement of 

antioxidant properties. Studies with rutin have shown that coordination with copper enhances the 

ability to scavenge radicals as compared to the free flavonoid [3]. The flavonoids quercetin, galangin, 

and catechin also have the antioxidant activity increased by coordination with iron(III), aluminum(III), 

zinc(II), and copper(II) [4]. Although most studies involve coordination with quercetin, other less 

studied flavonoids have attracted interest. For example, Li et al. showed that complexes formed from 

Ni(II), Cu(II), and Zn(II) with a naringenin Schiff base are more active in the suppression of O2
− and 

HO• radicals [5]. 

Chromium(III) is an essential metal ion involved in the metabolism of sugar and fats.  

Chromium-containing nutritional supplements, especially in the form of picolinate (i.e., [CrIII(pic)3]), 

have been used since the 1980s to improve glucose metabolism, reducing fat and increasing the 

amount of muscle. Since the use of [CrIII(pic)3] at high concentrations can be genotoxic and mutagenic, 

new forms of the supplement have been proposed. These include the trinuclear chromium(III) 

propionate complex [Cr3O(EtCO2)6(H2O)3]+, which reduces blood levels of cholesterol and triglyceride 

in healthy and type II diabetic mices, and thus has been proposed as a structural and functional 

mimetic compound of chromodulin, a peptide containing Cr(III) [6]. 

In order to investigate how the coordination of a representative flavonoid with trinuclear 

chromium(III) complexes affects their antiradical properties, in this work we have synthesized and 

characterized a new complex with primuletin (5-hydroxyflavone) as the ligand (Figure 1). The product, 

which has a formulation [Cr3O(CH3CO2)6(Pri)(H2O)2] with primuletin (HPri) in its deprotonated 

monoanionic state (Pri−), was prepared from [Cr3O(CH3CO2)6(H2O)3]Cl [7] and structurally analyzed 

by the methods detailed in the Experimental Section. 

 

Figure 1. The flavonoid primuletin (HPri) and starting complex [Cr3O(CH3CO2)6(H2O)3]+ 

(Cr3O). Upon metal coordination, primuletin as ligand is deprotonated (Pri−). 
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2. Results and Discussion 

The complex was found to be almost insoluble in most common solvents, with best solubility in 

dimethylsulfoxide (DMSO). Thus, its molar conductivity was obtained by comparison with a 10−5 M 

solution of KCl, and not with a 10−3 M solution as described in the literature [8]. Consistent with the 

molecular formulation of the neutral complex [Cr3O(CH3CO2)6(Pri)(H2O)2], the obtained low 

conductivity value (65 S cm2·mol−1) indicates that this species behaves as a non-electrolyte. 

The ESI mass spectrum of [Cr3O(CH3CO2)6(Pri)(H2O)2] (Figure S1) displays a base peak with m/z 

of 739.5 for [Cr3O(CH3CO2)5(Pri)(H2O)2]+ and several other peaks assigned to fragmented species, 

such as [Cr3O(CH3CO2)6]+ with m/z of 526.0. The data thus confirm that the trigonal oxo-cluster core 

(Cr3O) is maintained in the complex. 

The thermogravimetric (TG) curve of primuletin showed that this compound is stable up to 190 °C, 

while the starting complex [Cr3O(CH3CO2)6(H2O)3]Cl presented mass loss from the beginning of 

heating. In the region of 25–158 °C, this precursor showed a mass loss of 14.5%, which corresponds to 

the release of water molecules and Cl− as chlorine. The loss of acetates begins at 158 °C, with the 

release of four groups below 600 °C and the remaining ones at higher temperatures (Table 1 and 

Figure S2). The decomposition process of the product [Cr3O(CH3CO2)6(Pri)(H2O)2] occurs in four 

stages, starting with the loss of water molecules (4.5%) up to approximately 97 °C. The loss of the 

more weakly bound, non-bridging acetate (see below) occurs in the region of 97–272 °C with an 

observed and calculated mass loss of 7.4%. The release of the flavonoid is observed in the region of 

272–585 °C (with observed and calculated loss of 28.9% and 29.7%), followed by removal of acetate 

groups extending to and beyond 900 °C (Table 1 and Figure S2). 

Table 1. Thermogravimetric data for the starting compounds [Cr3O(CH3CO2)6(H2O)3]Cl 

(Cr3O) and primuletin (HPri), and the product complex [Cr3O(CH3CO2)6(Pri)(H2O)2] 

(Cr3O-Pri). 

Compound 
Dehydration Process Decomposition Process 

ΔT (°C) Δmexp (%) Δmcalc (%) ΔT (°C) Δmexp (%) Δmcalc (%) 

Cr3O 25–158 14.5 14.4  158–600 39.5 38.3 (4Ac−) 
HPri – – – 190–232 100 100 

Cr3O-Pri 25–97 4.5 4.6 
97–272 

272–585 
585–860 

7.4 
28.9 
22.2 

7.4 (1Ac−) 
29.7 (Pri) 

22.1 (3Ac−) 

ΔT = temperature range; Δmexp = experimental mass loss; Δmcalc = calculated mass loss; Ac− = CH3CO2
−. 

The 1H-NMR spectrum of primuletin was obtained in DMSO-d6 (Figure S3a). The four signals with 

δ 6.74 (1H, dd, J = 8.3 Hz; 1.0 Hz), δ 7.13 (1H, dd, J = 8.4 Hz; 1.0 Hz), δ 7.60 (1H, dd, J = 8.4 Hz and 

8.3 Hz), and δ 8.03 (2H, dd, J = 8.1 Hz; 1.8 Hz) were assigned to H6, H8, H7 and H2'/H6', 

respectively. Additionally, two multiplets at δ 7.50 (2H) and δ 7.53 (1H) were assigned to H3'/H5' and 

H4’, respectively. The presence of two singlets at δ 7.01 (1H) and δ 12.6 (1H) were assigned to H3 and 

the hydrogen of the hydroxyl at C5. These assignments are in agreement with the literature [9,10]. The 

spectrum of the complex [Cr3O(CH3CO2)6(Pri)(H2O)2] in DMSO-d6 (Figure S3b) showed only a broad 

signal at δ 8.5 due to the high paramagnetism of the three Cr(III) ions, which promotes spin  
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relaxation and absence of most signals. This typical paramagnetic behavior has been observed in other 

chromium complexes. 

 

Figure 2. Drawing (top) and fully optimized density functional theory (DFT) structures 

(bottom) of the monodentate (left) and bidentate (right) isomers of the trinuclear Cr(III) 

complex with primuletin, formally [Cr3O(μ-CH3CO2)6(O5-Pri)(H2O)2] and  

[Cr3O(μ-CH3CO2)5(CH3CO2)(O5,O4-Pri)(H2O)2], respectively (the hydrogen atoms of 

acetate groups are omitted for clarity; color legend: Cr = green, O = red, and C = dark 

gray). Selected structural parameters are provided as Supplementary Material (Table S2). 

Although primuletin is known to coordinate with metal ions as a bidentate ligand, trinuclear  

oxo-centered clusters of the type [M3O(CH3CO2)6(H2O)3]+ generally form complexes via substitution 

of the peripheral water ligands by monodentate species [11]. In order to elucidate which of these forms 

(i.e., monodentate or bidentate) is favored in this specific flavonoid complex, the molecular structure 

of [Cr3O(CH3CO2)6(Pri)(H2O)2] was computationally studied by DFT calculations (see Computational 

Details). Full geometry optimizations at the B3LYP//6-31G*(C,H,O)/LANL2TZ(Cr) level were performed 

for both isomers shown in Figure 2: monodentate binding via the deprotonated hydroxyl (O5, ring A), 

and bidentate binding via hydroxyl (O5, ring A) and carbonyl (O4, ring C) groups. The geometry of the 

precursor [Cr3O(CH3CO2)6(H2O)3]+ was also optimized at the same level of theory for comparison with its 

reported crystal structure [12]; the calculated bond distances/angles are in excellent agreement with the 

experimental data (Table S1). Starting from this tris-aqua complex to form [Cr3O(CH3CO2)6(Pri)(H2O)2], the 

monodentate coordination of the flavonoid involves only the peripheral substitution of a water ligand, 

while the bidentate product involves additional displacement of an O atom of one of the six 

equatorially bridging acetates; that is, an acetate adjacent to the bidentate flavonoid loses its role as a 
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bridge and becomes bound to a Cr(III) as a monodentate ligand (Figure 2). The DFT data clearly 

indicated that the isomer coordinated in a bidentate mode makes for the most stable structure. The 

energy difference favoring the bidentate isomer relative to the monodentate isomer is substantial: 

15.68 kcal mol−1 (obtained at the B3LYP/6-311+G(2d,2p) level). This result is consistent with the 

mass spectra, which showed that the base peak has only five acetates. Moreover, the thermogravimetric 

analysis indicated the loss of one weakly bound acetate much before the other bridging acetate groups. 

A similar behavior was observed by Chaudhary and Van Horn [13]. 

The UV-Vis absorption spectrum of free primuletin in DMSO (Figure 3 and Table 2) displays two 

defined bands at 273 nm and 337 nm and a shoulder around 300 nm. By comparison with the literature 

of flavonoids [10,14], the bands at 337 nm (band I) and 273 nm (band II) were assigned to π→π* 

electronic transitions originating at the flavonoid ring B (cinnamoyl system) and ring A (benzoyl 

system), respectively. For the complex [Cr3O(CH3CO2)6(Pri)(H2O)2], these bands are shifted to 426 nm 

and 301 nm, confirming the metal-flavonoid coordination. The spectra were obtained at different 

concentrations due the poor solubility of the complex. 

 

Figure 3. UV-Vis spectra of dimethylsulfoxide (DMSO) solutions of 43.1 μM primuletin 

(red line) and 18.8 μM [Cr3O(CH3CO2)6(Pri)(H2O)2] (blue line). 

Table 2. Absorption maxima (λ, nm) and molar absorptivities (ε, M−1·cm−1) of the main 

bands observed in the UV-Vis spectra of primuletin (HPri) and complex 

[Cr3O(CH3CO2)6(Pri)(H2O)2] (Cr3O-Pri) in DMSO, and starting complex 

[Cr3O(CH3CO2)6(H2O)3]+ (Cr3O) in ethanol. 

Compound Band II (π→π *) Band I (π→π *) Ligand Field (d→d) 

HPri 273 (2.8 × 104) 337 (8.0 × 103) – 
Cr3O-Pri 301 (2.9 × 104) 426 (8.1 × 103) – (a) 

Cr3O – – 442, 588 (<100) 
(a) Too weak; masked by the intense band I. 

The IR spectra of primuletin and its complex are shown in Figure S4, and tentative assignments of 

the main peaks are collected in Table 3. The peak for the carbonyl stretching mode of primuletin 

appears at 1655 cm−1 [15]; following coordination to Cr(III), it is downshifted to 1626 cm−1 (Δν = 29 cm−1). 

This trend has been observed in the vibrational spectra of primuletin with other metals [16,17] and 
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confirms the involvement of the carbonyl oxygen (O4) in the metal binding. The low-frequency 

vibrations in the region of 600–400 cm−1 are characteristic of the trinuclear cluster core, ν(Cr3O) and 

ν(CrO4) [11]. The two peaks at 627 and 525 cm−1 clearly indicate that the central Cr3O unit is 

preserved upon coordination to the flavonoid. 

Table 3. FTIR data for free primuletin (HPri), precursor [Cr3O(CH3CO2)6(H2O)3] (Cr3O),  

and complex [Cr3O(CH3CO2)6(Pri)(H2O)2] (Cr3O-Pri). 

Compound Flavonoid Acetate Cr-O 

 ν(C=O) ν(C2=C3) δ(C-OH) νs(COO) νas(COO)  

Cr3O – – – 1450 vs 1611 vs 
665 s 
442 m 

primuletin 1655 vs 1587 w 1319 vw – – – 

Cr3O-Pri 1626 vs 1576 w – 1445 vs 1593 m 
627 w 
525 w 

Abbreviations: vs = very strong; s = strong; m = medium; w = weak; vw = very weak; ν = stretching;  

as = asymmetric; s = symmetric. 

In the studies of antiradical properties, stock solutions of free and coordinated primuletin (0.1 mL, 

DMSO) were added to a 60 μM solution of DPPH (2,2-diphenyl-1-picrylhydrazyl) in methanol (3.9 mL). 

The reaction kinetics was followed by the change in absorbance at 515 nm during 45 min. To quantify 

the antiradical activity of the tested samples, the absorbance gradient (ΔAbs) was calculated by 

considering the absorbance of DPPH at time zero (i.e., before addition of the samples) and then 45 min 

after mixing with the flavonoid samples [18]. From this procedure, the concentration of scavenged 

DPPH (DPPHseq) was calculated as [DPPHseq] = ΔAbs/(b × ε515), where ε515 is the molar absorptivity 

of DPPH at 515 nm (1.13 × 104 M−1·cm−1) and b is the optical path length of the cuvette (1.0 cm). 

Thus, the number (n) of DPPH radicals sequestrated per molecule of the flavonoid sample (flav) was 

estimated as n = [DPPHseq]/[flav]. The flavonoid quercetin was used as standard antiradical in this work. 

The obtained n values (Table 4) indicate that complexation led to an increase in the antiradical 

activity of the flavonoid, as n is higher for the complex compared to free primuletin. Further studies 

will be aimed at mechanistic details, although it is known that the antiradical activity of the flavonoid 

may occur via hydrogen atom transfer (HAT) and sequential proton loss electron transfer (SPLET) [19]. 

However, since primuletin becomes deprotonated upon coordination, SPLET is the only plausible 

mechanism in the complex [Cr3O(CH3CO2)6(Pri)(H2O)2]. This interpretation agrees with the observation 

that the complex [CrCl(Q)2(H2O)] (Q = quercetin) has a higher antiradical activity than that of free 

quercetin, from which it was concluded that Cr(III) is a better electron donor than the H atom [20]. 

Table 4. Antiradical activities of free and coordinated primuletin based on DPPH assays. 

Compound ΔAbs [DPPHseq] [flav] n 

HPri 0.017 1.50 × 10−6 1.01 × 10−5 0.155 
Cr3O-Pri 0.020 1.77 × 10−6 2.50 × 10−6 0.734 

ΔAbs = total change in absorbance for DPPH; [DPPHseq] = concentration of DPPH scavenged by the 

flavonoid sample; [flav] = flavonoid concentration; n = number of DPPH radicals scavenged per molecule of 

the flavonoid (free or coordinated). 
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3. Experimental Section 

The starting compound [Cr3O(CH3CO2)6(H2O)3]Cl was synthesized as described in the literature [7]. 

All reagents and solvents were analytical grade. Elemental analyses (C, H) were performed using a 

Perkin Elmer CHN 2400. Molar conductance was measured for DMSO solutions (0.01–1.0 mM range) 

using a Digimed DM-32 conductivity meter. ESI mass spectra in positive mode were carried out with a 

Bruker Daltonics Esquire 3000 plus ESI-MS with dry temperature of 280 °C and capillary voltage of  

4 kV; the sample was dispersed in acetonitrile and N2 was used as auxiliary gas. Thermogravimetric 

analyses were performed with a TA Instruments TGA 2950 Hi-Res thermogravimetric analyzer using 

1–3 mg samples in a ceramic crucible, nitrogen flow at 50 mL·min−1, and heating rate of 10 °C·min−1. 

Infrared spectra from 4000 to 400 cm−1 were obtained with a Shimadzu FTIR 8400 instrument, using 

KBr pellets. Electronic absorption spectra in the region of 190–1100 nm were recorded on an Agilent 

8453 UV-visible spectrophotometer. 1H-NMR spectra of complexes and free flavonoids in DMSO-d6 

or CD3OD were collected on a Bruker DPX 300 spectrometer (1H/300 MHz). 

3.1. Synthesis of [Cr3O(CH3CO2)6(Pri)(H2O)2] 

The complex with primuletin (Pri) was prepared as reported in the literature [16]. A mixture containing 

0.252 g (1.06 mmol) of primuletin, 0.040 g (1.01 mmol) of NaOH, 165 mL of ethanol, and 10 mL of 

water was heated under reflux for 15 h. Then, 0.221 g (0.33 mmol) of [Cr3O(CH3CO2)(H2O)3]Cl·3H2O 

in ethanol (5 mL) was added to the mixture under reflux. After 10 h of reaction, the solution was 

cooled to 5 °C and the obtained brown precipitate was filtered, washed with cold water and dried under 

vacuum. Yield: 26%. Anal. Calcd for C27H31O18Cr3 (MW = 799.5): C, 40.5; H, 3.91. Found: C, 40.2; 

H, 4.08. 

3.2. Computational Details 

Density functional theory (DFT) calculations were carried out using the Gaussian 09 program 

(revision D.01) [21]. Geometry optmizations without any constraints employed the hybrid B3LYP 

functional with the LANL2TZ relativistic effective core potentials and associated triple-zeta basis set 

for chromium and the 6-31G(d) basis set for all the other elements. In order to evaluate the quality of 

the results produced by this methodology, the structure of a reference system (the tris-aquo precursor 

[Cr3O(CH3CO2)6(H2O)3]+) was also computed and shown to be in excellent agreement with 

crystallographic data [12] (Table S1). Single-point energy calculations following geometry optimization 

were carried out using the triple-zeta 6-311+G(2d,2p) basis set; total energies for monodentate and 

bidentate isomers were −5536.514421 a.u. and −5536.539404 a.u., respectively. Since the complexes 

in this study have three Cr(III) centers with three unpaired electrons each (3d3), all calculations 

involved open-shell systems with spin multiplicity Ms = 10 (dectet). 

4. Conclusions 

In conclusion, the metal-ligand association between a trinuclear oxo-Cr(III) cluster and the 

flavonoid primuletin as ligand produced the complex [Cr3O(CH3CO2)6(Pri)(H2O)2]. The molecular 

structure of this product was elucidated through a combination of experimental and theoretical 
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methods. The results showed that the Cr3O cluster core is retained upon complexation, and that the 

flavonoid binds to one of the metal centers in a bidentate mode via the 5-hydroxy/4-oxo groups. The 

studies involving the reaction between the free radical DPPH and the flavonoid (free and coordinated) 

indicated that complexation with the trinuclear cluster enhanced the antiradical activity of the flavonoid. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/20/04/6310/s1. 
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