Supplementary Materials

Table of Contents

1. Nuclear magnetic resonance (NMR)

2. High performance liquid chromatography (HPLC): Reaction crudes

3. Resume table of the results for the formylation reaction.

1. NMR SPECTRA

> Entry 1: Reaction with phenol

Figure S1. ¹H-NMR (400 MHz, C₃D₆O): **2**.

Figure S2. ¹³C-NMR (100 MHz, C₃D₆O): **2**.

Entry 2: Reaction with 3-methylphenol

Figure S3. ¹H-NMR (400 MHz, C₃D₃O): **3** and **4**.

Figure S4. ¹H-NMR (400 MHz, C₃D₃O): **5**.

Figure S5. ¹³C-NMR (100 MHz, C₃D₆O): **5**.

Entry 3: Reaction with 3-methoxyphenol

Figure S6. ¹H-NMR (400 MHz, C₃D₃O): 6 and 7.

Figure S7. ¹H-NMR (400 MHz, C₃D₃O): **8**.

Figure S8. ¹³C-NMR (100 MHz, C₃D₃O): **8**.

> Entry 4: Reaction with 3,5-dimethylphenol

Figure S9. ¹H-NMR (400 MHz, CDCl₃): **9**.

Figure S10. ¹³C-NMR (100 MHz, CDCl₃): 9.

Figure S11. ¹H-NMR (400 MHz, C₃D₆O): **10**.

Figure S12. ¹³C-NMR (100 MHz, C₃D₆O): 10.

> Entry 5: Reaction with 3,5-dimethoxyphenol:

Figure S13. ¹H-NMR (400 MHz, CDCl₃): **11**.

Figure S14. ¹³C-NMR (100 MHz, CDCl₃): 11.

> Entry 6: Reaction with 3,4,5-trimethylphenol

Figure S15. ¹H-NMR (400 MHz, CDCl₃): 12.

Figure S16. ¹³C-NMR (100 MHz, CDCl₃): **12**.

> Entry 7: Reaction with anisole:

Figure S17. ¹H NMR (400 MHz, CDCl₃): **13** and **14**.

> Entry 8: Reaction with 1,3-dimethoxybenzene:

Figure S18. ¹H NMR (400 MHz, CDCl₃): **15**.

Figure S19. ¹³C-NMR (100 MHz, CDCl₃): 15.

Figure S20. ¹H NMR (400 MHz, CDCl₃): **16**.

Figure S21. ¹³C-NMR (100 MHz, CDCl₃): 16.

> Entry 9: Reaction with 1,3,5-trimethoxybenzene:

Figure S22. ¹H NMR (400 MHz, CDCl₃): **17**.

Figure S23. ¹³C-NMR (100 MHz, CDCl₃): 17.

> Entry 10: Reaction with 3,5-dimethylanisole

Figure S24. ¹H-NMR (400 MHz, CDCl₃): **18**.

Figure S25. ¹³C-NMR (100 MHz, CDCl₃): 18.

Figure S26. ¹H-NMR (400 MHz, CDCl₃): 19.

Figure S27. ¹³C-NMR (1 01 MHz, CDCl₃): 19.

> Entry 11: Reaction with o-xylene:

Figure S28. ¹H-NMR (400 MHz, CDCl₃): **20** and **21**.

> Entry 12: Reaction with *m*-xylene

Figure S29. ¹H-NMR (400 MHz, CDCl₃): 22 and 23.

Figure S30. ¹H-NMR (400 MHz, CDCl₃): 24.

Figure S31. ¹³C-NMR (1 01 MHz, CDCl₃): 24.

> Entry 13: Reaction with *p*-xylene:

Figure S32. ¹H-NMR (400 MHz, CDCl₃): 25 and byproduct.

> Entry 14: Reaction with mesytilene:

Figure 33. ¹H-NMR (400 MHz, CDCl₃): **26**.

Figure S34. ¹³C-NMR (100 MHz, CDCl₃): 26.

2. High performance liquid chromatography (HPLC): Reaction crudes

Entry 1: Reaction with phenol

HPLC crude:

 $t_{\rm R}$ = 3.56 min \rightarrow 4-hydroxybenzaldehyde (2); $t_{\rm R}$ = 4.11 min \rightarrow phenol (starting material); $t_{\rm R}$ = 4.90 min \rightarrow 2-hydroxybenzaldehyde(1)

Entry 2: Reaction with 3-methylphenol

HPLC crude:

 $t_{\rm R} = 4.15 \text{ min} \rightarrow 4$ -hydroxy-2-methylbenzaldehyde (5); $t_{\rm R} = 4.86 \text{ min} \rightarrow 3$ -methylphenol (starting material); $t_{\rm R} = 5.66 \text{ min} \rightarrow 2$ -hydroxy-6-methylbenzaldehyde (3) + 2-hydroxy-4-methylbenzaldehyde (4).

UV-VIS:

Entry 3: Reaction with 3-methoxyphenol:

HPLC crude:

 $t_{\rm R} = 3.89 \text{ min} \rightarrow 4$ -hydroxy-2-methoxylbenzaldehyde (8); $t_{\rm R} = 5.28 \text{ min} \rightarrow 2$ -hydroxy-4-methoxybenzaldehyde (7); $t_{\rm R} = 5.69 \text{ min} \rightarrow 2$ -hydroxy-6-methoxybenzaldehyde (6).

UV-VIS:

> Entry 4: Reaction with 3,5-dimethylphenol:

HPLC crude:

 $t_{\rm R} = 5.13 \text{ min} \rightarrow 4$ -hydroxy-2,6-dimethylbenzaldehyde (10); $t_{\rm R} = 6.02 \text{ min} \rightarrow 3,5$ -dimethylphenol (starting material); $t_{\rm R} = 6.91 \text{ min} \rightarrow 2$ -hydroxy-4,6-dimethylbenzaldehyde (9).

UV-VIS:

Entry 5: Reaction with 3,5-dimethoxyphenol:

HPLC crude:

HPLC B* (X-Bridge, C₁₈, 5-100% ACN, t = 11 min)

> Entry 6: Reaction with 3,4,5-trimethoxyphenol:

HPLC crude:

* Impurities from the starting material. HPLC B* (X-Bridge, C18, 5-100% ACN, t = 11 min).

> Entry 7: Reaction with anisole:

OMe TiCk, Ck2CHOMe DCM, 0°C TiCk, Ck2CHOMe CHO TiCk, Ck2CHOMe CHO TiCk, Ck2CHOMe TiCk, Ck2CHOMe TiCk, Ck2CHOMe TiCk, Ck2CHOMe TiCk, TiCk, Ck2CHOMe TiCkACHOME TICKACHOME

HPLC Crude:

 $t_{\rm R} = 6.03 \text{ min} \rightarrow 2$ -methoxybenzaldehyde (13); $t_{\rm R} = 6.28 \text{ min} \rightarrow 4$ -methoxybenzaldehyde (14).

UV-Vis:

> Entry 8: Reaction with 1,3-dimethoxybenzene:

HPLC Crude:

UV-Vis:

> Entry 9: Reaction with 1,3,5-trimethoxybenzene:

HPLC B* (X-Bridge, C₁₈, 5-100% ACN, t = 11 min

> Entry 10: Reaction with 3,5-dimethylanisole:

HPLC Crude:

 $t_{\rm R} = 4.73 \text{ min} \rightarrow 4$ -methoxy-2,6-dimethylbenzaldehyde (19); $t_{\rm R} = 5.62 \text{ min} \rightarrow 2$ -methoxy-4,6-dimethylbenzaldehyde (18).

UV-Vis:

> Entry 11: Reaction with *o*-xylene:

 $t_{\rm R} = 6.72 \text{ min} \rightarrow \text{Regioisomers mixture}$ (20 and 21); $t_{\rm R} = 8.05 \text{ min} \rightarrow \text{Dimerzation products}$ (HPLC-MS: observed = 223.26 *m/z* correspond to [M-OH]⁺)

> Entry 12: Reaction with *m*-xylene:

 $t_{\rm R} = 6.801 \text{ min} \rightarrow \text{Regioisomeric mixture}$ (22 and 23), $t_{\rm R} = 8.319 \text{ min} \rightarrow \underline{bis(2, 4-dimethylphenyl)methanol}$ (HPLC-MS: observed 223.26 m/z corresponding to [M-OH]⁺)

11.00

> Entry 13: Reaction with *p*-xylene:

HPLC crude:

 $t_{\rm R} = 6.91 \text{ min} \rightarrow 2,5$ -dimethylbenzaldehyde (25), $t_{\rm R} = 8.17 \text{ min} \rightarrow \text{dimerization product (HPLC-MS: observed 223.26 m/z corresponding to [M-OH]^+)}$

> Entry 14: Reaction with mesytilene:

HPLC crude (g30→100 t8 min):

 $t_{\rm R} = 4.17 \text{ min} \rightarrow \text{No identified.}$ $t_{\rm R} = 5.97 \text{ min} \rightarrow 2,4,6\text{-trimethylbenzaldehyde}$ (26)

3. Resume tables of formylation reactions.

Entry		Compound		Crude purity (% HPLC)	Product purity (% HPLC)	Yield (%)
			Phenols			
	1	2-hydroxybenzaldehyde	ОНСНОССНО	$18.0 (t_{\rm R} = 3.6 {\rm min})^1$		_
1	2	4-hydroxybenzaldehyde	ОН	49.9 $(t_{\rm R} = 4.9 \text{ min})^1$	>99	0.8 $(22)^2$
	4	2-hydroxy-4-methylbenzaldehyde	OHC	$-72.2(t_{1}-5.7 \text{ min})^{1}$	08.8	
2	3	2-hydroxy-6-methylbenzaldehyde	ОНСНОССНО	$72.3 (l_{\rm R} - 5.7 \text{ mm})$	98.8	56 (3:1.6:1)
	5	4-hydroxy-2-methylbenzaldehyde	OH CHO	$21.2 (t_{\rm R} = 4.2 {\rm min})^1$	>99	[3.6]-

 Table S1. Resume table of phenol formylation.

Entry		Compound		Crude purity (% HPLC)	Product purity (% HPLC)	Yield (%)
			Phenols			
	6	6-hydroxy-2-methoxybenzaldehyde	ОНСНО	22.7 ($t_{\rm R}$ = 3.9 min) ¹	19.9	61 (1.3:3.7:1)
3	7	2-hydroxy-4- methoxybenzaldehyde	OHC OHC OMe	55.7 ($t_{\rm R}$ = 5.3 min) ¹	77.2	
	8	4-hydroxy-2-methoxybenzaldehyde	OH OMe CHO	18.7 ($t_{\rm R}$ = 5.7 min) ¹	96.4	
	9	2-hydroxy-4,6-dimethylbenzaldehyde	ОНСНО	89.9 ($t_{\rm R}$ = 6.9 min) ¹	>99	- 78 (5:1)
4	10	4-hydroxy-2,6- dimethylbenzaldehyde	ОН	8.2 ($t_{\rm R}$ = 5.1 min) ¹	>99	

 Table S1. Cont.

Entry		Compound		Crude purity (% HPLC)	Product purity (% HPLC)	Yield (%)
			Phenols			
	11	6-hydroxy-2,4-dimethoxybenzaldehyde	OH CHO MeO OMe	77.8 ($t_{\rm R}$ = 8.3 min) ⁴	99.3	63 (11.1) ²
5		4-hydroxy-2,6- dimethoxybenzaldehyde	OH MeO OMe CHO	2.6 $(t_{\rm R} = 6.2 \text{ min})^4$ $(t_{\rm R} = 6.0 \text{ min})^3$	_	_
6	12	6-hydroxy-2,3,4-trimethoxybenzaldehyde	OH CHO MeO OMe	63.5 ($t_{\rm R}$ = 8.1 min) ⁴	96.8	56 (25.3) ²

 Table S1. Cont.

¹ HPLC: G05 \rightarrow 100 (X-Bridge, C₁₈, 8 min); ² starting material; ³ HPLC-MS: G05 \rightarrow 100 (SunFire C₁₈, 8 min); ⁴ HPLC: G05 \rightarrow 100 (X-Bridge, C₁₈, 11 min).

Entry		Compound		Crude purity (% HPLC)	Product purity (% HPLC)	Yield (%)
			Methoxybenzen	28		
	13	2-methoxybenzaldehyde	OMe CHO	$48.5\% (t_{\rm R} = 6.0 \text{ min})^{-1}$	_	97 (1:1.1)
7	14	4-methoxybenzaldehyde	OMe CHO	$51.5\% (t_{\rm R} = 6.3 \text{ min})^{-1}$	_	
8	15	2,6-dimethoxybenzaldehyde	OMe CHO OMe	29.6% ($t_{\rm R}$ = 4.9 min) ¹	>99%	79 (1:3)
	16	2,4-dimethoxybenzaldehyde	OHC OHC OMe	70.4% ($t_{\rm R}$ = 5.67 min) ⁻¹	>99%	

Table S2. Resume table of methoxybenzene formylation.

Entry		Compound		Crude purity (% HPLC)	Product purity (% HPLC)	Yield (%)
			Methoxybenzene	es		
9	17	2,4,6-trimethoxybenzaldehyde	OMe CHO MeO OMe	61.8% ($t_{\rm R}$ = 7.0 min) ⁴	95.6%	44 (38.2%) ²
10	18	2-methoxy-4,6-dimethylbenzaldehyde	OMe CHO	83.8% ($t_{\rm R}$ = 7.0 min) ¹	>99%	19 (3.5:1)
	19	4-methoxy-2,6-dimethylbenzaldehyde	OMe CHO	$16.2\% (t_{\rm R} = 6.7 \text{ min})^{-1}$	>99%	

 Table S2. Cont.

¹ HPLC: G05 \rightarrow 100 (X-Bridge, C₁₈, 8 min); ² starting material; ⁴ HPLC: G05 \rightarrow 100 (X-Bridge, C₁₈, 11 min).

Entry		Compound		Crude purity (% HPLC)	Product purity (% HPLC)	Yield (%)
			Methylbenz	enes		
	20	2,3-dimethylbenzaldehyde	СНО	_	99.4%	70
11	21	3,4-dimethylbenzaldehyde	СНО	89.2% ($t_{\rm R}$ =6.7 min) ¹		(3.2:1)
11	-	bis(2,3-dimethylphenyl)methanol	OH	$4.4\% (t_{\rm R} = 8.1 \text{ min})^{-1}$	_	_
	-	bis(3,4-dimethylphenyl)methanol	OH		_	_
	22	2,6-dimethylbenzaldehyde	СНО	82.0% ($t_{\rm R}$ =6.8 min) ¹	98.9%	62
12	23	2,4-dimethylbenzaldehyde	ОНС			$[0.5]^2$
	24	bis(2,4-dimethylphenyl)methanol	OH	17.1% ($t_{\rm R}$ =8.3 min) ¹	97.0%	9.9

 Table S3. Resume table of methylbenzene formylation.

Entry		Compound		Crude purity (% HPLC)	Product purity (% HPLC)	Yield (%)
			Methylbenz	zenes		
	25	2,5-dimethylbenzaldehyde	СНО	94.7% ($t_{\rm R}$ = 6.9 min) ¹	_	
13	-	bis(2,5-dimethylphenyl)methanol	OH	$3.4\% (t_{\rm R} = 8.2 \text{ min})^1$ $(t_{\rm R} = 10.5 \text{ min})^3$	_	- 97
14	26	2,4,6-trimethylbenzaldehyde	СНО	96.7% $(t_{\rm R} = 5.97 \text{ min})^5$	_	96

¹ HPLC: G05 \rightarrow 100 (X-Bridge, C₁₈, 8 min); ² starting material; ³ HPLC-MS: G05 \rightarrow 100 (SunFire C₁₈, 8 min); ⁵ HPLC: G30 \rightarrow 100 (X-Bridge, C₁₈, 8 min).